

Major Seminar

On

Feature Driven Development

Agile Techniques for Project Management

and
Software Engineering

WS 2007/08

By

Sadhna Goyal

Guide: Jennifer Schiller

Chair of Applied Software Engineering
Univ.-Prof. Bernd Brügge, Ph.D

Technical University Munich

 1

Table of contents
Table of contents ..1
List of figures ...2
1. Introduction ..3
2. Birth of FDD ..3
3. What is FDD?...3
4. Why do we have to use FDD?..4

4.1. Pains in Software Development ...4
5. Projects and People ..5

5.1. Supporting roles ...5
5.2. Additional roles ..6

6. FDD – Practices ...6
6.1. Domain Object Modeling...6
6.2. Developing by Feature ...8
6.3. Class (Code) Ownership...8
6.4. Feature Team..8
6.5. Inspections...9
6.6. Regular Build Schedule..9
6.7. Configuration Management..9
6.8. Progress Reporting ...10

7. Processes ..10
7.1. Develop an Overall Model ...10
7.2. Build a Features List ..11
7.3. Plan by Feature...12
7.4. Design by Feature...13
7.5. Build by Feature ...13

8. Progress ..14
8.1. Estimating Progress..14
8.2. Track by Feature...14
8.3. Reporting to the Chief Programmers and Project Manager ...15
8.4. Reporting to Sponsors and Upper Management ..17

9. Major Usage ..18
10. Summary and Conclusion ..19
11. References & Links..19

 2

List of figures

Figure 1 Example of color UML..7

Figure 2 Feature team...9

Figure 3 The five processes of FDD with their outputs ...10

Figure 4 Flow diagram of developing an overall model ...11

Figure 5 Flow diagram of building a feature list..11

Figure 6 Sample feature list ...12

Figure 7 Flow diagram for planning by feature ...12

Figure 8 Flow diagram for designing by feature..13

Figure 9 Flow diagram for building by feature ..14

Figure 10 The six milestones of feature development. ..15

Figure 11 Percentage Weighting Assigned to Milestones ...15

Figure 12 A graph plotted for features completed vs. Weeks elapsed...16

Figure 13 Progress of the Scheduling a Service feature set. ..17

Figure 14 Feature sets progress report ...17

 3

1. Introduction

In the traditional waterfall model software development approach, the whole project is divided
into a number of stages: gathering user requirements, design and documentation,
development, testing and deployment. In this approach, it assumes that each stage is 100%
complete before the next stage starts. One of the main weaknesses of this approach is that design
errors are often not discovered until deployment time. At this time the project is almost complete
and the errors are often expensive to recover from. “Observe that it is perhaps 100 times as
costly to make a change to the requirements during system testing as it is to make the change
during requirements definition.” (Fairley, R., 1985).

Agile methods try to avoid this weakness of “waterfall” by doing iterative development. Each
iteration is meant to be short (1-3 weeks) and includes all of the above steps. This guarantees that
design errors are discovered at the early stages of development. Feature Driven Development
(FDD) is one of the agile software development methodologies that emerged in the last 10 years
as an alternative to traditional “waterfall” development.

2. Birth of FDD

Jeff De Luca and Peter Coad introduced FDD in 1997. It so happened in 1997 that Jeff De Luca
was the project Manager of a large software development project in Singapore. The problem
domain was so complex that Jeff realized that that the task in hand could not be completed in
time, with the available resources using traditional strategies of software development. He
therefore with the help of Peter Coad and others discovered the modeling in color technique and
the concept of feature driven development. In print this was first published in the book “Java
Modeling in Color with UML” written by Peter Coad (Peter, et al., 1999).

3. What is FDD?

FDD is an agile, highly adaptive software development process that is

� Highly and short iterative.

� Emphasizes quality at all steps

� Delivers frequent, tangible working results at all steps

� Provides accurate and meaningful progress and status information, with the minimum of
overhead and disruption for the developers.

