
1

eXtreme Programming

An Overview

Methoden und Werkzeuge der Softwareproduktion WS 1999/2000

Author Thomas Dudziak

2

INTRODUCTION... 4

WHAT IS “EXTREME PROGRAMMING” ?... 4

OUTLINE .. 4

BASIC CONCEPTS.. 5

THE FOUR VARIABLES .. 5
THE FOUR VALUES ... 5
CHANGE-DRIVEN PROCESS ... 6

THE PROCESS XP... 8

PLANNING GAME ... 8
Exploration.. 8
Planning .. 10
Steering ... 10

DEVELOPMENT... 11
Iteration... 11

THE METHODOLOGY XP - RULES AND PRACTICES .. 14

MANAGEMENT RULES AND PRACTICES ... 14
Metrics... 14
Roles.. 15
Workspace and Tools .. 16
Standup Meeting.. 17
Forty hour Week.. 17

DEVELOPMENT RULES AND PRACTICES... 18
Development Cycle.. 18
Continuous Integration ... 18
Collective Code Ownership... 19
Programming In Pairs .. 19
Coding Standards.. 20
On-Site Customer .. 20
Relentless Testing.. 20

DESIGN RULES AND PRACTICES .. 21
Do The Simplest Thing That Could Possibly Work (DTSTTCPW).. 21
You Are Not Gonna Need It (YAGNI).. 21
Refactor Mercilessly.. 22
CRC Session .. 23
System Metaphor... 24
Lazy Optimization ... 24

CONCLUSION.. 25

REFERENCES.. 26

BOOKS ... 26
XP WEB-SITES ... 26
XP ARTICLES ... 26
CRC ARTICLES .. 27
REFACTORING & TESTING ARTICLES... 27
PROGRAMMING IN PAIRS ARTICLES ... 28
OTHER ... 28

3

Figures

FIGURE 1 : THE RELATIONSHIPS BETWEEN THE VARIABLES ... 5
FIGURE 2 : SIMPLIFIED PROCESS STRUCTURE ... 8
FIGURE 3 : SUPPORT RELATIONSHIPS BETWEEN THE RULES AND PRACTICES.. 14
FIGURE 4 : EXAMPLE OF A FUNCTIONAL TEST SCORE GRAPH .. 15
FIGURE 5 : EXTRACT CLASS REFACTORING ... 22
FIGURE 6 : EXAMPLE OF A CRC LAYOUT... 24

Pictures

PICTURE 1 : A USER STORY CARD FROM THE C3 PROJECT... 9
PICTURE 2 : A ENGINEERING TASK CARD FROM THE C3 PROJECT ... 12
PICTURE 3 : THE BULLPEN OF THE C3 PROJECT.. 17
PICTURE 4 : A STANDUP MEETING.. 17
PICTURE 5 : A PAIR .. 19
PICTURE 6 : EXAMPLE OF A CRC CARD ... 23

4

Introduction

What is “eXtreme Programming” ?
eXtreme Programming (XP) is a software development process as well as a methodology.

A (software development) process defines who is doing what when and how. This means, it provides principles,
techniques and practices for the efficient, predictable and repeatable production of software systems. Therefore,
the process serves as a template for creating projects.
XP is also a process framework because it can be (and most likely will be) tailored to the specific needs of
teams, projects, companies etc.

XP is also a lightweight methodology or what Alistair Cockburn calls a “Crystal Methodology”. In short,
methodologies of this family have high productivity and high tolerance. Communication is usually strong with
short paths, especially informal (not documented). There the is only a small range of deliverables (artifacts), but
these are delivered frequently (releases). Processes of the Crystal family identify only a few roles and activities.
For more information on the methodology space see [Coc].

To date, XP has been applied to business problems only, e.g. projects with a external customer that wants a
specific product. The projects usually ranged from 6 to 15 months. XP was used by small teams ranging from
two to twelve members (and it is likely to be limited to teams of this size).

Outline

The text is organized in three sections. In the first part the basic concepts of XP are presented. The second part
discusses the process structure of XP. Finally, in the last section the practices and rules of the methodology
eXtreme Programming are introduced.

Note that there isn’t much information available yet about the usage of XP. Although one introductionary book
about XP has been published in 1999 ([Be99-1]) and several others are in the making, and the web sites give
good introduction, especially information about the pros and cons of XP is still missing. Some possible problems
are noted where applicable, however.

5

Basic Concepts

The four variables
XP regards a software development project as a system of four control “variables”: Cost, Time, Quality and
Scope.
Note that these are only the names of the variables which XP identifies, not the general terms used Software
Engineering.

• Cost
The amount of money to be spent. The resources (how many developers, equipment etc.) available for the
project are directly related to this variable.

• Time
Determines when the system (release) should be done.

• Quality
The correctness of the system (as defined by the customer) and how well tested it will be.

• Scope
Describes what and how much will be done (functionality).

Time is the central variable in XP. The fundamental dependencies between it and the other variables are

• Increasing quality can increase the time that is needed because of more testing. Decreasing quality can
reduce time to a certain degree (via reduction of the number of functional tests).

• Increasing cost (hiring more developers or providing better equipment) can mean less time but also the
opposite effect is possible – for instance hiring more developers late in the project can increase time because
of the overhead of communication.
Decreasing cost increases time dramatically.

• Increasing scope means more time is needed because there is more work to do. Decreasing scope reduces
time. This is the core control relationship in XP.

Cost

Time

Quality Scope

Figure 1 : The relationships between the variables

If for instance business, that is, management and customer, increases scope (more features) and holds onto cost
(same resources) and quality, then time must be increased.
A special problem arises when scope is increased and time shall be fixed (schedule). Because you cannot control
effectively with cost and quality, XP prevents this situation by explicitly stating that business can control cost,
quality and either time or scope. The remaining variable is owned by development (which one remains depends
on the Planning Game, p.8).

The four values
XP defines four “values” which are used as guidelines throughout development. These are

• Communication
Good communication is one of the key factors necessary for the success of software projects. Customers
need to communicate the requirements to the developers. Developers communicate ideas and design to each
other and so on.

6

A lot of problems can be traced to a breakdown in communication (somebody forgot to ask the customer an
important question, somebody forgot to communicate a change in the design etc.). This is not limited to
direct communication, however. Documents (this does include the code) are an important way to
communicate, as well.
XP tries to keep communication flowing in a variety of ways. Almost all practices rely on communication
and emphasize it at the same time (see for instance Programming In Pairs, p.19 or Refactor Mercilessly,
p.22).

• Simplicity
XP strives for simple systems. This means, they should be as simple as possible but they must work.
XP also strives for simplicity in the methodology. It reduces the amount of artifacts to an absolute minimum
– the requirements (User Stories), plans (Planning Game) and the product (code). The practices and
techniques can be learned in a matter of hours (although mastering them of course takes more time).
The main reason for the desire for simplicity is that XP tries to cope with changes and other risks. Simplicity
means that you always strive to “Do The Simplest Thing That Could Possibly Work” (p.21). XP is making
the bet that it is better to do a simple thing today and pay a little more tomorrow to change it if necessary,
than to do something more complicated today that may never be used later on anyway.
Together, simplicity and communication work best. The simpler the system is, the easier it is to
communicate it. The more you communicate the easier the system can get because you know more about the
system.

