
Dynamic Systems Development
Method (DSDM) is a do-
cumented method for develo-

ping systems. Although most IT
professionals view formal develop-
ment methods with a degree of cyni-
cism this one is a bit different. It isn’t
that traditional methods such as
SSADM don’t work, it’s just that they
take ages to deliver anything. True,
even an inexperienced developer can
use them to produce a reliable system
- but why shackle experienced de-
velopers to the same rigid framework?

Tradition
In theory the traditional methods

can be used flexibly and guarantee sys-
tem maintainability and correctness
(as system maintenance over the sys-
tem’s life usually costs more than
development, a little extra overhead
during development doesn’t matter)
but the idealised picture of develop-
ment on which the traditional methods
rely never seems to occur in practice.

In reality, everyone agrees that a pro-
ject is feasible and then does a detailed
requirements analysis, amidst much bic-
kering and political wrangling. After
several months the boss loses patience
and bullies all concerned into signing
off a requirements specification. Then
the programmers go away (confident
that if they deliver to this specification,
no one can blame them for any prob-
lems) and design and code a system.

When the users get their new sys-
tem many months later they go back on
their requirements signoff and insist on
all sorts of changes (often exposing
fundamental design flaws in the sys-
tem), partly because it is easier to
recognise shortcomings in a real work-
ing system than in a paper document
and partly because the requirements
have changed anyway. Unplanned
prototyping in a production environ-
ment (which is what is happening) is
not very satisfactory.

The system works, eventually, but it
is late, over-budget and, sometimes, no
longer needed (quite often, most of the
business benefit comes from a small
part of the system as originally speci-
fied). The developers do avoid blame
by quoting the specification they
worked to, by the way, but the reputa-
tion of the whole IT department drops
one more notch.

Better Way
There must be a better way, and

there are four alternatives that are often
tried. The most usual is powered an-
archy. You buy what is optimistically
called a rapid application develop-
ment (RAD) tool and put together an
impressive GUI-based system in a mat-
ter of days, often cobbling it together
from bits of other systems. This is a
popular move as the users can start
work immediately, and if they don’t
like anything a particular feature can
be reprogrammed over the lunch
break. The problems appear later,
when dozens of such systems don’t
talk to each other properly and main-
taining any of them is a nightmare. At
this stage, people start talking about
throw-away code and the obvious fact
that it is cheaper to redevelop than to

maintain. Well, that may be true if you
build systems that way but it seems a
little wasteful.

A superficially more attractive ap-
proach is to give the toolset to a
"superprogrammer", who goes off into
a room somewhere and works 72 hours
straight to deliver a maintainable, do-
cumented, gem of a system. This
method works well (assuming that you
have a reliable source of superpro-
grammers for when this one burns out)
- until you discover that the issues
which your new system addresses so
brilliantly don’t correspond precisely
to any of the issues faced by your busi-
ness.

In the end, it’s simplest to go out and
buy a pre-programmed package which
your users can evaluate for themselves.
However, this condemns them to
working at the same level of efficiency
as everyone else - if the package gives
you an advantage, your competition
will buy it too. No problem, if all it does
is calculate tax payments, but a real
problem if it is fundamental to your
business competitiveness. This means
that you will get insistent demands
that you customise the package and
(since the code was never designed
with your particular needs in mind)
you’ll find that if you have to change

Understanding DSDM

Dynamic Systems Development Method or DSDM is a design methodology which is
growing in popularity. David Norfolk explains what it is and what it can and can’t do.

Issue 67 Page 15 File: D1121.1

"DSDM is primarily based on continuous
user involvement in an iterative

(prototype-based) development process
which is responsive to changing business

requirements but still sufficiently
defined for use with a formal quality

management system if required."

Design/Implementation:Programming

PC Network Advisor

more than about 5% of the code, on top
of any customisation options built in,
you’d have been better off developing
from scratch.

There is, indeed, a swing back to-
wards in-house development in order
to give competitive advantage but the
old problems haven’t gone away. In
order to gain competitive advantage
you must deliver precisely what the
user needs when the user needs it. The
better RAD tool systems are recognis-
ing that the less controlled ones are
prone to delivering the wrong system,
or an unmaintainable system, too fast
for anyone to do anything about it, and
are extending their scope backwards
towards rapid determination of real
user requirements as a basis for rapid
delivery of business systems.

