
RE Overview

Based on presentations by G. Mussbacher, G.V Bochmann, N. Niu

Importance of RE (1)

Mars Climate Orbiter

• In 1999, the Mars Climate Orbiter disappears around Mars

• Cost: about $125M US

• Problem caused by a misunderstanding between a team in
Colorado and one in California

• One team used the metric system while the other used the
English system for a key function…

  Problems
 Increased reliance on software

 e.g. cars, dishwashers, cell phones, web services, …
 Software now the biggest cost element for mission critical systems

 e.g. Boeing 777
 Wastage on failed projects

 e.g. 1997 GAO report: $145 billion over 6 years on software that was never
delivered

 High consequences of failure
 e.g. Ariane 5: $500 million payload
 e.g. Intel Pentium bug: $475 million

 Key factors:
 Certification costs

 e.g. Boeing 777:>40% of software budget spent on testing
 Re-work from defect removal

 e.g. Motorola: 60-80% of software budget (was) spent on re-work
 Changing Requirements

 e.g. California DMV system

13

Importance of RE (2)

 What are Requirements?
 Scope (for this course): “Software-intensive Systems”
 Separating the Problem from the Solution
 What Requirements Engineers do

 What is Engineering?
 Engineering as a profession
 Engineering projects
 Engineering lifecycles
 Engineering design

 What is a System?
 General systems theory
 Formal foundations of software systems
 Conceptual foundations of information systems
 Empirical foundations of human activity systems
 Observability of systems

3

(I) Introduction

 Elicitation Targets
 Stakeholders & User Classes
 System boundaries
 Goals
 Scenarios

 Elicitation Techniques
 Interviews, questionnaires, surveys, meetings
 Prototyping
 Ethnographic techniques
 Knowledge elicitation techniques
 Conversation Analysis
 Text Analysis

 The Feasibility Study
 Types of Feasibility
 Cost/benefit analysis

 Risk Analysis
 Identifying and managing risk

4

(II) Eliciting and Planning

 Basics of Modeling
 Notations and their uses
 Formality and Expressiveness
 Abstraction and Decomposition
 Model management and

viewpoints
 Types of Analysis

 Enterprises
 Business rules and organizational

structures
 Goals, tasks and responsibilities
 Soft Systems analysis

 Information Structures
 Entities and Relationships
 Classes and Objects
 Domain Ontologies

 Behavior
 Activities and Interactions
 States and Transitions
 Concurrency

 Quality Requirements
 Taxonomies of NFRs
 Performance
 Usability
 Safety
 Security
 Reliability
 Maintainability

5

(III) Modeling & Analyzing

 Validation
 Refutable descriptions
 Role of contracts and

procurement
 Role of organizational politics

 Documenting
Requirements
 Properties of a good specification
 Documentation standards
 Specification languages
 Making requirements testable

 Prototyping and
Walkthroughs
 Throwaway prototyping
 Operational prototyping
 Walkthroughs of operational

models

 Reviews and Inspections
 Effectiveness of Inspection
 Conducting an Inspection
 Collaborative Requirements

Workshops

 Negotiation and
Prioritization
 Representing argumentation and

rationale
 Computer-supported negotiation
 Trade-off analysis
 Release planning

6

(IV) Communicating & Agreeing

 Software Evolution
 Laws of evolution
 Release planning
 Product families
 Requirement Reuse

 Requirements and
Architectures
 Architectural Patterns and

Description Languages
 Mapping requirements to

architectures
 Architectural Robustness

 Managing Change
 Baselines and change requests
 Configuration management and

version control
 Impact Analysis

 Traceability and
Rationale
 Pre- and Post- traceability
 Capturing Design Rationale
 Traceability techniques

 Managing Inconsistency
 On the inevitable intertwining of

inconsistency and change
 Learning from inconsistency
 Feature interaction
 Living with inconsistency

