RE Overview

Based on presentations by G. Mussbacher, G.V Bochmann, N. Niu

I1lL NEED TO ENOW
YOUR REQUIREMENTS
BEFORE T START TO
DESIGN THE SOFTWARE.

n

E-mail: SCOTTADAMSSADLCOM

FIRST OF ALL,
WHAT ARE YOU
TRYING TO
ACCOMPLISH?

I™ TRYING TO
MAKE YOU DESIGH
MY SOFTWARE.

© 2006 Scoll Adams, knc. Dt by UFS, Ing.

I MEAN WUHAT ARE
YOU TRYING TO
ACCOMPLISH WITH
THE SOFTWARE?

I LWONT KENOW) WHAT
1 CAN ACCOMPLISH
UNTIL ¥OU TELL ME

WHAT THE SOFTWARE

CAN DO,

TRY TO GET THIS
CONCEPT THROUGH YOUR
THICK SKULL: THE
SOFTWARE CAM DO
WHATEVER 1 DESIGN
IT TO DO

@ Scott Adams, Inc./Dist. by UFS, Inc.

mﬂl‘m.mm

CAN YOU DESIGN
IT TO TELL YOU
MY REQUIREMENTS?

Importance of RE (1)
Mars Climate Orbiter

*|n 1999, the Mars Climate Orbiter disappears around Mars

e Cost: about $125M US

* Problem caused by a misunderstanding between a team in
Colorado and one in California

* One team used the metric system while the other used the
English system for a key function...

Importance of RE (2)

*x Problems

® Increased reliance on software
* e.g. cars, dishwashers, cell phones, web services, ...

® Software now the biggest cost element for mission critical systems
* e.g. Boeing 777

® Wastage on failed projects
* e.g. 1997 GAO report: $145 billion over 6 years on software that was never

_ delivered .
® High consequences of failure

* e.g. Ariane 5: $500 million payload
* e.g. Intel Pentium bug: $475 million

% Keé/ factors:
® Ce

rtification costs
* e.g. Boeing 777>40% of software budget spent on testing

® Re-work from defect removal
* e.g. Motorola: 60-80% of software budget (was) spent on re-work

® Changing Requirements
* e.g. California DMV system

13

(I) Introduction

x What are Requirements?
® Scope (for this course): “Software-intensive Systems”
® Separating the Problem from the Solution
® What Requirements Engineers do

x What is Engineering?
® Engineering as a profession
® Engineering projects
® Engineering lifecycles
® Engineering design

x What is a System?

® General systems theory

® Formal foundations of software systems

® Conceptual foundations of information systems
® Empirical foundations of human activity systems
® Observability of systems

(ll) Eliciting and Planning

* Elicitation Targets

® Stakeholders & User Classes
® System boundaries

® Goals

® Scenarios

x Elicitation Techniques

® Interviews, questionnaires, surveys, meetings

® Prototyping
® Ethnographic techniques
® Knowledge elicitation techniques

® Conversation Analysis
® Text Analysis

x The Feasibility Study

® Types of Feasibility
® Cost/benefit analysis

x Risk Analysis
® Identifying and managing risk

(lll) Modeling & Analyzing

x Basics of Modeling x Behavior

® Notations and their uses ® Activities and Interactions
® Formality and Expressiveness ® States and Transitions
@® Abstraction and Decomposition ® Concurrency
O ewpomts gement and x Quality Requirements
® Types of Analysis ® Taxonomles of FRs
® Performance
x Enterprises ® Usability
® Business rules and organizational ® Safety
structures ® Security
® Goals, tasks and responsibilities ® Reliability
® Soft Systems analysis ® Maintainability

* Information Structures

® Entities and Relationships
® Classes and Objects
® Domain Ontologies

(IV) Communicating & Agreeing

x Validation * Reviews and Inspections
® Refutable descriptions ® Effectiveness of Inspection
® Role of contracts and ® Conducting an Inspection
procurement ® Collaborative Requirements
® Role of organizational politics Workshops
x Documenting * Negotiation and
Reguirements . Prioritization _
operties of a good specification ® Representing argumentation and
® Documentation standards rationale oo
® Specification languages ® Computer-supported negotiation
® Making requirements testable ® Trade-off analysis