• Feedback
XP is a feedback-driven process. You need feedback at all scales, whether you are a customer, manager or
developer. While coding you get immediate feedback from whitebox testing (Unit Tests). The customer
defines blackbox tests (Functional Tests) and the team delivers releases frequently. From these practices,
both the customers and the developers get feedback about the status of the system.
Feedback has two important characteristics. The first is quality. Not only do you need to know that
something is wrong but also what is wrong and what not. The second is time. The earlier and more often you
get feedback the better. This way, problems are usually smaller and therefore corrections are cheaper.
In XP feedback is especially relevant to business because it is the base for influencing the process.

• Courage
This is a somewhat vague value. It includes courage as well as a certain amount of aggressiveness. Courage
is needed because a lot of the rules and practices are “extreme” in the way that they go against “tradition” or
“wisdom” of software engineering. XP also differs in the role of the customer in the process. He or she is
much more involved in it (On-site Customer, p.20). For this to work, courage is required from both the
customer and the developers.
Aggressiveness is the attitude towards the implementation of the system. It drives for instance Refactor
Mercilessly (changing the structure of the code whenever necessary).

These values can be seen in all rules and practices of XP. Take for instance Relentless Testing (p.20). Of course,
the tests are a feedback mechanism. But they are also a means of communication, because most of them are code
that give examples of the usage of units of the system. This way they provide insight into the design.
Aggressiveness is also necessary for testing. The tests are (usually) implemented before the code they test and
they try to cover as much as possible (and necessary).

Change-driven process
A risk is some “variable” that means a danger to the success of the project. Typical risks are for instance :
• Requirements change.

This is one of the most problematic risks to software development. The assumption that the requirements are
frozen is wrong in almost all cases. Some reasons for requirements changes are

• The users needs change. This is especially true for long-term development.
• The problem changes. Customers possibly don’t know what they want, but they know what they do not

want when they see it. This is known as the IKIWISI effect (“I’ll know it when I see it”).
• The market changes. If the system is a competitive product it is possible that a (better) product which

does the same work arrives during the development.
• The requirements are imprecise or not fully understood. This is a danger especially for processes that

strive to gather all requirements before the development phase (Waterfall model).
In short, the real business value is learned, not known up-front. Therefore it is important to get feedback
from customer often and early in order to deal with these changes.

7

• Technology
New (and usually not well-known) or rapidly changing technology such as the internet present high risks for
software projects. This is especially true for long-term development, although XP projects rarely exceed 15
months.

• Performance
Systems can have requirements concerning for instance the response time or the work load.

XP explicitly deals with the first risk: “Embrace Change”. This means, the customer always has the right and the
chance to change the requirements:

• The customer is part of the development team.

• He or she receives frequent releases so that he/she can see whether the system is what he wants

• He or she writes the requirements (User Stories)

• The team is honest. For every story it will confidently estimate how long it will take to implement the story
so that the customer can decide how much is to be done or when it should be finished (see Planning Game).

The process of XP is designed to make a change of direction possible at any stage. However this means that
projects for which most requirements can be determined in advance won’t profit from XP. These projects should
probably be done with more conventional methodologies.

8

The Process XP

XP is an iterative and incremental process. The project is divided into smaller “mini-projects” which result in
an increment of functionality, the so-called release. A release is a version of the planned system that makes
business sense. All features that are part of the release are implemented completely.
An XP project creates Frequent Releases (every one to three months) in order to gain feedback early and often.
Therefore the releases incrementally construct the desired functionality (the system grows over time).
Releases are negotiated in the Planning Games. Either the customer defines what should be part of the release
and the developers determine how much time it will take to implement the release or the customer sets the
schedule and the developers determine the amount of work that can be done in this time.

Each release cycle is constituted of a couple of iterations, each of which is at most three weeks long. The
iteration is a primarily an organizational utility used to ease the necessary planning.

Planning Game

Exploration Release
Planning

Release
Release Done

Next Release

Re-Negotiation

Iteration Planning Game

Iteration
Planning

Implementation

Next Iteration

Functional
Testing

Figure 2 : Simplified process structure

Planning Game
The Planning Game consists of three steps : exploration, planning, and steering.
In the exploration phase the customer defines what he/she wants the system to do and the developers estimate
how long it will take to implement the desired behavior.
In the planning phase both parties negotiate which of the desired features can be done within the given bounds
(time, resources).
After the planning follows the steering phase. The negotiated plan is updated when necessary in response to what
is learned in development and business while putting the plan in effect.

Exploration
The customer writes User Stories onto Index Cards. The stories will define what the customer wants the system
to do, in other words they represent some functionality the user wants.

9

Picture 1 : A User Story card from the C3 project

They are comprised by a short name and one or two paragraphs of text. The text should avoid technical details
(like database layouts etc.).
Each of the user stories will be estimated in terms of the time needed to implement it and the risk for the
implementation (see Iteration, p.11). Therefore, the stories should be detailed enough to allow easy estimation.

For instance, assume the customer wants a security mechanism that provides access to the system only after a
login with password. The user story for this login procedure should be something like :

“When I first access the system it asks for a name and password. If they don't match, it shouldn't
let me in. If they do match I should be able to use the system without entering the codes any
more.”

instead of

“ I want a login mechanism so we can prevent unauthorized access”

It is important that the development team helps the customer with at least the first couple of stories. Usually the
customer is not accustomed to writing user stories so he or she needs feedback to learn what the developers need
from the stories. The index cards help a lot here because they naturally “force” a specific amount of text to be
written (an empty card does not look good, but the size of the card restricts the length of the text, as well).

Another desirable property of a user story is that it is testable. The reason for this is that Functional Tests are
derived from the stories (see Iteration and Relentless Testing) which will help the customer verifying that the
system does what it is expected to.

Typical projects of 6-12 months will create 50 to 100 stories. If you have less stories there will be a problem
with setting priorities. More stories make the handling more difficult.

As said above, every story is estimated by the developers. The time estimation states how long the
implementation of the story will take. It is given in so-called Ideal Engineering Time (IE Time). In short, one
ideal engineering day is the amount of work that could be done by one developer when he or she is totally
undisturbed and everything works smoothly.
Each story should result in 1 to 3 weeks of ideal engineering time. If the estimated time is longer, the story
should be broken by the customer into smaller stories which are then re-estimated. If the estimated time is
shorter the story will be combined with other short stories – but only in terms of estimation, not functionality
(see Planning below).
One possible problem is that some user stories are not breakable in this way. It is not clear how XP deals with
such stories.

