
Chapter 25 – Configuration Management

1 Chapter 25 Configuration management

Topics covered

 Change management

 Version management

 System building

 Release management

2 Chapter 25 Configuration management

Configuration management

 Because software changes frequently, systems, can be

thought of as a set of versions, each of which has to be

maintained and managed.

 Versions implement proposals for change, corrections of

faults, and adaptations for different hardware and

operating systems.

 Configuration management (CM) is concerned with the

policies, processes and tools for managing changing

software systems. You need CM because it is easy to

lose track of what changes and component versions

have been incorporated into each system version.

3 Chapter 25 Configuration management

CM activities

 Change management

 Keeping track of requests for changes to the software from customers

and developers, working out the costs and impact of changes, and

deciding the changes should be implemented.

 Version management

 Keeping track of the multiple versions of system components and

ensuring that changes made to components by different developers do

not interfere with each other.

 System building

 The process of assembling program components, data and libraries,

then compiling these to create an executable system.

 Release management

 Preparing software for external release and keeping track of the system

versions that have been released for customer use.

4 Chapter 25 Configuration management

Configuration management activities

5 Chapter 25 Configuration management

CM terminology

Term Explanation

Configuration item or

software configuration

item (SCI)

Anything associated with a software project (design, code, test data,

document, etc.) that has been placed under configuration control. There are

often different versions of a configuration item. Configuration items have a

unique name.

Configuration control The process of ensuring that versions of systems and components are

recorded and maintained so that changes are managed and all versions of

components are identified and stored for the lifetime of the system.

Version An instance of a configuration item that differs, in some way, from other

instances of that item. Versions always have a unique identifier, which is

often composed of the configuration item name plus a version number.

Baseline A baseline is a collection of component versions that make up a system.

Baselines are controlled, which means that the versions of the components

making up the system cannot be changed. This means that it should

always be possible to recreate a baseline from its constituent components.

Codeline A codeline is a set of versions of a software component and other

configuration items on which that component depends.

6 Chapter 25 Configuration management

CM terminology

Term Explanation

Mainline A sequence of baselines representing different versions of a

system.

Release A version of a system that has been released to customers (or

other users in an organization) for use.

Workspace A private work area where software can be modified without

affecting other developers who may be using or modifying that

software.

Branching The creation of a new codeline from a version in an existing

codeline. The new codeline and the existing codeline may then

develop independently.

Merging The creation of a new version of a software component by merging

separate versions in different codelines. These codelines may have

been created by a previous branch of one of the codelines

involved.

System building The creation of an executable system version by compiling and

linking the appropriate versions of the components and libraries

making up the system.

7 Chapter 25 Configuration management

Change management

 Organizational needs and requirements change during

the lifetime of a system, bugs have to be repaired and

systems have to adapt to changes in their environment.

 Change management is intended to ensure that system

evolution is a managed process and that priority is given

to the most urgent and cost-effective changes.

 The change management process is concerned with

analyzing the costs and benefits of proposed changes,

approving those changes that are worthwhile and

tracking which components in the system have been

changed.

8 Chapter 25 Configuration management

The change management process

9 Chapter 25 Configuration management

A partially completed change request form (a)

Change Request Form

Project: SICSA/AppProcessing Number: 23/02

Change requester: I. Sommerville Date: 20/01/09

Requested change: The status of applicants (rejected, accepted, etc.) should be

shown visually in the displayed list of applicants.

Change analyzer: R. Looek Analysis date: 25/01/09

Components affected: ApplicantListDisplay, StatusUpdater

Associated components: StudentDatabase

10 Chapter 25 Configuration management

A partially completed change request form (b)

Change Request Form

Change assessment: Relatively simple to implement by changing the display

color according to status. A table must be added to relate status to colors. No

changes to associated components are required.

Change priority: Medium

Change implementation:

Estimated effort: 2 hours

Date to SGA app. team: 28/01/09 CCB decision date: 30/01/09

Decision: Accept change. Change to be implemented in Release 1.2

Change implementor: Date of change:

Date submitted to QA: QA decision:

Date submitted to CM:

Comments:

11 Chapter 25 Configuration management

Factors in change analysis

 The consequences of not making the change

 The benefits of the change

 The number of users affected by the change

 The costs of making the change

 The product release cycle

12 Chapter 25 Configuration management

Change management and agile methods

 In some agile methods, customers are directly involved

in change management.

 The propose a change to the requirements and work

with the team to assess its impact and decide whether

the change should take priority over the features planned

for the next increment of the system.

 Changes to improve the software improvement are

decided by the programmers working on the system.

 Refactoring, where the software is continually improved,

is not seen as an overhead but as a necessary part of

the development process.

Chapter 25 Configuration management 13

Derivation history

// SICSA project (XEP 6087)

//

// APP-SYSTEM/AUTH/RBAC/USER_ROLE

//

// Object: currentRole

// Author: R. Looek

// Creation date: 13/11/2009

//

// © St Andrews University 2009

//

// Modification history

// Version Modifier Date Change Reason

// 1.0 J. Jones 11/11/2009 Add header Submitted to CM

// 1.1 R. Looek 13/11/2009 New field Change req. R07/02

14 Chapter 25 Configuration management

Version management

 Version management (VM) is the process of keeping

track of different versions of software components or

configuration items and the systems in which these

components are used.