 IR and NLP in RE
 Security Requirements

7

(V) Realizing and Evolving

Definition and Importance of
Requirements

What are “Requirements”?
• A requirement is:

• Capturing the purpose of a system

• An expression of the ideas to be embodied in the system or
application under development

• A statement about the proposed system that all stakeholders agree
must be made true in order for the customer’s problem to be
adequately solved

• Short and concise piece of information

• Says something about the system

• All the stakeholders have agreed that it is valid

• It helps solve the customer’s problem

According to IEEE 830-1993
• A requirement is defined as:

• A condition or capability needed by a user to solve a problem or
achieve an objective

• A condition or a capability that must be met or possessed by a system
… to satisfy a contract, standard, specification, or other formally
imposed document …

What is “Requirements Engineering”?
• Requirements Engineering (RE) is:

• The activity of development, elicitation, specification, analysis, and
management of the stakeholder requirements, which are to be met by
a new or evolving system

• RE is concerned with identifying the purpose of a software system…
and the contexts in which it will be used

• How/where the system will be used

• Big picture is important

• Captures real world needs of stakeholders affected by a software
system and expresses them as artifacts that can be implemented by a
computing system

• Bridge to design and construction

• How to communicate and negotiate?

• Is anything lost in the translation between different worlds?

Requirements Engineering Activities

Elicitation Analysis Specification Verification

Source: Larry Boldt, Trends in Requirements Engineering People-Process-Technology, Technology Builders, Inc., 2001

Requirements
Inception

Requirements
Management

Requirements Engineering

Requirements
Development

About these RE Activities…
• Inception

• Start the process (business need, market opportunity, great idea, ...), business
case, feasibility study, system scope, risks, etc.

• Requirements elicitation
• Requirements discovered through consultation with stakeholders

• Requirements analysis and negotiation
• Requirements are analyzed and conflicts resolved through negotiation

• Requirements specification
• A precise requirements document is produced

• Requirements validation
• The requirements document is checked for consistency and completeness

• Requirements management
• Needs and contexts evolve, and so do requirements!

General Problems with the Requirements Process
• Lack of the right expertise (software engineers, domain

experts, etc.)

• Initial ideas are often incomplete, wildly optimistic, and firmly
entrenched in the minds of the people leading the acquisition
process

• Difficulty of using complex tools and diverse methods
associated with requirements gathering may negate the
anticipated benefits of a complete and detailed approach

Statistics from NIST Report
• NIST (National Institute of Standards and Technology) has

published a comprehensive (309 pages) and very interesting
report on project statistics and experiences based on data
from a large number of software projects1

• 70% of the defects are introduced in the specification phase
• 30% are introduced later in the technical solution process
• Only 5% of the specification inadequacies are corrected in the

specification phase
• 95% are detected later in the project or after delivery where the cost

for correction on average is 22 times higher compared to a correction
directly during the specification effort

• The NIST report concludes that extensive testing is essential, however
testing detects the dominating specification errors late in the process

[1] http://www.nist.gov/public_affairs/releases/n02-10.htm (May 2002)

• Distribution of Defects • Distribution of Effort to Fix Defects

Code
7% Other

10%

Design
27%

Requirements
56%

Code
1% Other

4%
Design
13%Requirements

82%

Why Focus on Requirements ?

 Source: Martin & Leffinwell

View of the Software Engineering Institute (SEI)
• Improve software development with the CMM/CMMI model

for software development
• Capability Maturity Model (CMM)
• For software development, superseded by Capability Maturity Model

Integration (CMMI)

• SEI’s vision is:
• The right software, delivered defect free, on time & on cost, every time
• “Right software” implies software that satisfies requirements for

functionality and qualities (e.g., performance, cost…) throughout its
lifetime

• “Defect free” software is achieved either through exhaustive testing
after coding or by developing the code right the first time