If the developers do not understand the story good enough to estimate them confidently they will investigate it
further and perhaps create one or more Spike Solutions to gain more knowledge. A spike solution is a small
prototype that only inspects the problem at hand. This type of prototype is also used to experiment with other
issues, for instance performance (“will the database be able to handle X requests per second”), or to choose
between different strategies for a solution

10

Another benefit of exploration with Spike Solutions is that you get a better first guess for the Load Factor (see
Planning below). Any spike solution created in this phase is estimated by the developers who implement them in
terms of ideal engineering days it should take to complete the prototype. Then they measure how long it really
took to complete them (in calendar days). From these data the initial guess for the load factor can be derived.

The whole exploration phase should take from a couple of weeks (when you have a team that knows each other
as wells as the technology and domain) to a few months. A longer time span usually means that there are
significant deficits in the understanding or communication which could probably be solved with a small, easy-to-
complete pre-project which is done before the “real” project.

One argument against user stories is that they are not very detailed. In contrast to Use Cases, user stories are only
a means of planning and gathering requirements. The details are filled in later on, when the story is about to be
implemented and therefore is divided into Engineering Tasks.

Planning
When you have the set of stories from the customer along with the estimations from the developers, you’re ready
to do the commitment schedule meeting. Here the Commitment Schedule is negotiated which is the set of
stories that are to be implemented in the current release along with their estimates.

The customer makes three piles of stories :

• the stories necessary for the release to function

• the valuable stories (features that provide significant business value)

• the other stories (features that would be nice to have)

The Development tells Business the team velocity which is described by the Load Factor. This metric which is
sometimes also called XPU (XP unit) describes the ratio between the real number of calendar days needed for
task and the number of ideal engineering days estimated for the task. Initially the load factor is usually guessed
to be 2 - 3 (calendar time divided by ideal engineering time) depending on how good the team knows each other
and how much experience it has with XP and the business domain. When Spike Solutions were created during
the exploration phase the load factor will be adjusted accordingly.
It is important to state that the load factor is not some goal to be reached but a metric which will change
throughout the project - especially for the first release. Furthermore, Programming In Pairs has a profound
impact on the load factor.

When both the piles of stories and the load factor are available, the commitment schedule is determined. The
scope of the release is chosen by the customer in one of two possible ways :

• The release is to be done by a specific date.
The developers will use the load factor and the estimation for the cards to determine the estimation in
calendar time. For instance, a story has an estimation of 2 ideal engineering weeks and the load factor is at
2.5 which results in a calendar time estimation of 5 calendar weeks.
When the estimations are ready, it is up to the customer to fill the available time with stories (which he or
she would choose according to the piles).

• The customer wants a specific set of cards (usually the first two piles are completely in the set).
As above, the developers estimate the stories chosen in calendar time and sum up the estimations to get the
time needed to complete the set.

It is the right of the customer to change the scope (the set of stories) but not to change the load factor (which
wouldn’t make sense anyway since it is a measured metric).
If both the customer and developers can commit to the set of cards and their estimations (therefore “commitment
schedule”) the planning game meeting is finished.

Steering
The last phase of the planning game essentially makes up the rest of the cycle until the release is finished (or the
project is cancelled).
Steering means influencing the process by little moves. The metaphor is derived from car-driving where you
steer to stay on the road rather than point in the direction where the car should go.

11

It consists of four possible “moves” :

• Iteration
The iterations make up the development.

• Recovery
It is possible that development realizes that they cannot fulfill the commitment schedule (for instance the
load factor is higher than estimated due to unexpected risks). It then has the right (and responsibility) to ask
the customer for a re-negotiation of the commitment schedule which either results in a change of the release
date or a change in scope (less stories).

• New story
The customer has the right to add new stories. They will be estimated and – if the customer decides that they
should be part of the current release – the commitment schedule will be re-negotiated.

• Re-estimation
Development thinks that the plan is no longer accurate (to the good or the worse). Then all remaining stories
are re-estimated and the commitment schedule is re-negotiated.

Development
After the plan is determined the release has to be implemented. This is done in the inner cycle.
First the commitment schedule is broken into iterations worth 2 – 3 calendar weeks (about one week ideal
engineering time). The rule for breaking the schedule is that the most valuable stories are done first. It is worth
noting that usually no conflicts arise from dependencies between the stories because the “foundation” stories
tend to be more valuable to the business than the dependent stories.

Iteration
Each Iteration begins with an Iteration Planning Game. Similarly to the release planning game it consists of
the phases exploration, planning, and steering.
Note that the planning for a particular iteration is performed at the beginning of the very iteration. No iterations
are planned in advance. If something is important for a later iteration it is noted somewhere (onto a to-do list) so
that it is at hand when the iteration is planned.

Usually every three iterations the Commitment Schedule is updated to reflect the status of the project. Especially
important are new risks (e.g. a team member has left) and the refined Load Factor. It is possible that a new
planning game is necessary in order to re-negotiate the commitment schedule.

On rare occasions a Refactoring Iteration is necessary (see Refactor Mercilessly). In such an iteration no new
business value will be implemented but the system is re-structured to suit upcoming work. This is mostly due to
unexpected risks or significant direction changes.

Exploration
From the outstanding part of the Commitment Schedule the customer chooses the stories to be done in this
iteration. Usually these are the most valuable and probably most risky (“worst”) stories left. In addition, if there
any stories whose functional tests failed in the last iteration are tackled, as well.
The developers break the stories into Engineering Tasks which are typically smaller than the stories. Sometimes
a task results from more than one story or does not relate to a particular story at all (e.g. migrating to a new
database version). It is a good practice to write the tasks onto index cards, similar to the stories.

Additional tasks come from the functional tests that failed in the last iteration.

For example consider the following user story (from [C3]) :

“The RJ30 transaction records overtime in hours worked. The employee is to be paid time-and-a-
half for overtime worked Monday through Saturday and double time for Sunday. Record time and
dollars paid under regular, premium, and double premium. That is, a time-and-a-half hour puts one
hour in regular, and one hour in premium, and same for the corresponding dollars. Sunday hours
put one in regular and one in double premium.”

12

Picture 2 : A Engineering Task card from the C3 project

The following tasks would result from it along with their estimates :

• Create input transaction definition for RJ30 record, placing record in HoursRawInput Bin. (0.5 day)

• Define new Bins for premium and double premium time and dollars. Add dollars Bins to gross pay
composite Bin. (0.25 day)

• Create OvertimeEvaluationStation, determining for each overtime transaction whether the hours are regular,
premium, or double premium. Put corresponding hours in appropriate bins. (0.5 day)

• Create OvertimePayStation, applying employee pay rate to hours, placing dollars into premium and double
premium Bins as required. (Included in 0.5 day for OvertimeEvaluationStation.)

Note the use of the System Metaphor (p.24) – “Bin”.

Planning
For each task a developer accepts responsibility. Tasks are not assigned but instead chosen voluntarily. Then the
responsible developer estimates the task in Ideal Engineering Time. Only the developer that is responsible for the
task performs the estimation.
A typical task should take between ½ and 3 IE days. If the task is shorter it is combined with other short tasks
(only in terms of determining the schedule not the content of the task). If the task is longer it should be broken
into shorter tasks if possible.
Note that the tasks are derived only from the stories to be done in this iteration. No coding in advance is
performed.