 It also involves ensuring that changes made by different

developers to these versions do not interfere with each

other.

 Therefore version management can be thought of as the

process of managing codelines and baselines.

15 Chapter 25 Configuration management

Codelines and baselines

 A codeline is a sequence of versions of source code

with later versions in the sequence derived from earlier

versions.

 Codelines normally apply to components of systems so

that there are different versions of each component.

 A baseline is a definition of a specific system.

 The baseline therefore specifies the component versions

that are included in the system plus a specification of the

libraries used, configuration files, etc.

16 Chapter 25 Configuration management

Codelines and baselines

17 Chapter 25 Configuration management

Baselines

 Baselines may be specified using a configuration

language, which allows you to define what components

are included in a version of a particular system.

 Baselines are important because you often have to

recreate a specific version of a complete system.

 For example, a product line may be instantiated so that there are

individual system versions for different customers. You may have

to recreate the version delivered to a specific customer if, for

example, that customer reports bugs in their system that have to

be repaired.

18 Chapter 25 Configuration management

Version management systems

 Version and release identification

 Managed versions are assigned identifiers when they are

submitted to the system.

 Storage management

 To reduce the storage space required by multiple versions of

components that differ only slightly, version management

systems usually provide storage management facilities.

 Change history recording

 All of the changes made to the code of a system or component

are recorded and listed.

19 Chapter 25 Configuration management

Version management systems

 Independent development

 The version management system keeps track of components

that have been checked out for editing and ensures that changes

made to a component by different developers do not interfere.

 Project support

 A version management system may support the development of

several projects, which share components.

20 Chapter 25 Configuration management

Storage management using deltas

21 Chapter 25 Configuration management

Check-in and check-out from a version

repository

22 Chapter 25 Configuration management

Codeline branches

 Rather than a linear sequence of versions that reflect

changes to the component over time, there may be

several independent sequences.

 This is normal in system development, where different

developers work independently on different versions of the

source code and so change it in different ways.

 At some stage, it may be necessary to merge codeline

branches to create a new version of a component that

includes all changes that have been made.

 If the changes made involve different parts of the code, the

component versions may be merged automatically by combining

the deltas that apply to the code.

23 Chapter 25 Configuration management

Branching and merging

24 Chapter 25 Configuration management

Key points

 Configuration management is the management of an evolving

software system. When maintaining a system, a CM team is put in

place to ensure that changes are incorporated into the system in a

controlled way and that records are maintained with details of the

changes that have been implemented.

 The main configuration management processes are change

management, version management, system building and release

management.

 Change management involves assessing proposals for changes

from system customers and other stakeholders and deciding if it is

cost-effective to implement these in a new version of a system.

 Version management involves keeping track of the different versions

of software components as changes are made to them.

Chapter 25 Configuration management 25

System building

 System building is the process of creating a complete,

executable system by compiling and linking the system

components, external libraries, configuration files, etc.

 System building tools and version management tools

must communicate as the build process involves

checking out component versions from the repository

managed by the version management system.

 The configuration description used to identify a baseline

is also used by the system building tool.

26 Chapter 25 Configuration management

Build platforms

 The development system, which includes development

tools such as compilers, source code editors, etc.

 Developers check out code from the version management

system into a private workspace before making changes to the

system.

 The build server, which is used to build definitive,

executable versions of the system.

 Developers check-in code to the version management system

before it is built. The system build may rely on external libraries

that are not included in the version management system.

 The target environment, which is the platform on which

the system executes.

27 Chapter 25 Configuration management

Development, build, and target platforms

28 Chapter 25 Configuration management

System building

29 Chapter 25 Configuration management

Build system functionality

 Build script generation

 Version management system integration

 Minimal re-compilation

 Executable system creation

 Test automation

 Reporting

 Documentation generation

30 Chapter 25 Configuration management

Minimizing recompilation

 Tools to support system building are usually designed to

minimize the amount of compilation that is required.

 They do this by checking if a compiled version of a

component is available. If so, there is no need to

recompile that component.

 A unique signature identifies each source and object

code version and is changed when the source code is

edited.

 By comparing the signatures on the source and object

code files, it is possible to decide if the source code was

used to generate the object code component.

Chapter 25 Configuration management

31

File identification

 Modification timestamps

 The signature on the source code file is the time and date when

that file was modified. If the source code file of a component has

been modified after the related object code file, then the system

assumes that recompilation to create a new object code file is

necessary.

 Source code checksums

 The signature on the source code file is a checksum calculated

from data in the file. A checksum function calculates a unique

number using the source text as input. If you change the source

code (even by 1 character), this will generate a different

checksum. You can therefore be confident that source code files

with different checksums are actually different.

Chapter 25 Configuration management 32

Timestamps vs checksums

 Timestamps

 Because source and object files are linked by name rather than

an explicit source file signature, it is not usually possible to build

different versions of a source code component into the same

directory at the same time, as these would generate object files

with the same name.