This brings us back full-circle to a
rather different view of the formal de-
velopment method, as a framework
into which the new tools can be
plugged. DSDM is designed as a mod-

ern method which exploits the ad-
vanced tools available to the modern
developer. It is supported by many of
the major vendors (Texas Instruments,
for example, produce a leaflet showing
how their Composer by IEF tool satis-
fies the requirements of DSDM) and by
a lot of major IT users such as American
Express and British Airways.

Introducing DSDM
DSDM is primarily based on con-

tinuous user involvement in an
iterative (prototype-based) develop-
ment process which is responsive to
changing business requirements but
still sufficiently defined for use with a
formal quality management system if
required.

DSDM focuses on delivering busi-
ness benefit instead of, as in traditional
development methods, the avoidance
of blame through signed-off specifica-
tions. DSDM projects should,

therefore, avoid the twin problems of
traditional projects: that the specifica-
tion often reflects what the IT people,
or even the business users, think is
technically possible instead of what the
business needs; and that the users have
to wait to use the parts of the system
they really need now until the whole
system has been built, tested and
signed off.

DSDM exploits this situation by im-
plementing the famous (and,
definitely, non-quantitative) 80:20 rule.
It recognises that most of the benefit
comes from 20% of the system require-
ments - so you can start generating
competitive edge early if you concen-
trate on getting just that 20% delivered
first and deliver the rest, incrementally,
later. Of course, the system may not be
100% correct for much of the time, as it
would be if you had implemented a
formal specification, but 80% correct
will be good enough as long as users
are intimately involved with the devel-
opment and in a position to ensure that
the missing 20% has no serious busi-
ness consequences.

We’ll see later that DSDM does not
promise to support applications where
the functionality can’t be assessed at
the user interface - if the essence of the
application is a set of complex calcula-
tions, for example.

Does this imply that DSDM can only
deliver systems of limited quality? No,
it actually guarantees higher quality
systems, in terms of fitness for (busi-
ness) purpose. The traditional fully-
specified and signed off system was
frequently 100% correct, in terms of
adherence to specification, but often
very low quality in terms of delivering
business benefit when it was actually
needed.

Investment
So what do you get from an invest-

ment in DSDM? Make no mistake, it is
an investment. The official handbook
on the method (ISBN 1 899340 02 5)
comes with the annual subscription of
only $150 to the DSDM Consortium
(contact it in the UK on +44 1233
661003) but you will also need proper
training in the techniques (there is a
3-day certified course and at least some
team members should know DSDM in

File: D1121.2 Issue 67 Page 16

1. There is active user involvement (ideally both users and developers
share a workplace), so that decisions can be made on the spot. This
makes senior user management commitment into a critical success
factor.

2. The team must be empowered to make decisions without waiting for
higher-level approval. Again, senior management commitment is
critical.

3. Business requirements take precedence (build the right product before
building it right).

4. The team concentrates on product delivery rather than on carrying out
prescribed activities.

5. Development is iterative, driven by user feedback.
6. All changes are reversible.
7. Management rewards product delivery rather than task completion.
8. Testing is carried out throughout the life cycle, not just before delivery

(when it is generally too late to fix anything cheaply).
9. Estimates should be tight and specify frequent business deliverables.
10. Estimates should be based on business functionality (function points,

perhaps), not on lines of code.
11. Risk assessment should focus on the business functions being

delivered, not on the construction process.
12. Although DSDM doesn’t require a signed specification, the high-level

scope and objectives should be frozen or "base-lined" before you start.
13. There must be a flexible relationship between vendors and purchasers,

because DSDM does not give you a formal specification as a basis for
purchase orders.

Figure 1 - The Underlying Principles of DSDM.

Design/Implementation:Programming

PC Network Advisor

detail before they start) and an unspe-
cified investment in changing
development practice.

Developers should take to DSDM
with little trouble but the method does
require significant, continuous, user
support - so you will need users to
commit valuable time to the develop-
ment (which means that their
managers may benefit from one-day
DSDM-awareness courses). You will
also need development support tools,
but you probably want these anyway.

In return, DSDM gives you a frame-
work for good practice. It doesn’t
mandate a development method, but it
does define objectives throughout de-
velopment, suggest people who
should be involved at each stage and
define suitable deliverables. It is im-
portant that DSDM isn’t used as a
mindless recipe for development but
that the development team checks
what it is actually going on against the
framework.