The tasks combined with the name of the developers who signed for the tasks and their estimates form the
Iteration Schedule. With the current Load Factor (as refined from previous iterations, see below) the team
determines whether the iteration is over- or underbooked. If it is overbooked the customer has to shift stories
from the current iteration to a later one. If it is under-booked the customer can select additional stories for this
iteration.
Finally the work load is balanced. If a developer is overcommitted he has to give up some tasks.

Steering
In this phase the actual “coding” takes place. The following moves are part of it :

• Implementation
A task card is implemented. See Rules And Practices for details

• Record progress
XP defines a special role for measuring progress : the Tracker. See Roles and Metrics (p.14) for details.

• Recovery
When it is found that a developer is overcommitted (either by the developer or the tracker), one or more of
the following actions should be performed :

13

• getting help from another partner (see Programming In Pairs) or doing a CRC Session to gain deeper
understanding

• reducing the amount of work (if possible by transferring tasks to other developers, otherwise by re-
scheduling tasks for the next iteration)

• asking the customer for reduction of the scope of the iteration (by moving stories to the next iteration).
Note that this can mean re-negotiation of the iteration schedule.

• Verification
Each story has associated functional tests. As soon as the tests are ready and all necessary tasks are
implemented the tests are run to ensure that the story works (see Metrics).

At the end of an iteration all functional tests cases for the stories done in the iteration are reviewed with the
customer. If any tests fail then the associated story will be part of the next iteration as well.

14

The Methodology XP - Rules and Practices

In contrast to the process the practices and rules used in XP for development are somewhat radical in comparison
to more “conventional” methods.
All rules and practices work hand in hand. Although some of them could be (and are) practiced outside of XP
(e.g. Unit Tests), the strength of XP lies in the combination of them. This is because the weaknesses of one
practice or rule is covered by the strengths of other practices or rules.

On-Site Customer

Planning Game
40 Hour Week

System Metaphor

Refactor Mercilessly

DTSTTCPW + YAGNI

Programming In Pairs
Relentless Testing

Frequent Releases

Coding Standards

Collective Code Ownership Continuous Integration

Figure 3 : Support relationships between the rules and practices

The rules and practices are ordered in four groups : management, development, design, and testing.

Management Rules And Practices

Metrics
XP defines two metrics which are used to describe the progress of the project.
The first metric is the Load Factor. As described in the Planning Game, it is the ratio between Ideal Engineering
days and calendar days. Effectively it describes the team’s velocity.
The load factor is determined from the developer’s individual load factors which are repeatedly determined by
the Tracker (see below). Good XP teams have a load factor about 2.5 meaning that they need 2.5 calendar days
to do work worth one ideal engineering day. This may seem low but there are two things to take into account
here:

• Programming In Pairs affects this number. Since most of the work is done in pairs this means that two
people do the work one ideal engineering day worth. While programming in pairs you would usually work
on the task of one partner in the first half of the day and in the next half on the task of another partner.

• IE time describes the amount of time that would be needed to accomplish the current task if it is the only
thing to do and everything works out smoothly – all tests run first time, no disturbances etc.
However, in reality there are other things to do as well, like integration, stand-up meetings etc.

It should be noted that the individual load factor of the coach is usually much higher (around 10 meaning that he
or she needs 10 calendar days to produce work worth 1 ideal engineering day). This is due to the role (see
below).

The other metric is the score of the Functional Test suite. While the load factor describes how “good” the team is
working, this metric describes (within limits) the progress of the project.
For each story the customer writes one or more functional tests (with help from the developers). When all tasks
for a specific story are done the functional tests for the story are run.

15

All these tests form a suite. The increase in the number of tests and the improvement of the scores describe the
project velocity. Increasing scores give the customer the confidence that the system does what it is expected to
do since he or she owns and defines the functional tests.
Usually you would create a graph of the scores and update it at determined times for instance at the end of every
iteration.

Figure 4 : Example of a Functional Test score graph

Roles
eXtreme Programming defines the following roles :

• Customer
The customer defines what to do (User Stories) and in what order (Planning Games). However, in XP the
customer is also responsible for the requirements because the stories are written by him or her. In addition,
the Functional Tests are derived and verified by the customer from the stories (with the help from the
Tester).
XP has a special rule called On-Site Customer. This means, one representative of the customer, usually a
domain expert who is a potential user of the system, is part of the development team and therefore at the
development “site”. The expert is then available for refining the user stories, derives functional tests etc.
If the project has no real customer (for instance when creating off-the-shelf software) this role is played by
the marketing department or an hired expert user.

• Programmer
XP is a programmer-centric methodology. It does not make use of specialists like analysts, software
architects or software designers. Instead this work is performed by the programmers.
There are several skills that the programmer must have :

• Communication
As said before, XP relies on communication, especially face-to-face communication.

• Coding
Of course, the programmer should be reasonably good at coding. However, he or she does not have to
be a “genius”. In fact, master coders have more problems with XP than average programmers.

• Ability to work in teams
This is an obvious skill for a team-oriented methodology like XP. But it means more, especially with
Collective Code Ownership and Programming In Pairs.

Other skills can and will be learned in XP, such as Refactoring and Testing skills (“taste”).

• Coach
The managing part of an XP project is divided into two roles : the coach and the tracker.
The coach is responsible for the technical execution (and evolution) of the project. He or she should have
good communication skills and a “thick skin”. The coach should also be technically skilled and confident.
His or her job is to get everybody else to make good decisions, not to decide everything by himself or
herself.
The duties of the coach are :

• explaining the process to management and customers

16

• providing technical skills like testing, formatting (see Code Conventions), and Refactoring
• having an overview of the system – particularly for long-term Refactoring goals
• be available as a development partner (Programming In Pairs) especially for new team members
Since the duties lie not so much in development, the load factor of the coach is typically much higher
(around 10) than the individual load factors of the rest of the team (and would probably not be included in
the overall load factor).
The coach also participates in the management meetings for the project.

• Tracker
The job of the tracker is to gather whatever metrics are being tracked for the project – at least the Load
Factor and the Functional Test scores.
The tracker will ask each developer every two or three days how much time they have spent on each of their
tasks and how much time is left. This data is set in relation to the estimations for the tasks, and the load
factor is updated. It is the tracker’s responsibility to determine whether the Iteration Schedule and the
Commitment Schedule can be met. The data is also used to give feedback to the developers about the quality
of their estimates.
In addition, the scores of the functional tests are gathered together with the Tester.
Tracking is not really a full-time job. Therefore it is usually performed by the Coach or a Programmer.
The tracker is sort of a mediator in the planning games so he or she must be versed in it. The tracker also
participates in management meetings concerning the project.

• Tester
In contrast to other processes, the tester has only few responsibilities. This is due to the fact that most of the
whitebox testing (Unit Tests) is performed by the programmers. The tester helps the customer to choose and
write the functional tests and run them (especially the tests that cannot be automated).
Usually the role of the tester is not filled by a dedicated person but by one of the programmers or the tracker.