® Release planning

* Prototyping and
‘,\‘al"‘!ﬁo.l:vl\‘llal\'lv(e)a3l(J c!‘tlcﬁyping

® Operational prototyping
® Walkthroughs of operational
models

(V) Realizing and Evolving

*x Software Evolution

® Laws of evolution
® Release planning

® Product families

® Requirement Reuse

x Requirements and
Arﬁhltectu res

rchitectural Patterns and

Description Languages
® Mapping requirements to

architectures
® Architectural Robustness

% Manalgln g Change

® Baselines and change requests

® Configuration management and
version control

® Impact Analysis

x Traceability and

Rﬁ; re- an% S)st traceability

® Capturing Design Rationale
® Traceability techniques

* Managing Inconsistency

® On the inevitable intertwining of

inconsistency and change
® Learning from inconsistency

® Feature interaction
® Living with inconsistency

x IR and NLP in RE
x Security Requirements

Definition and Importance of
Requirements

What are “Requirements”?

* A requirement is:
* Capturing the purpose of a system

* An expression of the ideas to be embodied in the system or
application under development

* A statement about the proposed system that all stakeholders agree
must be made true in order for the customer’s problem to be
adequately solved

* Short and concise piece of information
* Says something about the system
* All the stakeholders have agreed that it is valid

* It helps solve the customer’s problem

According to IEEE 830-1993

* A requirement is defined as:

* A condition or capability needed by a user to solve a problem or
achieve an objective

* A condition or a capability that must be met or possessed by a system
... to satisfy a contract, standard, specification, or other formally
imposed document ...

What is “Requirements Engineering”?

°* Requirements Engineering (RE) is:

* The activity of development, elicitation, specification, analysis, and
management of the stakeholder requirements, which are to be met by
a new or evolving system

* RE is concerned with identifying the purpose of a software system...
and the contexts in which it will be used

* How/where the system will be used
* Big picture is important

* Captures real world needs of stakeholders affected by a software
system and expresses them as artifacts that can be implemented by a
computing system

* Bridge to design and construction
* How to communicate and negotiate?

* Is anything lost in the translation between different worlds?

Requirements Engineering Activities

Requirements Engineering

Requirements Requirements Requirements
Inception Development Management

Elicitation Analysis Specification Verification

Source: Larry Boldt, Trends in Requirements Engineering People-Process-Technology, Technology Builders, Inc., 2001

About these RE Activities...

* Inception

« Start the process (business need, market opportunity, great idea, ...), business
case, feasibility study, system scope, risks, etc.

* Requirements elicitation
* Requirements discovered through consultation with stakeholders
°* Requirements analysis and negotiation
* Requirements are analyzed and conflicts resolved through negotiation
* Requirements specification
* A precise requirements document is produced
°* Requirements validation
* The requirements document is checked for consistency and completeness
°* Requirements management

* Needs and contexts evolve, and so do requirements!

General Problems with the Requirements Process

* Lack of the right expertise (software engineers, domain
experts, etc.)

* Initial ideas are often incomplete, wildly optimistic, and firmly
entrenched in the minds of the people leading the acquisition
process

* Difficulty of using complex tools and diverse methods
associated with requirements gathering may negate the
anticipated benefits of a complete and detailed approach

Statistics from NIST Report

* NIST (National Institute of Standards and Technology) has
published a comprehensive (309 pages) and very interesting
report on project statistics and experiences based on data
from a large number of software projects’

* 70% of the defects are introduced in the specification phase
* 30% are introduced later in the technical solution process

* Only 5% of the specification inadequacies are corrected in the
specification phase

* 95% are detected later in the project or after delivery where the cost
for correction on average is 22 times higher compared to a correction
directly during the specification effort

* The NIST report concludes that extensive testing is essential, however
testing detects the dominating specification errors late in the process

[1] http://www.nist.gov/public_affairs/releases/n02-10.htm (May 2002)

Why Focus on Requirements ?