� Is liked by client, managers and developers

 4

4. Why do we have to use FDD?

4.1. Pains in Software Development

4.1.1. Communication
In a software development process, communication is taking place constantly at every level. In
fact, no process (work) can occur without it. If we consider developers as nodes in a
communication network, all potentially linked to each other by communication channels, then
the number of potential communication channels increase dramatically as more number of
developers are added.

4.1.2. Complexity
As the size of a software system grows, the complexity of that software system grows “at least as
fast the square of the size of the program” [Weinberg, G., 1992] and quickly outstrips the
relatively fixed capacity of a human brain. Gerald Weinberg calls this law of software
development “the size / complexity dynamic”.

FDD decomposes the entire problem domain into tiny problems, which can be solved in a small
period of time, usually 2 weeks Î decomposed problems independent to each other reduces the
need of communication.

“Observe that it is perhaps 100 times more costly to make a change to the requirements during
system testing as it is to make the change during requirements definition“ (Fairley, R., 1985).

FDD splits the project into iterations so that the distance in time between analysis and test is
reduced Î early discovery of errors reduces the cost of fixing the errors.

4.1.3. Quality
Different persons have different perception of software quality. A user talking about the quality
of a system discusses the user interface, the response time, the reliability and the ease of the use
of the system. A developer talking about quality discusses elements of design; ease of
maintenance and enhancement; and compliance to standards, patterns, and conventions. Software
managers will look at quality in terms of ease of maintenance and enhancement, compliance to
standards and conventions, and ability to deliver it on time. Project Sponsors will look at how
well the system meets their business requirements. Does it allow them to meet a constantly
changing business requirement and be proactive in meeting the challenges that are ever present in
the marketplace? This makes necessary to view quality as a spectrum, with internal quality at one
end and external quality at other end.

 5

In FDD concept of Quality is broadened so as not just to test the code, but also include things
such as coding standards, measuring audits and metrics in the code.

5. Projects and People

Projects consist of people, process, and technology, but by far the most important aspect is
people. FDD defines six key roles and implies a number of others.

 The Project Manager (PM) is the administrative head of the project responsible for reporting
progress, managing budgets, fighting for headcount, and managing equipment, space, and
resources, etc.

 The Chief Architect (CA) is responsible for the overall design of the system. He is responsible
for running the workshop design sessions where the team collaborates in the design of the
system. The work requires both excellent technical and modeling skills as well as good
facilitation skills. He or she steers the project through the technical obstacles confronting the
project.

The Development Manager (DM) is responsible for leading the day-to-day development
activities. In a facilitating role requiring good technical skills, the Development Manager is
responsible for resolving everyday conflicts for resources when the Chief Programmers cannot do
it between themselves.

The Chief Programmers are experienced developers who have been through the entire software
development lifecycle a few times. They participate in the high-level requirements analysis and
design activities of the project and are responsible for leading small teams of three to six
developers through low level analysis, design and development of the new software’s features.

The Class Owners are developers who work as members of small development teams under the
guidance of a Chief Programmer to design, code, test, and document the features required by the
new software system.

The Domain Experts are users, sponsors, business analysts, or any mix of these. They are the
knowledge base that the developers rely on to enable them to deliver the correct system. Domain
Experts need good verbal written and presentation skills. Their knowledge and participation are
absolutely critical to the success of the system being built.

5.1. Supporting roles

The Release Manager ensures that the Chief Programmers report progress each week. He then
reports directly to the Project Manager.

 6

A Language Guru is a person who is responsible for knowing a programming language or a
specific technology inside out. In projects where a programming language or technology is used
for the first time, then this role is special.

The Build Engineer is responsible for setting up, maintaining, and running the regular build
process.

The Toolsmith creates small development tools for the development team, test team, and data
conversion team.

The System Administrator configures, manages, and troubleshoots any servers and network of
workstations specific to the project team.

5.2. Additional roles

Testers are responsible for independently verifying that the system’s functions meet the users’
requirements and that the system performs those functions correctly.