• Consultant
Due to the rules and practices (especially Programming In Pairs), there are usually no specialists in XP
projects. But sometimes the project needs deeper (technical) knowledge. In these cases a consultant will be
hired who provides this knowledge. However, this role is different in XP. The consultant is hired to provide
knowledge. One or two team members will sit with the consultant, ask a lot of questions about the technical
domain and solve the problem. But the solution will be redone afterwards in order to share the knowledge
among the team.

Workspace and Tools
XP teams are actually quite small (2-12 persons). For the teams one large room (bullpen) is used. All team
members (programmers, coach, customer etc.) work together in this room.
The room has small cubbies at the sides and a set of computers in the middle. The cubbies are used to do CRC
Sessions, talk with the on-site customer etc. One of the computers is used as a dedicated integration machine.

Continuous Integration needs a good Change Management Software which provide for easy integration and
checkout of configurations (“snapshot”).

Refactor Mercilessly is a lot easier and safer with tools that show possibilities for Refactoring and indicate
whether a refactoring is safe or not. Perhaps the simple Refactorings (like renaming a method) can be performed
by the tool. Such a Refactoring Browser is currently only available for Smalltalk.

Testing relies on automation. Only test suites that can be run easily (without the need for human control) and
often (short execution time) will be run often. It is helpful to have a Testing Framework which provide the
means for easy implementation of tests.

17

Picture 3 : The bullpen of the C3 project

Standup Meeting
Every day all team members (developers, customers etc.) meet at a specified time (C3’s time is 10 AM) for a
couple of minutes. Everybody briefly describes what he or she is working on, how it is going, interesting stuff
that he or she found out, and any problems.

Picture 4 : A standup meeting

The standup meeting is an easy way to get help for problems, to announce interesting discoveries, to find
partners for Programming In Pairs etc. However, it is not intended as a forum for solving the problems.

Forty hour Week
XP projects emphasize the forty hour week. This means that the team should avoid to work overtime.
Two reasons are given for this rule :

• “Projects that need working overtime will be too late anyway.”
Usually either the schedule is too tight (business controls both time and scope) or the team couldn’t cope in
time with unexpected risks. The only way to deal with the latter is to re-negotiate the schedule, otherwise the
quality will be decreased.

• The motivation will be affected. For most of XP’s rules and practices it is necessary that the team members
are rested and motivated.

In practice, XP projects rarely require working overtime, and if so, at most one or two times during the whole
project.

18

Development Rules And Practices

Development Cycle
Implementation occurs in small steps (tasks) for which XP defines the following procedure :

1. Analyze what is to be done. This probably involves analyzing Engineering Tasks and/or User Stories. If
necessary a CRC Session is performed together.

2. Write Unit Tests. They will help in finding interfaces and they determine when the task is completed
(Relentless Testing).

3. Implement just enough code to make the tests running. (Do The Simplest Thing That Could Possibly Work
and You Aren’t Gonna Need It)

4. Simplify the code if necessary. (Refactor Mercilessly)
5. Integrate the changes into the codebase. If problems occur resolve them (Continuous Integration). If the

problems cannot be resolved, start over.

This whole procedure takes a couple of hours, at most a day.

Continuous Integration
Integration in XP refers to the activity in which changes to the system are combined with the codebase (the
system currently stored in the change management). When some task is finished (adding a feature, fixing a bug,
creating a unit test etc.) and the unit tests run 100 % the changes are integrated immediately. As said above the
tasks usually take at most a day which means integration occurs every couple of hours. In fact, integration is part
of the development cycle.
The benefits of frequent integration are :

• Integration is easier because the changes are small.

• The unit test suite ran fine before integration. If problems are discovered by the suite they probably are
located in the changes.

• The codebase represents the current state of the system. If a snapshot is needed it can be created anytime
from the codebase stored in the integration computer.

In “traditional” environments, code ownership and tools with check-in/check-out capabilities (probably with
locking mechanisms) ensure that conflicts between developers editing the code are minimized.
In XP, the changes are integrated into the codebase whenever the developer thinks the task is finished,
presumably every couple of hours, but at least once a day. Since the work is performed in small steps and
integrated after every step, it is rather uncommon that there is a need to hold onto the changes for a longer time.
However this can only work with Relentless Testing. Integration can only be done when the changes score 100%
in the system’s (unit) test suite. Collective Code Ownership is necessary as well. If there is a need to edit some
code in order to make the changes or to integrate the developer must be able to do so.
Although one would think that a lot of editing conflicts arise, they rarely occur in practice. This is especially due
to Refactor Mercilessly because Refactoring leads to a lot of small classes. Therefore the chance that two pairs
are working on the same class are small.
If conflicts happen, the pair currently integrating is responsible for resolving them. Most of the time this is easy
because the changes are small. If necessary one of the integrating pair can team up with one of the authors of the
broken unit tests.
One possible problem is regression. A developer will only change a working piece of the system when he or she

• adds functionality

• refactors (some other part)

• fixes a bug (in some other part)
The test suites (unit and functional) are used to ensure that the functionality remains. Programming In Pairs can
be used if necessary to resolve understanding conflicts.
To prevent conflicts arising from competing integration, usually one dedicated integration computer is used.
With a decent change management software, every other developer can see whether he still works at the current
version of a class or not (the term Configuration is used here to denote a snapshot of the system checked out for
editing). If not the developers will have to check the configuration several times a day for changes.

19

Collective Code Ownership
The code (classes etc.) created in an XP project is owned by the complete team, not by the individual developers.
This is important because anyone has to be able to modify anything if necessary. In other words, Collective Code
Ownership is the foundation for the Development Cycle, especially for Refactor Mercilessly.
Of course, problems arise if Collective Code Ownership is not done in a disciplined way. In XP other practices
provide for this discipline :
• Refactor Mercilessly increases the amount of units (classes, methods) in the system. This reduces the chance

that more than one pair of developers work on the same unit at the same time.

• Continuous Integration is used to prevent conflicts or handle them if necessary. The integration must take
place often to reduce the chance for conflicts.

• If a conflict occurs (for instance, two teams changed the same piece of code and one of the team has
successfully integrated their changes which results in an integration problem for the second team),
communication is used (probably via Programming In Pairs with one of the other team members) to resolve
the conflicts.

• Coding Standards and Refactor Mercilessly ensure the readability of the system. This means changes are
easier to make and understand.

However problems with Collective Code Ownership arise when
• a strong ownership mentality exists – this is reduced by the team “philosophy” of XP (Programming In Pairs

etc.)

• non-project (in-house or legacy) components are (re)used – these components should not or cannot be
subject of Collective Code Ownership

• expert knowledge is needed – Collective Code Ownership should be handled with care when the knowledge
about a problem domain is not (yet) distributed among the team; Programming In Pairs and Relentless
Testing is used to communicate the knowledge

Programming In Pairs
Any production code in an XP project is created by a pair of developers working together at one computer.
One is doing the actual coding (the so-called driver), e.g. creating classes, methods, unit tests etc.
The other is constantly reviewing the code (the “shotgun partner” or navigator). If the driver creates some code,
with which the shotgun partner doesn’t agree, the driver has to justify it. In addition the navigator thinks
“ahead”: about possible unit tests, or other solutions to problems etc. The navigator usually handles interruptions
like questions from other developers, phone calls and the like.
Often the pair switch roles (“I have an idea for this – let me ride for a while.”). Furthermore, the pairs frequently
change during the day, usually when some relatively independent task is finished (and integrated).