DSDM also helps you manage de-
velopment. Before the project starts it
gives you some idea of the tasks which
will have to be performed and it also
highlights a project which isn’t pro-
gressing properly (if, for example, a
prototype is being reviewed by two
groups with conflicting needs, each
undoing the other’s changes). It also
gives you hints and tips about keeping
the development on course and main-
taining its business focus.

Finally, if you have a formal quality
management process in place (such as
ISO 9000), DSDM should let you dem-
onstrate that the necessary controls are
in place without jeopardising either
flexibility of development or your ac-
creditation.

The DSDM Model
The DSDM model is iterative, so at

any stage you can return to earlier
stages in response to, typically, busi-
ness issues (the requirements may
change, for example - not a problem
here as it would be in a traditional
method). It is also three dimensional,
so at any stage you can drill down for
assistance with particular processes.
All of this makes it a little difficult to
describe in something as linear as a
written article (it fits better into an

HTML page on the Internet - take a
look at http://www.dsdm.org).

The first stage in a DSDM project is
Feasibility. This is where the suitability
of DSDM itself for the project is con-
sidered. If development is not going to
lead to an interactive application
where the functionality is directly evi-
dent to its users at the user interface, if
it doesn’t have a clearly defined user
group and, especially, if it depends on
complex inner calculations then it is
unlikely that a method based on user-
driven prototyping is going to be much
use - the users of the prototype simply
aren’t going to be able to say if it is
working properly.

Nevertheless, an experienced
DSDM team working with strong tool
support may use it in some unlikely
projects. All that matters is that there is
a feedback path on the progress of the
project and the option to switch to a
more rigid (specification-based)
method if DSDM is not delivering.

There are well-defined principles
behind DSDM development, which
may imply a significant cultural im-
pact on some organisations (for
instance, if the decisions reached lo-
cally are currently subject to revision or
overrule by some remote corporate IT
standards body). There is also an
underlying assumption that the devel-
opment team is both highly skilled and
stable, and effectively managed by a
skilled and experienced project man-
ager. You should think very carefully
before using DSDM if the availability
of skilled staff is an issue, or if any of
the method’s underlying principles (as
listed in Figure 1) cause you concern.

However, once the feasibility of a
DSDM approach has been accepted, it
still remains to determine the high
level scope and objectives for the pro-
ject, in terms of the business benefits to
be and the staff affected. Without this
it is hard to see how the project can be
controlled at all but we don’t think that
these initial stages should take too long
- after all, if agreement can’t be reached
quickly at this level, the project is
doomed anyway.

Development
Development proper consists of

two stages of iterative prototyping

(and one of deployment). The first con-
centrates on determining user
requirements, with the prototype rep-
resenting a working model of the
traditional paper analysis models.

The second stage adds the user in-
terface and control mechanism to the
functional prototype that turn it into a
functioning system which delivers
business benefits. There is no separate
testing stage.

Testing occurs throughout the life-
cycle, on the principle that it is cheapest
to remove errors as early as possible in
the life-cycle and cheaper still not to
introduce them in the first place (in the
traditional life-cycle, the idea that er-
rors can be sorted out later, during
testing, is surprisingly seductive and
you can find during testing that the
entire system has been built on flawed
foundations).

These prototyping stages are criti-
cal. User involvement is needed, of
course, on the principle that the users
may not be able to say what they want
but they can certainly recognise the
shortcomings in what they are given.

Tool support is vital during proto-
typing. Not only must user input be
reflected in changes to the prototype
before the users have time to lose inter-
est, but it is useful if the user
requirements can be automatically
captured and subjected to a degree of
quality assurance without the de-
velopers having to devote time to this
(basically, if checks for internal consist-
ency can be automated). The
documentation needed for system
maintenance should be generated, by
the tool, as part of the process of build-
ing the system.

However, project management is
critical too, in order to recognise prob-
lems in time to do something about
them.

The obvious problem is a prototype
which isn’t converging on a finished
state - more than 3 or so iterations prob-
ably indicates that the original scope,
or the identified user group, has been
badly chosen, and that the business
study should be revisited. Other prob-
lems, such as a lack of specific skills in
the development team or limited user
commitment, should become obvious
during prototyping and must be ad-
dressed.