Deployers convert existing data to the new formats required by the new system and work on the
physical deployment of new releases of the system.

Technical Writers write and prepare online and printed user documentation.

6. FDD – Practices

FDD blends a number of Industry-recognized best practices into a coherent whole. The best
practices used in FDD are:

6.1. Domain Object Modeling

It consists of building class diagrams depicting the significant types of objects within a problem
domain and the relationships between them. It is a form of object decomposition. The problem is
broken down into the significant objects involved. The design and implementation of each object
or class identified in the model is a smaller problem to solve. When the completed classes are
combined, they form the solution to the larger problem. ”Modeling in Color” is the best technique
for Domain Object Modeling.

6.1.1. UML in Color
Colored UML is regular UML with color-encoded classes. The use of color allows quick
understanding of the problem domain’s dynamics. All the classes are divided into different

categories; each category has its own color. The auxiliary classes and interfaces are colorless.
Figure 1 shows a fragment of a colored UML diagram.

Yellow: a role being played, usually by a person or an organization. For example, the user of an

online auction site may play different roles: it can be a buyer, a seller or a system administrator.

Blue: a catalogue-like description. For example, an online store may have descriptions of the CD
players that it sells. The description gives all the characteristics of the player, but it is not the
player itself.

Green: a party, place or thing. In the previous example, the actual CD player in stock would be
modeled as green. The green class usually has some identifying attributes, such as serial number,
person’s name etc.

Pink: a moment in time or an interval of time usually associated with some business process. For
example, the fact of purchase may be shown a pink class, since it has a time of sale, which is
tracked by the online store.

Figure 1 Example of color UML. This figure displays part of the problem domain for Feature Driven Development
for a garage. The purpose of above model is to track cars in a garage. Service and Regular service class have dates ,
therefore they are represented by pink interval. Car is a thing so it has green color. The Model belongs to the
description archetype so blue in color. A person may be car owner or a mechanic hence these classes are yellow in
color. (Source: Palmer, SR., Felsing , JM.2002,p.124)

 7

 8

6.2. Developing by Feature

Any function that is too complex to be implemented within two weeks is further decomposed into
smaller functions until each sub-problem is small enough to be called a feature. In a business
system, a feature maps to a step in some activity within a business process.

By Definition: A feature is a small, client valued function that can be implemented in two weeks

The feature naming template is

<action>the <result><by|for |of | to|><a(n)><object>

Example of features are :

 Calculate [action] the total [result] of a sale [object].

 Assess the fulfilment timeliness of a sale

 Calculate the total purchases by a customer

A feature Set is a grouping of business related features.

<action><-ing><a(n)><object>

Example : Making a product sale.

A major feature Set

<object>Management

Example: Product-Sales Management

6.3. Class (Code) Ownership

Class code ownership in a development process denotes who (person or role) is ultimately
responsible for the contents of a class (piece of code). FDD uses individual ownership –
developers are assigned ownership of a set of classes from the domain object model.

6.4. Feature Team

The implementation of a feature may involve more than one class, hence more than one Class
Owner. Thus the feature Owner is supposed to have a team lead job, in which he coordinates the
efforts of multiple developers.

Chief characteristics of a feature team

A feature team, due to small size of features, remains small.

As the feature team owns all the code it needs to change for that feature, there is no waiting for
members of other teams to change code. So we have code ownership and a sense of collective
ownership too.

Each member of a feature team contributes to the design and implementation of a feature under
the guidance of a skilled, experience developer. This reduces the risk of reliance on key
developers or owners of specific classes.

Class Owners may find themselves members of multiple feature teams at the same time.

Chief Programmers are also Class Owners and take part in feature teams led by other Chief
Programmers.

Figure 2 Feature teams: Feature teams are formed from class owners as needed. (Source: Palmer, SR., Felsing ,

JM.2002,p.47)

6.5. Inspections

The mix of feature team and inspection adds a new dimension to FDD. As a feature team
comprises more than one member, so the fear of humiliation for a particular person is no
more.Applying best known defect detection techniques and leveraging the opportunities it
provides to propagate good practice, conventions, and development culture.