* Distribution of Defects * Distribution of Effort to Fix Defects
Code Cod
Requirements 7% Other 10 %eOther Design

56% o, Requirements
82%

Design
27%

Source: Martin & Leffinwell

View of the Software Engineering Institute (SEI)

* Improve software development with the CMM/CMMI model
for software development

* Capability Maturity Model (CMM)

* For software development, superseded by Capability Maturity Model
Integration (CMMI)

* SEI's vision is:
* The right software, delivered defect free, on time & on cost, every time

* “Right software” implies software that satisfies requirements for
functionality and qualities (e.g., performance, cost...) throughout its
lifetime

* “Defect free” software is achieved either through exhaustive testing
after coding or by developing the code right the first time

CHAOS Report (2004)"

RESOLUTION OF PROJECTS

This year’s results show that 29% of all projects succeeded (delivered on time, on
budget, with required features and functions); 53% are challenged (late, over budget
and/or with less than the required features and functions); and 18% have failed
(cancelled prior to completion or delivered and never used), as shown in Figure 2.0.

Challenged
93%

Succeeded
29%

Failed
18% Figure 2.0

[1] Standish Group Inc., 2004

Progression since 1994

1994

1996

1998 B Success
O

5000 Problem
M Failure

2004

2006

0 20 40 60 a0 100

Source: Standish Group Inc., 1994-2006

Success Factors

Source: Standish Group Inc., 1995

Problem Causes

Source: Standish Group Inc., 1995

Evolution of Success Factors

CHAQOS

1994 1996 1999 2000
User involvement User involvement User involvement EXEGUtIVSeurpnpa;n:gement

Executive management
support

Clear statement of
requirements

Proper planning

Realistic expectations

Small project milestones

Executive management
support

Clear statement of
requirements

Firm basic requirements

Competent staff

Executive management
support

Clear statement of
requirements

Experienced project manager

User involvement

Small project milestones

Small project milestones

Firm basic requirements

Competent staff

Experienced project manager

Competent staff

Experienced project manager

Clear business objectives

Minimized scope

Ownership

Clear vision and objectives

Hard-working, focused staff

Proper planning

Proper planning

Standard software
infrastructure

Firm basic requirements

Formal methodology

Ownership

Ownership

Reliable estimates

Other

Other

Other

Involvement/
Ownership

Source: Standish Group Inc., 2000

Managing Evolving Requirements

“Changing requirements is as certain as death and taxes”

Requirement tools: These seem to have the big-
gest impact on the success of a project. This may
seem strange since “Firm Basic Requirements” is
number six on the top ten list. However these tools,
it used as a platform for communications between
all the stakeholders, such as executive sponsors and
users, can provide enormous benefits. This tool
needs to be at the top of the shopping list for any
firm involved in developing software applications.

Source: http://standishgroup.com/sample_research/PDFpages/extreme chaos.pdf, 1999

Types of Requirements

So Many “Requirements”... (1)

* A goal is an objective or concern that guides the RE process.
It can be used to discover and evaluate functional and non-
functional requirements

* A goal is not yet a requirement...

* Note: All requirements must be verifiable (by some test,
iInspection, audit etc.)

* A functional requirement is a requirement defining functions
of the system under development

* Describes what the system should do

* A non-functional requirement is a requirement that is not
functional. This includes many different kinds of
requirements. — Therefore one often considers the following
sub-categories:

Different types of non-functional requirements

* Performance requirements, characterizing system properties
such as expected performance, capacity, reliability,
robustness, usability, etc.

* Design constraints (also called process requirements),
providing constraints on how the system should be designed
and built — related to development process, documentation,
programming language, maintainability, etc.

* Commercial constraints, such as development time frame
and costs.

So Many “Requirements”... (2)

* A user requirement is a desired goal or function that a user and other stakeholders
expect the system to achieve

* Does not necessarily become a system requirement

* Application domain requirement (sometimes called business rules) are
requirements derived from business practices within a given industrial sector, or in
a given company, or defined by government regulations or standards.