Picture 5 : A pair

Note that the pairs are not fixed at all. During the Iteration Planning Game every developer accepts responsibility
for a couple of Engineering Tasks. When the developer starts working on the tasks needed for the Engineering
Task, he or she will ask some other developer for help. The other developer could be more experienced in the
domain of the problem at hand, or perhaps less experienced. Or the other developer simply can spare some time.
If a developer is asked for help and can spare time he or she is obliged to help.
Both will pair up and implement one of the tasks. After a couple of hours they should be finished and they will
switch pairs. The developer will probably be asked to help somebody else and therefore work on some other task
than his own. In general developers will work on their own tasks half of the time and on tasks of other
developers the other half.
There is nothing wrong with working alone, for instance to perform a web search or create a Spike Solution. But
all work to be included in the code base has to come from a pair.

20

Pair Programming tend to create code of higher quality. Most of the little defects that creep into the code will be
spotted by the shotgun partner. There is less indecision, and all decisions about the direction are made jointly.
The other important gain is the distribution of knowledge. If everybody works with everybody else during the
project, each time on probably different parts of the system (see Collective Code Ownership), he or she gets to
know the system. This is also a great way to introduce new team members to the project. Furthermore, if the
developer teams up with an (domain) expert, he or she can learn quite a bit about the domain, as well.

Programming In Pairs still presents a problem to managers. They ask why they should let two developers make
the work of one if they would produce more working alone. However, recent studies (see [WiKe99], [WiKe] or
[CoWi00]) have shown that pairs only need slightly more time (both partners summed up) for the same task than
individual developers that worked alone – about 10% – but the code is of higher quality and there where less
problems during implementation.
Nonetheless, this is still an area of research.

Coding Standards
XP projects use rules and guidelines for naming and formatting code units. This means, every developer chooses
the names of classes, methods, variables etc. after these rules. The Coding Standards can come from the outside
or are defined by the development team.
The standards make the system more consistent so that it is easier to read, understand, and work with (extend,
refactor). It is also a great help when somebody (perhaps a new team member) needs to learn the system.
Therefore it is important that every team member follows the rules. If an XP developer finds some part of the
system that doesn’t follow the standards, he or she changes it accordingly (this, of course, needs Collective Code
Ownership).
Note that Coding Standards relate to the System Metaphor.

On-Site Customer
In almost all phases of XP communication with the customer is necessary. Therefore, a real customer who is
familiar with the problem domain (if possible an expert) and who is a potential user of the system is part of the
development team. He or she will sit with the team and be available to
• provide additional information necessary to implement a user story (story refinement)

• answer questions and resolve disputes about the meaning of domain aspects

• set priorities at a small scale (the choice of stories for an iteration)

• write functional tests and run them at the end of the iteration (with help from the Tester)
This gives the customer a simple method to steer the project.
Although business might say that they cannot afford a real customer at the team which could produce more value
elsewhere, the on-site customer would produce value. The project will proceed faster and with less risk due to
the immediate feedback. And no team can produce 40 hours of questions each week so that there will be time for
normal work.

Relentless Testing
It is obvious that testing is one of the major building blocks of XP. Almost all practices rely on the safety net
provided by frequent testing. The tests ensure that the system remains intact after changes and that it moves in
the direction the customer wants it to.
XP has two levels of testing : Unit Testing which corresponds to whitebox or graybox testing, and Functional
Testing which is blackbox testing. The [C3] system for example has over 3000 unit tests and over 600 functional
tests.
Testing in XP is as much automated as possible. This means that the tests are implemented as code, if possible
using test frameworks, and form an integral part of the codebase (and are therefore subject to other practices
such as Continuous Integration and Refactor Mercilessly, although in a reduced fashion). The unit tests and the
functional tests form one or two suites depending on whether all of the tests can be automated. A suite is always
run completely. It should only provide information when some error was found.
The automation is encouraged because tests that can be executed without human interaction take less execution
time and thus can be run more often. Furthermore, the tests communicate a lot about the usage of parts of the
system.

21

Unit Tests are used to test “units” of code, e.g. methods and classes, that could possibly break in some way. The
tests are run against expected or erroneous outcome to ensure the units are performing as expected. Simple units
like accessors are usually not tested because the test would not bring much benefit.
Unit tests are written and run by a developer, usually the same one that will write or has written the unit to be
tested. Unit testing is part of the Development Cycle as said above. The unit test suite is also changed or
enhanced when a bug was found (to ensure that it never occurs again) or as the result of Refactorings.

Due to unit testing developers tend to program faster because the time spent in “bug hunting” and debugging is
much shorter. Furthermore, writing unit tests in advance helps developing a stable and at the same time minimal
interface of the unit. In combination with Refactor Mercilessly, the code is of higher quality, as well because you
test as you develop and not later on.
In contrast to the other practices, unit testing can be performed independent of XP and the other practices (and
provides the same benefits). However it gains from the XP practices – for instance from Collective Code
Ownership (anybody can add unit tests when he or she feels that it is necessary) or Programming In Pairs (the
testing tend to be more thorough).

Functional Tests are about verifying that the system in production meets the requirements of the customer
(blackbox testing). For each story the customer writes one or more functional tests (with the help from
development – Tester role) – this means that the customer is responsible for them (especially that they are
correct). Their suite will be run at least at the end of each iteration.
The score is measured (see Metrics) and indicates the progress of the project. However the score does not have
to be 100% (as for unit tests) – the customer decides whether the score is acceptable. If not, then the customer
must decide which of the failures have to be tackled in the next iteration.

Design Rules And Practices

The most obvious difference between XP and other processes is that XP does no “up-front” design at all. Up-
front means that before any implementation takes place the system is defined in terms of architecture and design
models. XP in contrast relies on several practices, especially Refactoring and System Metaphor, to achieve a
stable and simple system structure.
The communication of such not-well documented systems seems to be more difficult. However, it could be
possible to retrieve design documents automatically from the system when needed (reverse engineering). In
addition, the other practices (Programming In Pairs etc.) provide a much deeper knowledge of the system.

Do The Simplest Thing That Could Possibly Work (DTSTTCPW)
A developer should implement the simplest thing that he or she can think of and that will work.
Two things must be explained here. First of all the notion of “simplest”. It is primarily the guideline for choosing
between alternatives. Usually a developer considers several alternative solutions. In XP, a developer chooses the
solution that is easiest to implement. In other words, the solution that fits best into the existing system, that is
easiest to understand etc.
The other thing to note is that the implementation to be chosen should “possibly work”. This means the
developer has to be pretty sure that it works, but there is no need to prove it. The tests are there to back up the
assurance. They will show when the solution does not work. Of course, good tests are necessary for this to work.
During Refactoring, a developer could find a piece of code for which he or she has a potentially simpler solution
(in the meaning given above). It is the developer’s duty to implement this solution. If it works (test result), the
system will “gain” simplicity.