6.6. Regular Build Schedule

At regular intervals all the source code for the features completed is taken is taken, and the
libraries and components on which it depends and the complete system is build. This ensures that
there is always a demonstrable system available.

6.7. Configuration Management

This serves to identify the latest versions of completed source code files and provides historical
tracking of all information artifacts in the project.

 9

6.8. Progress Reporting

Throughout the project frequent, appropriate, and accurate progress reporting at all levels, inside
and outside the project, based on completed work is done.

7. Processes

FDD starts with the creation of a domain object model in collaboration with Domain Experts.
Using information from the modeling activity and from any other requirement activities that have
taken place, the developers go on to create a features list. Then a rough plan is drawn up and
responsibilities are assigned. Small groups of features feature that lasts no longer than two weeks
for each group and is often much shorter are taken up. FDD consists of five processes.

Process I II III IV V

 Figure 3 The five processes of FDD with their outputs (Source: Palmer, SR., Felsing , JM.2002,p.57).

7.1. Develop an Overall Model

Domain and development team members work together under the guiding hand of an experienced
Object modeller (Chief Architect). Domain Members perform an initial high-level walkthrough
of the scope of the system and its context. Then the domain members perform more detailed
walkthroughs of each area of the problem domain. After each walkthrough, the domain and
development members work in small groups to produce object models for that area of the
domain. Each small group composes its own model in support of the domain walkthrough and
presents its results for peer review and discussion. One of the proposed models or a merge of the
models is selected by consensus and becomes the model for that domain area. The domain area
model is merged into the overall model, adjusting the model shape as required. The object model
is then updated iteratively with content by process IV, Design by Feature (see figure 3).
 10

 Figure 4 Flow diagram of developing an overall model (Source: Palmer, SR., Felsing , JM.2002,p.106).

7.2. Build a Features List

A team usually comprising just the Chief Programmers from process 1 is formed to decompose
the domain functionality. Based on the partitioning of the domain by the Domain Experts in
process 1 , the team breaks the domain into a number of areas (major feature Sets). Each area is
further broken into a number of activities (feature sets). Each step within an activity is identified
as a feature. The result is a hierarchically categorized features list.

 Figure 5 Flow diagram of building a feature list (Source: Palmer, SR., Felsing , JM.2002,p.135).

 11

 Figure 6 Sample feature list

7.3. Plan by Feature

The project Manager, Development Manager, and Chief Programmers plan the order that the
features are to be implemented, based on feature dependencies, load across the development
team, and the complexity of the features to be implemented. The main tasks in this process are
not a strict sequence. Like many planning activities, they are considered together, with
refinements made from one or more tasks, then the others are considered again. A typical
scenario is to consider the development sequence, then consider the assignment of features sets to
Chief Programmers, and in doing so, consider which of the key classes are assigned to which of
the developers. When this balance is achieved and the development sequence and assignment of
business activities to Chief Programmers is essentially completed, the class ownership is
completed.

 Figure 7 Flow diagram for planning by feature (Source: Palmer, SR., Felsing , JM.2002,p.146).

 12

7.4. Design by Feature

A number of features are scheduled for development by assigning them to a Chief Programmer.
The Chief Programmer selects features for development from his or her “inbox” of assigned
features. Operationally, it is often the case that the Chief Programmer schedules small group of
features at a time for development. He or she may choose multiple features that happen to use the
same class (hence developers). Such a group of features forms a Chief Programmer work
Package. The Chief Programmer then forms a feature team by identifying the owners of the
classes (developers) likely to be involved in the development of the selected feature(s). The chief
Programmer then refines the object model based on the content of the sequence diagram(s). The
developers write class and method prologues. A design inspection is held.

Figure 8 Flow diagram for designing by feature (Source: Palmer, SR., Felsing , JM.2002,p.160)

7.5. Build by Feature

Working from the design package produced during the Design by Feature process, the class

owners implement the items necessary for their class to support the design for the feature(s) in

the work package. The code developed is then unit tested and code inspected, the order of which

is determined by the Chief Programmer. After a successful code inspection, the code is permitted

to build.