CHAOS Report (2004)1

[1] Standish Group Inc., 2004

Progression since 1994

Success

Problem

Failure

 Source: Standish Group Inc., 1994-2006

Success Factors

 Source: Standish Group Inc., 1995

Use
r

In
vo

lve
m

en
t

Ha
rd

-W
or

kin
g

Fo
cu

se
d

St
af

f

Problem Causes

 Source: Standish Group Inc., 1995

Te
ch

no
lo

gy
Illi

te
ra

cy

Evolution of Success Factors

 Source: Standish Group Inc., 2000

Managing Evolving Requirements

“Changing requirements is as certain as death and taxes”

 Source: http://standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf, 1999

Types of Requirements

So Many “Requirements”… (1)
• A goal is an objective or concern that guides the RE process.

It can be used to discover and evaluate functional and non-
functional requirements

• A goal is not yet a requirement…

• Note: All requirements must be verifiable (by some test,
inspection, audit etc.)

• A functional requirement is a requirement defining functions
of the system under development

• Describes what the system should do

• A non-functional requirement is a requirement that is not
functional. This includes many different kinds of
requirements. – Therefore one often considers the following
sub-categories:

Different types of non-functional requirements
• Performance requirements, characterizing system properties

such as expected performance, capacity, reliability,
robustness, usability, etc.

• Design constraints (also called process requirements),
providing constraints on how the system should be designed
and built – related to development process, documentation,
programming language, maintainability, etc.

• Commercial constraints, such as development time frame
and costs.

So Many “Requirements”… (2)
• A user requirement is a desired goal or function that a user and other stakeholders

expect the system to achieve

• Does not necessarily become a system requirement

• Application domain requirement (sometimes called business rules) are
requirements derived from business practices within a given industrial sector, or in
a given company, or defined by government regulations or standards.

• May lead to system requirements. Can be functional or non-functional

• Problem domain requirements should be satisfied within the problem domain in
order to satisfy some of the goals

• System requirements are the requirements for the system to be built, as a whole
• A system is a collection of interrelated components working together towards

some common objective (may be software, mechanical, electrical and
electronic hardware and be operated by people)

• Systems Engineering is a multidisciplinary approach to systems development
– software is only a part (but often the problematic part)

So Many “Requirements”… (3)
• Important note: Software Requirements Engineering is a

special case of Requirements Engineering. Many topics
discussed in this course are quite general and apply to
requirements engineering, in general.

• In a system containing software, software requirements are
derived from the system requirements. The system then
consists of hardware and software, and the hardware (and
often the operating system and other existing software
modules) are part of the environment in which the software is
used.

Functional Requirements
• What inputs the system should accept
• What outputs the system should produce
• What data the system should store other systems might use
• What computations the system should perform
• The timing and synchronization of the above

• Depend on the type of software, expected users, and the type
of system where the software is used

• Functional user requirements may be high-level statements of
what the system should do, but functional system
requirements should describe the system services in detail

Examples of Functional Requirements
• The user shall be able to search either all of the initial set of

databases or select a subset from it.

• The system shall provide appropriate viewers for the user to
read documents in the document store.

• Every order shall be allocated a unique identifier
(ORDER_ID) which the user shall be able to copy to the
account’s permanent storage area.

Note: not all requirements on this and following slides are high quality requirements but are typical requirements found too often in documents

Non-Functional Requirements (NFR) (1)
• Non-functional requirements are important

• If they are not met, the system is useless
• Non-functional requirements may be very difficult to state precisely

(especially at the beginning) and imprecise requirements may be
difficult to verify

• They are sometimes called quality requirements, quality of
service, or extra-functional requirements.