 Checksums

 When you recompile a component, it does not overwrite the

object code, as would normally be the case when the timestamp

is used. Rather, it generates a new object code file and tags it

with the source code signature. Parallel compilation is possible

and different versions of a component may be compiled at the

same time.

Chapter 25 Configuration management 33

Agile building

 Check out the mainline system from the version

management system into the developer’s private

workspace.

 Build the system and run automated tests to ensure that

the built system passes all tests. If not, the build is

broken and you should inform whoever checked in the

last baseline system. They are responsible for repairing

the problem.

 Make the changes to the system components.

 Build the system in the private workspace and rerun

system tests. If the tests fail, continue editing.

 Chapter 25 Configuration management 34

Agile building

 Once the system has passed its tests, check it into the

build system but do not commit it as a new system

baseline.

 Build the system on the build server and run the tests.

You need to do this in case others have modified

components since you checked out the system. If this is

the case, check out the components that have failed and

edit these so that tests pass on your private workspace.

 If the system passes its tests on the build system, then

commit the changes you have made as a new baseline

in the system mainline.

Chapter 25 Configuration management 35

Continuous integration

36 Chapter 25 Configuration management

Daily building

 The development organization sets a delivery time (say

2 p.m.) for system components.

 If developers have new versions of the components that they are

writing, they must deliver them by that time.

 A new version of the system is built from these components by

compiling and linking them to form a complete system.

 This system is then delivered to the testing team, which carries

out a set of predefined system tests

 Faults that are discovered during system testing are documented

and returned to the system developers. They repair these faults

in a subsequent version of the component.

37 Chapter 25 Configuration management

Release management

 A system release is a version of a software system that

is distributed to customers.

 For mass market software, it is usually possible to

identify two types of release: major releases which

deliver significant new functionality, and minor releases,

which repair bugs and fix customer problems that have

been reported.

 For custom software or software product lines, releases

of the system may have to be produced for each

customer and individual customers may be running

several different releases of the system at the same

time.
38 Chapter 25 Configuration management

Release tracking

 In the event of a problem, it may be necessary to

reproduce exactly the software that has been delivered

to a particular customer.

 When a system release is produced, it must be

documented to ensure that it can be re-created exactly in

the future.

 This is particularly important for customized, long-lifetime

embedded systems, such as those that control complex

machines.

 Customers may use a single release of these systems for many

years and may require specific changes to a particular software

system long after its original release date.

 Chapter 25 Configuration management 39

Release reproduction

 To document a release, you have to record the specific

versions of the source code components that were used

to create the executable code.

 You must keep copies of the source code files,

corresponding executables and all data and

configuration files.

 You should also record the versions of the operating

system, libraries, compilers and other tools used to build

the software.

Chapter 25 Configuration management 40

Release planning

 As well as the technical work involved in creating a

release distribution, advertising and publicity material

have to be prepared and marketing strategies put in

place to convince customers to buy the new release of

the system.

 Release timing

 If releases are too frequent or require hardware upgrades,

customers may not move to the new release, especially if they

have to pay for it.

 If system releases are too infrequent, market share may be lost

as customers move to alternative systems.

Chapter 25 Configuration management 41

Release components

 As well as the the executable code of the system, a

release may also include:

 configuration files defining how the release should be configured

for particular installations;

 data files, such as files of error messages, that are needed for

successful system operation;

 an installation program that is used to help install the system on

target hardware;

 electronic and paper documentation describing the system;

 packaging and associated publicity that have been designed for

that release.

Chapter 25 Configuration management 42

Factors influencing system release planning

Factor Description

Technical quality of

the system

If serious system faults are reported which affect the way in

which many customers use the system, it may be

necessary to issue a fault repair release. Minor system

faults may be repaired by issuing patches (usually

distributed over the Internet) that can be applied to the

current release of the system.

Platform changes You may have to create a new release of a software

application when a new version of the operating system

platform is released.

Lehman’s fifth law

(see Chapter 9)

This ‘law’ suggests that if you add a lot of new functionality

to a system; you will also introduce bugs that will limit the

amount of functionality that may be included in the next

release. Therefore, a system release with significant new

functionality may have to be followed by a release that

focuses on repairing problems and improving performance.

43 Chapter 25 Configuration management

Factors influencing system release planning

Factor Description

Competition For mass-market software, a new system release may be

necessary because a competing product has introduced

new features and market share may be lost if these are not

provided to existing customers.

Marketing

requirements

The marketing department of an organization may have

made a commitment for releases to be available at a

particular date.

Customer change

proposals

For custom systems, customers may have made and paid

for a specific set of system change proposals, and they

expect a system release as soon as these have been

implemented.

44 Chapter 25 Configuration management

Key points

 System building is the process of assembling system components

into an executable program to run on a target computer system.

 Software should be frequently rebuilt and tested immediately after a

new version has been built. This makes it easier to detect bugs and

problems that have been introduced since the last build.

 System releases include executable code, data files, configuration

files and documentation. Release management involves making

decisions on system release dates, preparing all information for

distribution and documenting each system release.

Chapter 25 Configuration management 45