 13

 Figure 9 Flow diagram for building by feature (Source: Palmer, SR., Felsing , JM.2002,p.181).

8. Progress

8.1. Estimating Progress

FDD does not ask feature teams for a percentage of completeness. FDD tells feature teams what
percentage complete they are!

8.2. Track by Feature

FDD uses six sharply defined milestones to track progress of each feature through process IV and
V, Design by Feature (DBF) and Build by Feature (BBF) (Figure 10). The first three milestones
are completed during the DBF process. The last three milestones are completed during the BBF
process. The six milestones are completed sequentially for each feature being developed. A
milestone is reported complete only when all the work for that task has been finished and verified
to be so. These six milestones are as follows:

1. The Domain Walkthrough milestone is attained on completing the domain walkthrough and
the optional task of studying the referenced documents.

2. The design milestone is attained on completion of the three tasks

• Develop the sequence Diagram(s)

• Refine the Object Model

• Write Class and Method Prologues

3. The Design Inspection milestone is attained on successfully passing the design inspection
task

 14

4. The Code milestone is attained on completion of the implement classes and methods task.

5. The Code Inspection milestone is attained on completed of the code inspection task. This
includes the completion of any modifications required by the inspection and the completion
of any unit testing performed after the code inspection.

6. The Promote to Build milestone is attained when all the code for a feature has been checked
into the version control system used to generate “the build”.

 Design by Feature Build by Feature

 15

 Figure 10 The six milestones of feature development. (Source: Palmer, SR., Felsing , JM.2002,p.77).

8.3. Reporting to the Chief Programmers and Project Manager

A percentage weighting is assigned to each milestone. So we can say that a feature that has
reached the coding stage is 44% complete. The weighting percentages assigned to each milestone
varies from situation to situation, depending upon the level of effort put into it.

 Figure 11 Percentage Weighting Assigned to Milestones(Source: Palmer, SR., Felsing , JM.2002,p.80).

Now the percentage of completeness for every feature in the feature list is calculated. Doing this
for all the features in a Feature Set, gives us the completion percentage of the Feature Set. This is
done for each major Feature Set and then for the whole project. In this way we can count the
number of features not started, the number in progress, and the number completed for the project.

Feature Set No of

Features

No not

started

No in

Progress

No

Completed

Percentage

Completed

Scheduling a

Service

19 9 8 2 27.7%

Performing a

Service

15 8 7 0 30.1%

Billing a Service 6 5 0 1 16.6%

Booking in a

Repair

13 2 2 9 75%

Total 53 24 17 12 38.7%

 Table 1 Workshop Management Area (Source: Palmer, SR., Felsing , JM.2002,p.82)

Every week, the rate of progress is shown by plotting a graph for the number of features
completed each week.

 Figure 12 A graph plotted for features completed vs. Weeks elapsed

 16

8.4. Reporting to Sponsors and Upper Management

Here we do not need to report for every individual feature, but just to deliver the reporting on
major feature sets and their feature sets. The Figure below shows the progress of the feature set
“Scheduling a Service”

Scheduling
a

Service
(19)

27%

DEC 2001

CP Chief Programmer‘s Initials

Feature Set Name

Number of Features in the
Feature Set

The Feature Set called
Scheduling a Service has 19
features in it and it is currently 27%

complete and due to be completed
by December 2001

Scheduling
a

Service
(19)

27%

DEC 2001

CP Chief Programmer‘s Initials

Feature Set Name

Number of Features in the
Feature Set

The Feature Set called
Scheduling a Service has 19
features in it and it is currently 27%

complete and due to be completed
by December 2001

 Figure 13 Progress of the Scheduling a Service feature set. (Source: Palmer, SR., Felsing , JM.2002,p.85).