• Three main categories 1:
• Performance requirements reflecting: usability, efficiency, reliability,

maintainability and reusability (note: also security requirements)
• Response time, throughput
• Resource usage
• Reliability, availability
• Recovery from failure
• Allowances for maintainability and enhancement
• Allowances for reusability [1] Lethbridge and Laganière, Object Oriented Software Engineering: Practical Software Development using UML and Java, 2005

Non-Functional Requirements (NFR) (2)
• Design constraints: Categories constraining the

environment and technology of the system.
• Platform (minimal requirements, OS, devices…)
• Technology to be used (language, DB, …)

• Commercial constaints: Categories constraining the
project plan and development methods

• Development process (methodology) to be used
• Cost and delivery date

• Often put in contract or project plan instead

Various NFR Types
• Other ontologies also exist

P e r f o r m a n c e
r e q u i r e m e n t s

S p a c e
r e q u i r e m e n t s

U s a b i l i t y
r e q u i r e m e n t s

E f f i c i e n c y
r e q u i r e m e n t s

R e l i a b i l i t y
r e q u i r e m e n t s

P o r t a b i l i t y
r e q u i r e m e n t s

I n t e r o p e r a b i l i t y
r e q u i r e m e n t s

E t h i c a l
r e q u i r e m e n t s

L e g i s l a t i v e
r e q u i r e m e n t s

I m p l e m e n t a t i o n
r e q u i r e m e n t s

S t a n d a r d s
r e q u i r e m e n t s

D e l i v e r y
r e q u i r e m e n t s

S a f e t y
r e q u i r e m e n t s

P r i v a c y
r e q u i r e m e n t s

P r o d u c t
r e q u i r e m e n t s

O r g a n i z a t i o n a l
r e q u i r e m e n t s

E x t e r n a l
r e q u i r e m e n t s

N o n - f u n c t i o n a l
r e q u i r e m e n t s

 Source: Gerald Kotonya and Ian Sommerville, Requirements Engineering – Processes and Techniques, Wiley, 1998

Examples of Non-Functional Requirements
• Product requirement

• It shall be possible for all necessary communication between the
APSE and the user to be expressed in the standard Ada character set.

• Process requirement
• The system development process and deliverable documents shall

conform to the process and deliverables defined in XYZCoSPSTAN95.

• Security requirement
• The system shall not disclose any personal information about

customers apart from their name and reference number to the
operators of the system.

Measurable Non-Functional Requirements

Property Measure
Speed Processed transactions/second

User/Event response time
Screen refresh time

Size K Bytes
Number of RAM chips

Ease of use Training time
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

 Source: Gerald Kotonya and Ian Sommerville, Requirements Engineering – Processes and Techniques, Wiley, 1998

Goals

• A Goal
• Conveys the intention or the objective of one or many stakeholders
• Can guide the discovery of verifiable non-functional requirements that

can be tested objectively

Example of Goal and NFR
• A system goal

• The system should be easy to use by experienced controllers and
should be organized in such a way that user errors are minimized.

• A verifiable usability requirement derived from this goal
• Experienced controllers shall be able to use all the system functions

after a total of three hours of training.
• The average number of errors made by experienced controllers shall

not exceed two per day.

• Assumption: An experienced controller has at least 2 years experience
with the old system (as stated by the stakeholder)

Application-Domain Requirements
• Derived from the application domain

• Describe system characteristics and features that reflect the
domain

• May be new functional requirements, constraints on existing
requirements, or define specific computations

• If domain requirements are not satisfied, the system may be
unworkable

Examples of Application-Domain Requirements
• Library system

• The system interface to the database must comply with standard
Z39.50.

• Because of copyright restrictions, some documents must be deleted
immediately on arrival. Depending on the user’s requirements, these
documents will first be printed either locally or printed to a network
printer and retrieved by the user.

• Train protection system
• The deceleration of the train shall be computed as:

Dtrain = Dcontrol + Dgradient

where Dgradient is 9.81ms2 * compensated gradient / alpha and where
the values of 9.81ms2 / alpha are known for different types of train.