* May lead to system requirements. Can be functional or non-functional

* Problem domain requirements should be satisfied within the problem domain in
order to satisfy some of the goals

* System requirements are the requirements for the system to be built, as a whole
* A system is a collection of interrelated components working together towards
some common objective (may be software, mechanical, electrical and
electronic hardware and be operated by people)
* Systems Engineering is a multidisciplinary approach to systems development
— software is only a part (but often the problematic part)

So Many “Requirements”... (3)

* Important note: Software Requirements Engineering is a
special case of Requirements Engineering. Many topics
discussed in this course are quite general and apply to
requirements engineering, in general.

* In a system containing software, software requirements are
derived from the system requirements. The system then
consists of hardware and software, and the hardware (and
often the operating system and other existing software
modules) are part of the environment in which the software is
used.

Functional Requirements

* What inputs the system should accept

* What outputs the system should produce

* What data the system should store other systems might use
* What computations the system should perform

* The timing and synchronization of the above

* Depend on the type of software, expected users, and the type
of system where the software is used

* Functional user requirements may be high-level statements of
what the system should do, but functional system
requirements should describe the system services in detall

Examples of Functional Requirements

* The user shall be able to search either all of the initial set of
databases or select a subset from it.

* The system shall provide appropriate viewers for the user to
read documents in the document store.

* Every order shall be allocated a unique identifier
(ORDER ID) which the user shall be able to copy to the
account’s permanent storage area.

Note: not all requirements on this and following slides are high quality requirements but are typical requirements found too often in documents

Non-Functional Requirements (NFR) (1)

* Non-functional requirements are important
* If they are not met, the system is useless

* Non-functional requirements may be very difficult to state precisely
(especially at the beginning) and imprecise requirements may be
difficult to verify

* They are sometimes called quality requirements, quality of
service, or extra-functional requirements.

* Three main categories ':

* Performance requirements reflecting: usability, efficiency, reliability,

maintainability and reusability (note: also security requirements)
* Response time, throughput
* Resource usage
* Reliability, availability
* Recovery from failure
* Allowances for maintainability and enhancement

[1] Lethbridge a.nd'%l!ggr}%?e,%%§ 3’9&1&? yo?t@?élgl%ineering: Practical Software Development using UML and Java, 2005

Non-Functional Requirements (NFR) (2)

* Design constraints: Categories constraining the
environment and technology of the system.

* Platform (minimal requirements, OS, devices...)
* Technology to be used (language, DB, ...)

 Commercial constaints: Categories constraining the
project plan and development methods

* Development process (methodology) to be used
* Cost and delivery date

* Often put in contract or project plan instead

Various NFR Types

* Other ontologies also exist

Non-functional
requirements

Product Organizational External
requirements requirements requirements

Efficiency Reliability Portahility Interoperability Ethical
requirements requirements requirements requirements requirements
Usability Delivery Implem entation Standards Legislative
requirements requirements requirements requirements requirements

Performance Space Privacy Safety
requirements requirements requirements requirements

Source: Gerald Kotonya and Ian Sommerville, Requirements Engineering — Processes and Techniques, Wiley, 1998

Examples of Non-Functional Requirements

°* Product requirement

* It shall be possible for all necessary communication between the
APSE and the user to be expressed in the standard Ada character set.

* Process requirement

* The system development process and deliverable documents shall
conform to the process and deliverables defined in XYZCoSPSTANO9S.

* Security requirement

* The system shall not disclose any personal information about
customers apart from their name and reference number to the
operators of the system.

Measurable Non-Functional Requirements

Property

M easur e

Speed

Processed transactions/second
User/Event response time
Screen refresh time

Size

K Bytes
Number of RAM chips

Ease of use

Training time
Number of help frames

Reliability

Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness

Time to restart after failure

Percentage of events causing failure
Probability of data corruption on failure

Portability

Percentage of target dependent statements
Number of target systems

Source: Gerald Kotonya and Ian Sommerville, Requirements Engineering — Processes and Techniques, Wiley, 1998

Goals

e A Goal

* Conveys the intention or the objective of one or many stakeholders

* Can guide the discovery of verifiable non-functional requirements that
can be tested objectively

Example of Goal and NFR

* A system goal

* The system should be easy to use by experienced controllers and
should be organized in such a way that user errors are minimized.

* A verifiable usability requirement derived from this goal

* Experienced controllers shall be able to use all the system functions
after a total of three hours of training.