Issue 67 Page 17 File: D1121.3

DSDM

Design/Implementation:Programming

PC Network Advisor

Deployment
The final stage is, of course, im-

plementation or deployment. It is
expected that DSDM prototypes will
evolve into parts of the delivered sys-
tem - there is no room for throw-away
code in a rapid development (although
prototypes developed solely to test a
particular technique may be discarded,
after minimal investment, if the tech-
nique doesn’t work).

What is deployed should deliver
immediate business benefit, and
changing requirements may mean that
some parts of the system are never de-
livered. Deployment is controlled by
"time-boxing", which means setting a
deadline by which a business objective
must be met rather than when a task
must be completed (we are talking
about a period of a couple of weeks, 6
at a maximum). Delivery should not be
allowed to slip, even if the require-
ments do (that is, deliver fewer
functions, working properly, in the
time available, but don’t deliver every-
thing late or, worse still, on time but not
working properly).

DSDM is quite simple in concept but
making it work requires skills of the
highest order - delivering better busi-
ness function, faster, must cost
something. This is where its third
dimension of "good-practice tech-
niques" comes in. The DSDM manual
discusses the different sorts of proto-
types and their uses:

● project management;
● team structures;
● user involvement;
● configuration management;
● estimating;
● metrics and so on.

Useful stuff, but you’ll need proper
training with someone who can
answer questions out of practical ex-
perience. On the other hand, these
essays could be useful adjuncts to in-
house training and assist people
evaluating the method.

Issues
There are some general issues with

DSDM. For a start, vendor involve-
ment in the Consortium may mean that

it "tries to be all things to all tools". It
does provide a useful guide to select-
ing a DSDM support environment but
only at a pretty high level. Then, great
reliance is placed on the skills and en-
thusiasm of both the development
team members and the project man-
ager and, if the wrong people get
involved, unmaintainable systems
could be delivered before anyone no-
tices - this won’t be a problem during
the enthusiastic pioneer stages but
could happen as DSDM become rou-
tine.

However, is there a practical alter-
native to the DSDM method for many
projects? Rapid coding in a tool such as
Visual Basic is unlikely to produce
more maintainable systems and use of
techniques such as object oriented pro-
gramming can also produce
poor-quality systems in inadequately
skilled hands. DSDM is not a panacea,
just a tool which can help you control
rapid development but which can’t re-
place intelligence and training.

Not Suitable
There certainly are projects for

which DSDM isn’t suitable. Part of the
skill of a DSDM practitioner is to rec-
ognise them. On the other hand, the
fact that DSDM doesn’t fit your culture
needn’t stop you changing your cul-
ture enough to adopt it. You don’t
always need an architect and a quan-
tity surveyor on a building project, but
even a jobbing builder (if any good)
should work to "accepted good prac-
tice" methods, tempered by the
building regulations.

DSDM provides a framework for
workable good practice in a much
younger, and less regulated, industry.
It encourages the use of RAD, with the
consequent danger that too many cor-
ners are cut and unmaintainable
systems result, but it gives you a lot of
assistance with controlling the risks as-
sociated with RAD. Ultimately, always
remember that a method can’t force
you to do something wrong: "I could
see that we were heading for disaster
but the method said that we were sup-
posed to fail at this point" doesn’t
sound good coming from anyone
qualified to be a project manager. At
worst, the project manager may have

to cope with problems not covered by
a particular method, but that’s what
they’re paid for.

The most obvious impact of DSDM
on development and support staff is
that they could find themselves work-
ing at a desk in a business area,
alongside a real user, instead of in a
programming shop.

They could even find themselves
working for a project manager with no
coding experience, seconded from the
user community.

They could also expect better user
relations on all projects, even those not
using DSDM, a better reputation for IT
in general, a more enjoyable job - and,
most important of all, to be part of a
more competitive business organisa-
tion.

DSDM is really a timely reminder
that computer system development is
a science or, at least, a craft and that
there are rules of thumb and methods
which you should expect anyone fol-
lowing it to be aware of.

Knocking up even a small applica-
tion "by the seat of your pants" without
user involvement is no longer profes-
sionally acceptable. The consequences
to business competitiveness and future
maintainability are too well known.

File: D1121.4 Issue 67 Page 18

PCNA

The Author
David Norfolk is a writer and con-
sultant with a background in pro-
viding IT support within a major
banking organisation. He can be
contacted as drhys@cix.compu-
link.co.uk.

Design/Implementation:Programming

PC Network Advisor