Problems Concerning Application-Domain Requirements

•Understandability
• Requirements are expressed in the language of the

application domain
• This is often not understood by software engineers

developing the system

• Implicitness / Tacit knowledge
• Domain specialists understand the area so well that they

do not think of making the domain requirements explicit
• People are often unaware of the tacit knowledge they

possess and therefore cannot express it to others

Emergent Properties (when the system consists of several
sub-systems)
• Properties of the system as a whole

• Requirements which cannot be addressed by a single component, but
which depend for their satisfaction on how all the software
components interoperate

• Only emerge once all individual subsystems have been integrated
• Dependent on the system architecture

• Examples of emergent properties
• Reliability
• Maintainability
• Performance
• Usability
• Security
• Safety

The Requirements Engineering
Process

Requirements within the software development process

What is the right system to build ?

RE activities and documents (Wiegers)

Notes on previous slide
• There needs to be an arrow from User requirements to

System requirements. (The system has to be able to perform
certain use cases. The same use cases must be supported
by the software, therefore become Software requirements.)

• Business rules (including standards and regulations) are not
only non-functional, they also include functional aspects (as
shown by the arrows in the diagram).

RE process model
 (suggested by Bray)

Again, this diagram shows

• RE activities (elicitation, analysis,
specification, HMI design)

• subsequent design activity (internal design)

• RE documents (elicitation notes, requirements,
specification, HMI specification)

Important point:
Distinction between

• Problem domain (described by requ. doc.)

• System (to be built) (described by spec. doc.)

Note: One has to distinguish between current
(problematic) version of the problem domain,
and the projected future version which includes
the system to be built.

Typical Layered Approach (V-shaped)

 Source: Hull, Jackson, Dick: Requirements Engineering, 2004

Notes on previous slide
• This looks like the waterfall process model, but this diagram describes a quite

different situation.

• The layers correspond to step-wise refinement in terms of component
decomposition.

• For instance, the transition from the first to the second layer is the typical
RE process: one starts with the information from elicitation (shown in the
first layer), that is, the problematic domain model, and one ends up with a
proposal for a new system to be built (which is a component within the
projected new domain model).

• Important note: The process of identification of the system to be built
and defining its relationship with the new domain model (note that the
environment of the system to be built may also be re-organized within the
new domain model) is a kind of “design process” that requires creativity.

• The transitions to the lower layers in the diagram are similar processes
(you may call them RE at a more detailed level or design processes)

Difference between RE and design ?
• Much research towards automated SE

• Compilers automatically generate machine code (correct in respect to
program source code)

• CASE tools automatically generate implementations of UML State
Machine models (correct in respect to the given model)

• CASE tools automatically generate state machine models from a set
of use case scenarios

• E.g. PhD work of Dr. Somé

• Tool for Live Sequence Charts by Dave - described in the book ”Come,
Let's Play: Scenario-Based Programming Using LSCs and the Play-
Engine”

Harel’s “scenario-based programming” (1)
• Scenarios (use cases) are played into the tool, and may be

played out for testing the recorded behavior model.

Harel’s “scenario-based programming” (2)

Main idea:
eliminate the design and implemention
activities by providing efficient execution of
behavior directly defined by the requirements.

Requirements and Modeling go together
• The systems engineering sandwich!

 Source: http://www.telelogic.com/download/paper/SystemsEngineeringSandwich.pdf

Comments on previous slide

Why combine RE with modeling ?

•For analysis – models help to understand the
problem domain

•For documentation – models can be used for
describing requirements (instead of solely using
natural language)

Back to the Sandwich – consider different levels of details

 Source: Hull, Jackson, Dick: Requirements Engineering, 2004

Benefits of Requirement Levels (Sandwich)
Principle of step-wise refinement:
• Focus the attention on the big picture before addressing the

details
• Reduce the number of changes by specifying at a lower level

the requirements that will not affect the requirements at a
higher level

• Promote the division of work

This diagram [Lamsweerde] is
another way to present this kind of
(spiral) process

Time

Why?

What?

How?