* The average number of errors made by experienced controllers shall
not exceed two per day.

* Assumption: An experienced controller has at least 2 years experience
with the old system (as stated by the stakeholder)

Application-Domain Requirements

* Derived from the application domain

* Describe system characteristics and features that reflect the
domain

* May be new functional requirements, constraints on existing
requirements, or define specific computations

* If domain requirements are not satisfied, the system may be
unworkable

Examples of Application-Domain Requirements

° Library system
* The system interface to the database must comply with standard
Z39.50.

* Because of copyright restrictions, some documents must be deleted
immediately on arrival. Depending on the user’s requirements, these
documents will first be printed either locally or printed to a network
printer and retrieved by the user.

* Train protection system

* The deceleration of the train shall be computed as:
D,. =D +D

train control gradient

where D .. IS 9.81ms? * compensated gradient / alpha and where
the values of 9.81ms? / alpha are known for different types of train.

Problems Concerning Application-Domain Requirements

* Understandability

* Requirements are expressed in the language of the
application domain

* This is often not understood by software engineers
developing the system

*Implicitness / Tacit knowledge

* Domain specialists understand the area so well that they
do not think of making the domain requirements explicit

* People are often unaware of the tacit knowledge they
possess and therefore cannot express it to others

Emergent Properties (when the system consists of several
sub-systems)

* Properties of the system as a whole

* Requirements which cannot be addressed by a single component, but
which depend for their satisfaction on how all the software
components interoperate

* Only emerge once all individual subsystems have been integrated
* Dependent on the system architecture

* Examples of emergent properties
* Reliability
Maintainability

Performance
Usability
Security

« Safety

The Requirements Engineering
Process

Requirements within the software development process

Requirements

Functional -g—
requirements
Non-functional
requirements %
verify Developer
Design
Functional @
design

{implementation \ .E
/ design

verify Developer

valdate

validate

Implementation

hardware

validate 7 \
Ao . e

Figure 1.7 Step-wise quality assurance

Owner User

What is the right system to build ?

] F

T

_.!
B
—
—
===
——
——

/]

How the customer explained it How the Project Leader How the Analyst designed it
understood it

How the Programmer wrote it

How the Business Consultant
described it

How the customer was billed

How the project was What operatiens installed
documented

How it was supported

What the customer really
needed

RE activities and documents (Wiegers)

Business
Requirements

Functional Nonfunctional

Vision and Scope DOCUMENT pm == == mm mpm o o o o o o o o o m — —— =

Ny

Requirements /)

- System _
\ Requirements /

Business

User Rules /

Quality
Attributes

— = Jse-Case Document = == — — TETRY T TN,
\ :

Functional \
Requirements /,

External
Interfaces

Software Requirements
Specification

Figure 1-1

Relationship of several types of requirements information.

Notes on previous slide

* There needs to be an arrow from User requirements to
System requirements. (The system has to be able to perform
certain use cases. The same use cases must be supported
by the software, therefore become Software requirements.)

* Business rules (including standards and regulations) are not
only non-functional, they also include functional aspects (as
shown by the arrows in the diagram).

RE process model
(suggested by Bray)

Again, this diagram shows

* RE activities (elicitation, analysis,
specification, HMI design)

* subsequent design activity (internal design)

* RE documents (elicitation notes, requirements,
specification, HMI specification)

Important point:

Distinction between
* Problem domain (described by requ. doc.)
* System (to be built) (described by spec. doc.)

Note: One has to distinguish between current
(problematic) version of the problem domain,
and the projected future version which includes
the system to be built.

PD details +
requirements

information
sources

questions,
prompts

understanding,
questions

PD details+
requirements

analysis

understanding

PD details +
requirements

Y

requirements
document

PD details +
requirements

Figure 2.1
Note: CRS - client requirements specification

pre-existing
system

CRS

‘raw’ requirements, PD details, etc.

elicited
information

suggested new
system behaviour

+ questions

elicitation
notes

client specified
behaviour + constraints

outline
behaviour

HMI
specification

specification

new system
behaviour

A

HMI specification
document

specification
document

new system
behaviour

HMI
specification

internal
design

Typical Layered Approach (V-shaped)

p.