 Figure 14 Feature sets progress report

 17

 18

In Figure 13 each feature set is represented by a rectangle divided into 3 bands: top, middle and
lower. The top band is the biggest compartment and contains the name of the feature set,
followed by the number of features in the feature set, followed by the percentage completed for
that feature set. The middle band shows a progress bar graphically representing the percentage of
completeness. The progress bar is green; the completed color. The lower band contains the
planned completion date estimated in process 3 and remains white until completed, whereupon it
turns green to match the other two bands.

In Figure 14, Feature Sets are arranged horizontally inside larger rectangles representing the
major feature sets of the system. Each page of paper contains a number of major feature sets so
that the final report consists of a few pages of colored rectangles.

Feature set No of
Features

No. not
started

No. in
Progress

No.
Completed

No. Behind % complete

Scheduling
a Service

19 9 7 2 1 27.7%

Performing
a Service

15 8 7 0 0 30.1%

Billing a
Service

6 5 0 1 0 16.6%

Booking in
a Repair

13 2 2 9 0 75%

Total 53 24 16 12 1 38.7%

Table 2 Tracking progress of features (behind schedule) (Source: Palmer, SR., Felsing , JM.2002,p.88).

9. Major Usage

FDD can be implemented with up to 500 developers

� More critical projects

� Bigger projects

� More novice developers

� Environments that demand Waterfall

 19

10. Summary and Conclusion

Feature-driven development is a process for helping teams produce frequent, tangible working
results. It uses very small blocks of client valued functionality, called features. It organizes those
little blocks into business-related feature sets. FDD focuses developers on producing working
results every two weeks. FDD is better prepared to work with team where developers’ experience

varies. It offers progress tracking and reporting capabilities. This comforts managers and makes it
more attractive for big companies.

11. References & Links

Coad, Peter, et al. Java modeling in Color with UML.Upper Saddle River, NJ:Prentice Hall PTR,
1999.

Fairely, R. Software Engineering Concepts. New York: McGraw Hill, 1985.

Weinberg, G. Quality Software Management vols. 1-4. New York: Dorset House, 1992-1997.

Freedman, D.P., and Weinberg, GM. “Software Inspections:“An Effective Verification Process.“

IEEE Software. May 31-36(1982)

Palmer, SR., Felsing, JM. “A Practical Guide to Feature Driven Development”, Prentice Hall,
2002.

Internet sites

http://www.nebulon.com/

http://www.petercoad.com/

http://www.featuredrivendevelopment.com/

http://www.featuredrivendevelopment.com/certification/list

http://en.wikipedia.org/wiki/Feature_Driven_Development

http://en.wikipedia.org/wiki/Feature_Driven_Development

	Table of contents
	List of figures
	1. 0BIntroduction
	2. 1BBirth of FDD
	3. 2BWhat is FDD?
	4. Why do we have to use FDD?
	4.1. Pains in Software Development
	4.1.1. Communication
	4.1.2. Complexity
	4.1.3. Quality

	5. 4BProjects and People
	5.1. 12BSupporting roles
	5.2. 13BAdditional roles

	6. 5BFDD – Practices
	6.1. 14BDomain Object Modeling
	6.1.1. UML in Color

	6.2. BDeveloping by Feature
	6.3. 17BClass (Code) Ownership
	6.4. 18BFeature Team
	6.5. 19B Inspections
	6.6. 20BRegular Build Schedule
	6.7. 21BConfiguration Management
	6.8. 22BProgress Reporting

	7. BProcesses
	7.1. 23BDevelop an Overall Model
	7.2. 24BBuild a Features List
	7.3. 25BPlan by Feature
	7.4. 26BDesign by Feature
	7.5. 27BBuild by Feature

	8. 7BProgress
	8.1. 28BEstimating Progress
	8.2. 29BTrack by Feature
	8.3. Reporting to the Chief Programmers and Project Manager
	8.4. Reporting to Sponsors and Upper Management

	9. 8B Major Usage
	10. 9BSummary and Conclusion
	11. 10References & Links