Who?
When?

If-Then

Does It?

Where?

Project Management Process

Quality Management Process

Component & Configuration Management Process

Risk Management Process

Identify Business Needs and Goals

Derive User & Functional Requirements

Design Solutions

TIME

RE Process and Related Activities

Requirements Engineering
• Requirements engineering is a set of activities but not

necessarily a separate phase

 Source: Donald C. Gause, Risk Focused Requirements Management, Tutorial at RE’09, September 2009

The Problem Domain and the
System/Software-to-be

Problem Domain
• The problem domain is the context for requirements

• Part of the world within which the problem exists
• Needs to be understood for effective requirements engineering

• Domain model
• Set of properties assumed / believed to be true about the environment
• Properties relevant to the problem
• Problem domain requirements should hold in the proposed new

version of the domain.

• Define the system requirements such that:
• If the system that is built satisfies the system requirements and the

environment satisfies the properties assumed for the environment,
then the problem domain requirements will be satisfied.

• In simple words: The system will behave as required if the
assumptions hold.

Problem Domain and System-to-be

A domain model should
be reusable
(Michael Jackson, 1995)

Diagram also showing activities [Bray]

Diagram showing existing and future situation
[Lamsweerde]

better: problem domain (as-is
and to-be)

Problem domain with system-to-be [Bray]

System interface and software interface

• System and software interface for a control system with
embedded software:

• Software interface: through input and output variables, for instance
measuredSpeed (is read by program) and doorState (is set by
program)

• The system includes the software and I/O devices. Therefore the
interface of the system with the environment are the monitored and
controlled variables of the real world, for instance trainSpeed and
doorsClosed.

Generic architecture of a control system including
embedded software [Lamsweerde]

Software objects representing real objects
• The software (model) normally contains objects that represent objects in

the system environment (e.g. the doorState variable represents the state
of the doors in the train)

• Whether they represent the situation in the environment correctly, is
another question (for the doorState variable, this may depend on the
correct functioning of the door state sensing device).

better: Problem domain
requirements (if one
considers the train to be
the environment of the
control system)

[Lamsweerde]

Main Requirements Activities

Requirements Inception
• Start the process

• Identification of business need
• New market opportunity
• Great idea

• Involves
• Building a business case
• Preliminary feasibility assessment
• Preliminary definition of project scope

• Stakeholders
• Business managers, marketing people, product managers...

• Examples of techniques
• Brainstorming, Joint Application Development (JAD) meeting…

Requirements Elicitation (1)
• Gathering of information

• About problem domain
• About problems requiring a solution
• About constraints related to the problem or solution

• Questions that need to be answered
• What is the system?
• What are the goals of the system?
• How is the work done now?
• What are the problems?
• How will the system solve these problems?
• How will the system be used on a day-to-day basis?
• Will performance issues or other constraints affect the way the

solution is approached?

Requirements Elicitation (2)
• Overview of different sources

• Customers and other stakeholders
• Existing systems
• Documentation
• Domain experts
• More ...

• Overview of different techniques
• Brainstorming
• Interviews
• Task observations
• Use cases / scenarios
• Prototyping
• More ...

Requirements Analysis
• The process of studying and analyzing the needs of

stakeholders (e.g., customer, user) in view of coming up with
a “solution”. Such a solution may involve:

• A new organization of the workflow in the company.
• A new system (system-to-be, also called solution domain) which will

be used in the existing or modified workflow.
• A new software to be developed which is to run within the existing

computer system or involving modified and/or additional hardware.