Statement of need

validating the product

Operational use

Y

Stakeholder Acceptance
Requirements test
satisfies \ . /
verifying the system
I Y i
System System
Requirements test

Fil

satisfies \

|

qualifying the subsystems

/

Subsystem
Requirements

Subsystem
test

satisfies \quaﬁfyfng components /

(

Component
Requirements

Component
test

N

/

Source: Hull, Jackson, Dick: Requirements Engineering, 2004

Notes on previous slide

* This looks like the waterfall process model, but this diagram describes a quite

different situation.

* The layers correspond to step-wise refinement in terms of component
decomposition.

* For instance, the transition from the first to the second layer is the typical
RE process: one starts with the information from elicitation (shown in the
first layer), that is, the problematic domain model, and one ends up with a
proposal for a new system to be built (which is a component within the
projected new domain model).

* Important note: The process of identification of the system to be built
and defining its relationship with the new domain model (note that the
environment of the system to be built may also be re-organized within the
new domain model) is a kind of “design process” that requires creativity.

* The transitions to the lower layers in the diagram are similar processes
(you may call them RE at a more detailed level or design processes)

Difference between RE and design ?

°* Much research towards automated SE

* Compilers automatically generate machine code (correct in respect to
program source code)

* CASE tools automatically generate implementations of UML State
Machine models (correct in respect to the given model)

* CASE tools automatically generate state machine models from a set
of use case scenarios

* E.g. PhD work of Dr. Someé

* Tool for Live Sequence Charts by Dave - described in the book "Come,
Let's Play: Scenario-Based Programming Using LSCs and the Play-
Engine”

Harel’s “scenario-based programming” (1)

* Scenarios (use cases) are played into the tool, and may be
played out for testing the recorded behavior model.

code ;
gener'ﬂh il

! model-code
/ associativity
- -— - f'.' 'E!&ﬁ:ﬂg
f use cases) ;
ey oy = 1‘! o -

LSCs or temporal synthesis
logic or timing object model dingrams &
diagrams statecharts

Fig. 2.4. Conventional svstem development

Harel’s “scenario-based programming” (2)

code
{ basic structure }
S

generﬂﬁ-n

model-code
associativity

-y,

LSCs or temporal synthesis
logic or timing
diagrams T ".-ftpiu*f-ouf
A .
Main idea: Ll i '1
eliminate the design and implemention (bf.ehm:pg}
activities by providing efficient execution of MR

behavior directly defined by the requirements.
eg., LSCs

Fig. 2.7. A futuristic system development ovele

Requirements and Modeling go together

* The systems engineering sandwich!

Source: http://www.telelogic.com/download/paper/SystemsEngineeringSandwich.pdf

Comments on previous slide

Why combine RE with modeling ?

° For analysis — models help to understand the
problem domain

* For documentation — models can be used for
describing requirements (instead of solely using
natural language)

Back to the Sandwich — consider different levels of details

Requirements management

Statement
of need

Stakeholder
requirements

System
requirements

Architectural
design

Modeling and analysis

e.g Goal / Usage
modeling

e.g. Functional
modeling

e.g. Performance
modeling

Source: Hull, Jackson, Dick: Requirements Engineering, 2004

Benefits of Requirement Levels (Sandwich)

Principle of step-wise refinement:
* Focus the attention on the big picture before addressing the

details

* Reduce the number of changes by specifying at a lower level
the requirements that will not affect the requirements at a

higher level

* Promote the division of work

This diagram [Lamsweerde] is
another way to present this kind of

(spiral) process

Alternative proposals

A

Domain understanding

Evaluation

and elicitation //" \\and negotiation
= 0/‘ [e
Start

Consolidated \— //] Agreed
requirements = requirements

Quality
assurance

v

Specification
and documentation

Documented requirements

Figure 1.6 The requirements engineering process

RE Process and Related Activities

Why? Identify Business Needs and Goals
| | 1

What? Derive User & Functional Requirements

How?