You Are Not Gonna Need It (YAGNI)
The other important design rule of XP is YAGNI.
During the implementation of tasks often possibilities arise for adding features that could be needed later on. In
XP developers resist this temptations although it would be easy now and perhaps more difficult later to
implement the feature. There are three things to observe :

• There will be more work now because there is the task at hand and the not-yet-needed feature too.

• It may well be that the feature will not be needed later, for instance because the customer changes a
requirement.

22

• If the feature is implemented now it will need maintenance (Refactoring, tests etc.) and additional
communication, and there is a good chance that it will be changed before it is even used.

Of course it seems to be cheaper to add the feature now than to add it later. XP advocates state that in XP you
won’t gain much, since it relies on “Do The Simplest Thing That Could Possibly Work” and Refactor
Mercilessly.
Another implication of this rule is that anything that is not used (anymore) should be removed. While
Refactoring, methods or even classes that are supposedly not doing anything useful will be spotted. The
developer removes them and then runs the tests. If they run the assumption was right – the feature had no
function (anymore). If not the developer will undo the removal.

Refactor Mercilessly
A Refactoring is a behavior-preserving transformation applied to the system. It usually involves changes to
names, to the ordering of code units (methods, classes) and to their dependencies. These transformations are
backed up (as usual) by the unit tests. Note that behavior here means external behavior, e.g. subsystem
functionality. Refactorings will create more classes with less responsibilities (less fields and methods) that are
distributed in a clearer fashion.

Consider for example the Extract Class Refactoring (taken from [Fo99]). It is used for classes that have
responsibilities which should be performed by separate classes because they are not logically connected.
The class Person stores the name of a person as well as the phone number and area code. In order to separate the
responsibilities in this slightly contrived example, a developer would follow the following steps :

Person

name
officeAreaCode
officeNumber

getTelephoneNumber

Person

name

getTelephoneNumber

TelephoneNumber

officeAreaCode
officeNumber

getTelephoneNumber

Figure 5 : Extract Class Refactoring

1. First it must be decided how to split the responsibilities. The phone number and the area code together with
the getTelephoneNumber method will be moved to a new class TelephoneNumber.

2. Next the new class is created, in our case the TelephoneNumber class.
3. Make a link from the old to the new class (and back if necessary).
4. Use the Move Field Refactoring on every field (officeAreaCode and officeNumber) that should be in the new

class. During this Refactoring every access to the fields (for instance in the getTelephoneNumber method) is
replaced by a call to an accessor method called on the link.

5. Compile and test after each application of the Move Field Refactoring.
6. Use the Move Method Refactoring to move methods (getTelephoneNumber) to the new class. During this

Refactoring every call of the moved methods would be replaced either by calling it directly on the new class
or by using a wrapper method (as in our case) which simply calls the moved method. The decision on
whether to use a wrapper method largely depends on the visibility of the method and whether it is used
outside of the old class.

7. Compile and test after each application of the Move Method Refactoring.
8. Review and reduce the interface of both classes. If necessary change the name of the old class to better

reflect its purpose.

XP uses Refactoring to enhance the design of a system such that it is easier to understand and modify without
affecting the behavior. If a Refactoring would not enhance the system, then it is not applied. Furthermore,
Refactoring is only done as part of the development cycle: before and after the implementation of a task (before
implementation to ease the integration of the new code).

Mercilessly means that if there is a chance to simplify the structure, Refactorings should be applied. Thus,
Refactoring only works well when combined with Relentless Testing because it ensures that the changes due to

23

Refactoring do not affect the behavior. Other necessities are Collective Code Ownership and Continuous
Integration.
Refactoring can have a slightly negative effect on performance, but the code tends to be better suited to
optimization later on (see Lazy Optimization).

CRC Session
CRC stands for Class Responsibility Collaborator. It is a method to determine and visualize the design of a
system.
The main tool for this method is the index card. Each card represents a class within the system.
During a CRC session one starts with a set of cards onto which the names of obvious classes are written (at the
top). If a responsibility (e.g. field or method) is found it is written on the left side of the card. If the class needs to
cooperate with another class to fulfill a responsibility a collaboration exists. The name of the other class is then
written on the right side of the card.
The cards can also be of different colors to express different types of classes.

Picture 6 : Example of a CRC card

More important than the responsibilities and collaborators is the layout of the cards. Cards that have a tighter
relationship (for instance composition) are placed nearer to each other. The placing of the cards expresses the
structure of the system at hand. Moving the cards around can be used to try out different “designs”.
The design is tested with a “walk” of User Stories (or Engineering Tasks). In order to fulfill the story the cards
are examined step by step along the collaboration hierarchies.

XP utilizes CRC cards as a dynamic discussion technique and not as a documentation technique. The cards are
used as props in determining the interaction between classes and only a couple of cards are used at a time.
Usually the cards are not preserved because it is quite easy and fast to recreate them if necessary.

24

Order
Order number
Date ordered
Date shipped
Order items
Calculate order total
Print invoice
Cancel

Order Item
Customer

Customer
Name
Phone number
Customer number
Make order
Cancel order
Make payment

Order
Surface Address

Order Item
Quantity
Inventory item
Calculate total

Inventory Item

Surface Address
Street
City
State
Zip
Print label

Inventory Item
Item number
Name
Description
Unit Price
Give price

Figure 6 : Example of a CRC layout

System Metaphor
Systems are build around a single or a small set of cooperating metaphors. These metaphors are used as a basis
for the system’s design as well as a guiding scheme for naming classes, methods etc. The [C3] project for
instance chose a manufacturing metaphor for their payroll system. It consisted of lines, parts, bins, jobs, and
stations, all of which were pretty natural to a car manufacturer. With this they could rely on a rich domain model
which helped in understanding the complex domain of a payroll system.
The metaphors are also important to improve communication. If they are well chosen, the customer and the
developers can relate to them (business metaphors). Determining whether some functionality is already
implemented is easier since one would simply ask “how would it be named ?” and then see whether a part with
the possible names is there.
Therefore the metaphors should be selected carefully. If there is a situation where the metaphor doesn’t fit it
should be enhanced or even replaced with a new one. The replacing of a metaphor is a big step which will need a
lot of Refactorings and perhaps even a new Planning Game.

Lazy Optimization
Optimizing comes as late as possible (“Make it work. Make it right. Make it fast.”). Furthermore one should
never try to guess the systems bottlenecks but measure them.