• Objectives
• Detect and resolve conflicts between requirements (e.g., through

negotiation)
• Discover the boundaries of the system / software and how it must

interact with its environment
• Elaborate system requirements to derive software requirements

Requirements Specification
• The invention and definition of the behavior of a new system

(solution domain) such that it will produce the required effects
in the problem domain

• Requirements Analysis has defined the problem domain and
the required effects

• Specification Document
• A document that clearly and precisely describes, each of the essential

requirements (functions, performance, design constraints, and quality
attributes) of the software and the external interfaces

• Each requirement being defined in such a way that its achievement is
capable of being objectively verified by a prescribed method (e.g.,
inspection, demonstration, analysis, or test)

• Different guidelines and templates exist for requirements specification

• Validation and verification

• Both help ensure delivery of what the client wants

• Need to be performed at every stage during the process

• Validation: checks that the right product is being built (refers back to stakeholders
– main concern during RE)

• Verification: checks that the product is being built right

• During design phase: refers back to the specification of the system or software
requirements

• During RE: mainly checking consistency between different requirements,
detecting conflicts

• Techniques used during RE
• Simple checks
• Formal Review
• Logical analysis
• Prototypes and enactments
• Design of functional tests
• Development of user manual

Requirements Verification and Validation

Requirements Management
• Necessary to cope with changes to requirements
• Requirements change is caused by:

• Business process changes
• Technology changes
• Better understanding of the problem

• Traceability is very important for effective requirements
management

Design
document

....due to
requirement 1.2

Requirements
document

1.1 XXXX
.... because
1.2 YYYY

rationale
Goals

Elicitation
notes

Requirements Documents
• Vision and Scope Document
• Elicitation notes: (Raw) requirements obtained through elicitation; often

unstructured, incomplete, and inconsistent

• (Problem domain) Requirements document
• System requirements document
• Software requirements document

• The software is normally part of a system that includes hardware and software.
Therefore the software requirements are normally part of the system requirements.

• Note: System and Software requirements may exist in several versions
with different levels of details, such as

• User (customer) requirements: Statements in natural language plus diagrams of the
services the system provides and its operational constraints; written for customers

• Detailed requirements: A structured document setting out detailed descriptions of the
system services; often used as a contract between client and contractor. This
description can serve as a basis for a design or implementation; used by developers.

Types of Requirements Documents
Two extremes:
• An informal outline of the requirements using a few

paragraphs or simple diagrams
• This is called the requirements definition

• A long list of specifications that contain
thousands of pages of intricate
requirements describing the
system in detail

• This is called the requirements
specification

• Requirements documents for
large systems are normally
arranged in a hierarchy

Requirements
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

subsystem 1 subsystem 2

Requirements
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements
Definition
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements
Specification
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

sub-subsystems

sub-subsystems
Requirements
Definition

xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Specification
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Definition
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Specification
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements
Definition

xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Specification
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Definition
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Specification
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements
Definition

xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Specification
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Definition
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Specification
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements
Definition

xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Specification
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Definition
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

Requirements

Specification
xxxx
xxxxxxx
xxx
xxxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
xxxxxxx
xxx
xxxxxxxxxxxxxxx

The Requirements Analyst1

• Plays an essential communication role
• Talks to users: application domain
• Talks to developers: technical domain
• Translates user requirements into functional requirements and quality

goals

• Needs many capabilities
• Interviewing and listening skills
• Facilitation and interpersonal skills
• Writing and modeling skills
• Organizational ability

• RE is more than just modeling…
This is a social activity!

[1] Karl Wiegers, In Search of Excellent Requirements

For More Information
a. B. A. Nuseibeh and S. M. Easterbrook, Requirements Engineering: A Roadmap. In A. C.