—

TIME

Who? :
When? Project Management Process
If-Then Risk Management Process

SLLERLYE Quality Management Process

LYCYAEl Component & Configuration Management Process

Requirements Engineering

* Requirements engineering is a set of activities but not
necessarily a separate phase

TRADITIONAL

EFFORT

SYSTEM LIFETIME

Requirements
'g / - CURRENT WISDOM
SYSTEM LIFETIME
Business Requirements MANAGING REQUIREMENTS

System Requirements

EFFORT

SYSTEM LIFETIME

Source: Donald C. Gause, Risk Focused Requirements Management, Tutorial at RE’09, September 2009

The Problem Domain and the
System/Software-to-be

Problem Domain

* The problem domain is the context for requirements
* Part of the world within which the problem exists
* Needs to be understood for effective requirements engineering

* Domain model
* Set of properties assumed / believed to be true about the environment
* Properties relevant to the problem

* Problem domain requirements should hold in the proposed new
version of the domain.

* Define the system requirements such that:

* If the system that is built satisfies the system requirements and the
environment satisfies the properties assumed for the environment,
then the problem domain requirements will be satisfied.

* In simple words: The system will behave as required if the
assumptions hold.

Problem Domain and System-to-be

A domain model should

be reusable
(Michael Jackson, 1995)

problem
domain

better: problem domain (as-is

,,,,,,,,,, and to-be)
analysis specification design | v
& »
2o System-as-is System-to-be
foi oy / - ..ti'On > ,.""—'l;r'obler.r;s.,‘m"-,
_problem solu /" opportunities, WHY?
domain system *.. domain knowledge -
Services,
constraints, WHAT?
. . . e, assumptions
Diagram also showing activities [Bray] P
_ Software-to-be Devices Existing software WHO?
interface <
—
Environment
) Figure 1.2 Three dimensions of requirements engineering
solution

system Diagram showing existing and future situation
problem domain [Lamsweerde]

Problem domain with system-to-be [Bray]

System interface and software interface

Input devices (e.g. sensors)

Monitored variables Input data Generic architecture of a control system including
rainSpesd measuredSpess embedded software [Lamsweerde]

- kkEn'vironment : Software-t&bei" .

Controlled variables Output results
doorsClosed doorsState

Output devices (e.g. actuators)

Figure 1.4 Four-variable model

* System and software interface for a control system with
embedded software:

* Software interface: through input and output variables, for instance

measuredSpeed (is read by program) and doorState (is set by
program)

* The system includes the software and 1/O devices. Therefore the

interface of the system with the environment are the monitored and

controlled variables of the real world, for instance trainSpeed and
doorsClosed.

Software objects representing real objects

* The software (model) normally contains objects that represent objects in
the system environment (e.g. the doorState variable represents the state

of the doors in the train)

* Whether they represent the situation in the environment correctly, is
another question (for the doorState variable, this may depend on the
correct functioning of the door state sensing device).

better: Problem domain .
requirements (if one
considers the train to be
the environment of the
control system)

4 System Software

requirements requirements

TrainMoving — DoorsClosed . .~ MmeasuredSpeed # 0 — doorsState = ‘closed’

DoorsClosed ~-~._,_. - .- doorsState = ‘closed’

TrainMoving------- ‘- --- measuredSpeed # 0

.-
-
g

TrainAtStation

-,
-,
-
v -

errorCode = 013

Environmental Shared Software
phenomena phenomena phenomena

Figure 1.3 Phenomena and statements about the environment and the software-to-be

[Lamsweerde]

Main Requirements Activities

Requirements Inception

* Start the process
* Identification of business need
* New market opportunity
* Great idea
° Involves
* Building a business case
* Preliminary feasibility assessment
* Preliminary definition of project scope
* Stakeholders
* Business managers, marketing people, product managers...
* Examples of techniques
* Brainstorming, Joint Application Development (JAD) meeting...

Requirements Elicitation (1)

* Gathering of information

* About problem domain

* About problems requiring a solution

* About constraints related to the problem or solution
* Questions that need to be answered

* What is the system?

* What are the goals of the system?

How is the work done now?

What are the problems?

How will the system solve these problems?

How will the system be used on a day-to-day basis?