25

Conclusion

The power of XP lies in the cooperation of the various rules and practices. I’ve had difficulties understanding the
dynamics of this cooperation from only reading about it. It simply seems as if the whole cannot really work.
Given the success stories of XP projects it must work, however. I think that is necessary to try XP in an actual
project in order to fully understand and evaluate it.
So far I could only try to of the practices of XP, namely Refactoring and Unit Testing.
From what I’ve learned, I can say that Refactoring is a powerful tool to simplify systems. Nonetheless it must be
handled with care. Because you can easily destroy the system it is necessary to use tests to back it up.
Furthermore it is absolutely necessary to have a good communication in the team because the system will be in a
somewhat flowing state.
Unit tests are a great way to ensure that the code is doing what you want it to do. It gives you real confidence if
you’re able to say “this method is right because the tests run”. Something interesting happens when you write the
tests first. You express your expectations in code and then you really implement just enough to meet these
expressed expectations. Although this moves the problem of false assumptions only from the unit to the tests,
they are more easily spotted because they are explicit in the expected outcome and not implicit in the algorithms
you chose. It is also easier to define the interface when you make explicit on what the method/class should work
and what the results are. Unit testing is nonetheless a skill that must be learned and trained and it requires
discipline. It is also hindered by language “features”, pressing schedules, system barriers (for instance database
systems) etc.
I therefore would say that eXtreme Programming is interesting in at least three ways :

• It is different. Although the rules and practices are not new they are used in a much more strict fashion. This
is especially true for Pair Programming, Refactoring and Unit Testing.

• It seems to be more fun than a “traditional” process, mostly because there is a strong emphasis on team
work, communication and helping each other.

• During XP projects every team member learns a lot. In fact one of the key benefits of XP lies in the
distribution of knowledge throughout the team.

26

References

Books

Abbreviation Reference
[Be99-1] Kent Beck,

“eXtreme Programming explained – Embrace Change”,
Addison-Wesley, 1999

[Fo99] Martin Fowler,
“Refactoring – Improving the Design of Existing Code”,
Addison-Wesley, 1999

[BeSu97] David Bellin, Susan Suchman Simone (Contributor), Grady Booch (Editor),
“The CRC Card Book”,
Addison-Wesley, 1997

XP Web-sites

Abbreviation Reference
[C2] Wiki Wiki Web,

http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap
[XPOrg] ExtremeProgramming.org

http://www.ExtremeProgramming.org
[XPMag] XP Magazine

http://www.Xprogramming.com
[XPD] XPD,

http://www.xdeveloper.com
[Wake] William Wake,

“Software Design and Development”,
http://users.vnet.net/wwake/

XP Articles

Abbreviation Reference
[OO] OOTips: Extreme Programming,

http://ootips.org/xp.html
[C3] Chrysler Goes To “Extremes” – Case Study,

Distributed Computing, October 1998
http://www.xprogramming.com/publications/dc9810cs.pdf

[Be99-2] Kent Beck,
“Embracing Change with Extreme Programming“,
IEEE Computer, Vol.32, No.10, October 1999,
http://dlib.computer.org/co/books/co1999/pdf/rx070.pdf

[Be99-3] Kent Beck,
“Extreme Programming – Flatten the change-cost curve by using XP in project planning and
testing”,
C++ Report Feature Story, May 1999
http://archive.creport.com/9905/html/from_pages/feature.shtml

[Dyson] Paul Dyson,
“Does software need Architecture – or something more Extreme ?”,
http://www.dyson.force9.co.uk/arcxp.doc

[RoSc] Doug Rosenberg & Kendall Scott,
“XP – Cutting Through the hype”,
Objective View, Issue 3
http://www.ratio.co.uk/ov3pdf.zip

[Wind] Mark Windholtz,
“Software Development Best Practices”,
http://w3.one.net/~objwind/present/ExtremePractices.htm

27

CRC Articles

Abbreviation Reference
[Ambler] Scott W. Ambler,

“CRC Modelling – Bridging the Communication Gap Between Developers and Users”,
http://www.ambysoft.com/crcModeling.PDF

[BeCu89] Kent Beck & Ward Cunningham,
“A Laboratory For Teaching Object-Oriented Thinking”,
OOPSLA’89 Conference Proceedings
http://c2.com/doc/oopsla89/paper.html

[Bjork97] Russell C. Bjork,
“An Example of Object-Oriented Design – An ATM Simulation”,
http://inprem.rug.ac.be/~gpremer/OOA/ATM_Example/

[Brum96] Nils Brummond,
“Object Oriented Analysis and Design using CRC Cards”,
1996
http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/crc_b

[Coc99] Alistair Cockburn,
“Using CRC Cards”,
Humans and Technology Technical Memo HaT TR.99.01, March 1999
http://members.aol.com/humansandt/techniques/crc.htm

[Rubin98] David M. Rubin,
“Introduction to CRC Cards”,
Softstar Research, 1998
http://www.softstar-inc.com/Methodology/CRCIntro.htm

Refactoring & Testing Articles

Abbreviation Reference
[BeGa] Kent Beck & Erich Gamma,

“Test Infected – Programmers Love Writing Tests”,
http://members.pingnet.ch/gamma/junit.htm

[Jeff99] Ronald E. Jeffries,
“eXtreme Testing – Why aggressive software development calls for radical testing efforts”,
Software Testing & Quality Engineering, March/April 1999
http://www.xprogramming.com/publications/SP99%20Extreme%20for%20Web.pdf

[Opd92] William F. Opdyke,
“Refactoring Object-Oriented Frameworks”,
Ph.D. Thesis, University of Illinois, 1992,
ftp://www.laputan.org/pub/papers/opdyke-thesis.pdf

[RoBrJo] Don Roberts, John Brant, Ralph Johnson,
“A Refactoring Tool for Smalltalk”,
University of Illinois,
http://st-www.cs.uiuc.edu/~droberts/tapos/TAPOS.htm

28

Programming In Pairs Articles

Abbreviation Reference
[HaMa99] David Harvey & Peter Marks,

“New Cultures of Programming”,
JaCC Conference 1999,
http://www.ftech.net/~honeyg/articles/Culture-dist.zip

[WiKe99] Laurie A. Williams & Robert R. Kessler
“The Effects of ‘Pair-Pressure’ and ‘Pair-Lerning’ on Software Engineering Education”,
http://www.cs.utah.edu/~lwilliam/Papers/CSEET.PDF

[CoWi00] Alistair Cockburn & Laurie Williams,
“The Costs and Benefits of Pair Programming”,
http://www.cs.utah.edu/~lwilliam/Papers/XPSardinia.PDF

[WiKe] Laurie A. Williams, Robert R. Kessler, Ward Cunningham, Ronald E. Jeffries,
“Strengthening the Case for Pair-Programmin”,
http://www.cs.utah.edu/~lwilliam/Papers/ieeeSoftware.PDF

Other

Abbreviation Reference
[Coc] Alistair Cockburns Homepage

http://members.aol.com/acockburn/
[Martin99] Robert C. Martin,

“Iterative and Incremental Development”,
Parts I, II and III
C++ Report, Engineering Notebook Column, June 99
http://oma.com/PDF/IID%20I.pdf
http://oma.com/PDF/IID%20II.pdf
http://oma.com/PDF/IID%20III.pdf

[Wi] Laurie A. Williams Homepage
http://www.cs.utah.edu/~lwilliam/