W. Finkelstein (ed) The Future of Software Engineering, ACM Press, 2000
http://www.cs.toronto.edu/~sme/papers/2000/ICSE2000.pdf

b. Simson Garfinkel, History's Worst Software Bugs, Wired News, 2005
http://www.wired.com/news/technology/bugs/0,2924,69355,00.html

c. INCOSE Requirements Working Group
http://www.incose.org/practice/techactivities/wg/rqmts/

d. Tools Survey: Requirements Management (RM) Tools
http://www.incose.org/productspubs/products/rmsurvey.aspx
http://www.volere.co.uk/tools.htm

e. IEEE (1993) Recommended Practice for Software Requirements Specifications. IEEE Std
830-1993, NY, USA.

f. IEEE (1995) Guide for Developing System Requirements Specifications. IEEE Std
P1233/D3, NY, USA.

g. Requirements Engineering Conference
http://www.requirements-engineering.org/

Main References
a. Jeremy Dick, Elizabeth Hull, Ken Jackson: Requirements Engineering, Springer-Verlag,

2004

b. Soren Lauesen: Software Requirements - Styles and Techniques, Addison Wesley, 2002

c. Ian K. Bray: An Introduction to Requirements Engineering, Addison Wesley, 2002

d. Karl E. Wiegers: Software Requirements, Microsoft Press, 2003

e. Gerald Kotonya, Ian Sommerville: Requirements Engineering – Processes and
Techniques, Wiley, 1998

f. Roger S. Pressman: Software Engineering – A Practitioner's Approach, McGraw-Hill,
2005

g. Tim Lethbridge, Robert Laganière: Object Oriented Software Engineering: Practical
Software Developement using UML and Java, 2nd edition, McGraw-Hill, 2005

h. Ivy F. Hooks, Kristin A. Farry: Customer-Centered Products – Creating Successful
Products Through Smart Requirements Management, Amacom, 2001

i. CHAOS Report, Standish Group

	RE Overview
	Slide 2
	Importance of RE (1)
	Importance of RE (2)
	(I) Introduction
	(II) Eliciting and Planning
	(III) Modeling & Analyzing
	(IV) Communicating & Agreeing
	(V) Realizing and Evolving
	Definition and Importance of Requirements
	What are “Requirements”?
	According to IEEE 830-1993
	What is “Requirements Engineering”?
	Requirements Engineering Activities
	About these RE Activities…
	General Problems with the Requirements Process
	Statistics from NIST Report
	Why Focus on Requirements ?
	View of the Software Engineering Institute (SEI)
	CHAOS Report (2004)1
	Progression since 1994
	Success Factors
	Problem Causes
	Evolution of Success Factors
	Managing Evolving Requirements
	Types of Requirements
	So Many “Requirements”… (1)
	Different types of non-functional requirements
	So Many “Requirements”… (2)
	So Many “Requirements”… (3)
	Functional Requirements
	Examples of Functional Requirements
	Non-Functional Requirements (NFR) (1)
	Non-Functional Requirements (NFR) (2)
	Various NFR Types
	Examples of Non-Functional Requirements
	Measurable Non-Functional Requirements
	Goals
	Example of Goal and NFR
	Application-Domain Requirements
	Examples of Application-Domain Requirements
	Problems Concerning Application-Domain Requirements
	Emergent Properties (when the system consists of several sub-systems)
	The Requirements Engineering Process
	Requirements within the software development process
	What is the right system to build ?
	RE activities and documents (Wiegers)
	Notes on previous slide
	RE process model
	Typical Layered Approach (V-shaped)
	Slide 51
	Difference between RE and design ?
	Harel’s “scenario-based programming” (1)
	Harel’s “scenario-based programming” (2)
	Requirements and Modeling go together
	Comments on previous slide
	Back to the Sandwich – consider different levels of details
	Benefits of Requirement Levels (Sandwich)
	RE Process and Related Activities
	Requirements Engineering
	The Problem Domain and the System/Software-to-be
	Problem Domain
	Problem Domain and System-to-be
	System interface and software interface
	Software objects representing real objects
	Main Requirements Activities
	Requirements Inception
	Requirements Elicitation (1)
	Requirements Elicitation (2)
	Requirements Analysis
	Requirements Specification
	Requirements Verification and Validation
	Requirements Management
	Requirements Documents
	Types of Requirements Documents
	The Requirements Analyst1
	For More Information
	Main References