* Will performance issues or other constraints affect the way the
solution is approached?

Requirements Elicitation (2)

* Overview of different sources
* Customers and other stakeholders
* Existing systems
* Documentation
* Domain experts
* More ...
* Overview of different techniques

* Brainstorming

Interviews

Task observations

Use cases / scenarios

Prototyping
* More ...

Requirements Analysis

* The process of studying and analyzing the needs of
stakeholders (e.g., customer, user) in view of coming up with
a “solution”. Such a solution may involve:

* A new organization of the workflow in the company.

* A new system (system-to-be, also called solution domain) which will
be used in the existing or modified workflow.

* A new software to be developed which is to run within the existing
computer system or involving modified and/or additional hardware.

* Objectives
* Detect and resolve conflicts between requirements (e.g., through
negotiation)
* Discover the boundaries of the system / software and how it must
interact with its environment

* Elaborate system requirements to derive software requirements

Requirements Specification

* The invention and definition of the behavior of a new system

(solution domain) such that it will produce the required effects
In the problem domain

* Requirements Analysis has defined the problem domain and
the required effects

* Specification Document

* A document that clearly and precisely describes, each of the essential
requirements (functions, performance, design constraints, and quality
attributes) of the software and the external interfaces

* Each requirement being defined in such a way that its achievement is
capable of being objectively verified by a prescribed method (e.g.,
inspection, demonstration, analysis, or test)

* Different guidelines and templates exist for requirements specification

Requirements Verification and Validation

* Validation and verification
* Both help ensure delivery of what the client wants
* Need to be performed at every stage during the process

* Validation: checks that the right product is being built (refers back to stakeholders
— main concern during RE)

* Verification: checks that the product is being built right

* During design phase: refers back to the specification of the system or software
requirements

* During RE: mainly checking consistency between different requirements,
detecting conflicts

* Techniques used during RE
* Simple checks
* Formal Review
* Logical analysis
* Prototypes and enactments
* Design of functional tests
* Development of user manual

Requirements Management

* Necessary to cope with changes to requirements

* Requirements change is caused by:
* Business process changes
* Technology changes
* Better understanding of the problem

* Traceability is very important for effective requirements

management
Elicitation

notes \G |
oas Design

rationale 7.7 XXXX
document
.. because

1.2
....due to
requirement 1.2

Requirements
document

Requirements Documents

* Vision and Scope Document

* Elicitation notes: (Raw) requirements obtained through elicitation; often
unstructured, incomplete, and inconsistent

* (Problem domain) Requirements document
* System requirements document
* Software requirements document

* The software is normally part of a system that includes hardware and software.
Therefore the software requirements are normally part of the system requirements.

* Note: System and Software requirements may exist in several versions
with different levels of details, such as

* User (customer) requirements: Statements in natural language plus diagrams of the
services the system provides and its operational constraints; written for customers

Detailed requirements: A structured document setting out detailed descriptions of the
system services; often used as a contract between client and contractor. This
description can serve as a basis for a design or implementation; used by developers.

Types of Requirements Documents

Two extremes:

* An informal outline of the requirements using a few
paragraphs or simple diagrams

* This is called the requirements definition

xxxxxxx

xxxxxxxxxxx

* A long list of specifications that contain .

xxxxxxx

thousands of pages of intricate s

requirements describing the

system in detail - oo
* This is called the requirements S onlSpaticaion

specification .

* Requirements documents for

large systems are normally
arranged in a hierarchy

The Requirements Analyst’

* Plays an essential communication role
* Talks to users: application domain
* Talks to developers: technical domain

* Translates user requirements into functional requirements and quality
goals

* Needs many capabilities
* Interviewing and listening skills
* Facilitation and interpersonal skills
* Writing and modeling skills
* Organizational ability

* RE is more than just modeling...
This Is a social activity!

[1] Karl Wiegers, In Search of Excellent Requirements

For More Information

d.

B. A. Nuseibeh and S. M. Easterbrook, Requirements Engineering: A Roadmap. In A. C.
W. Finkelstein (ed) The Future of Software Engineering, ACM Press, 2000
http://www.cs.toronto.edu/~sme/papers/2000/ICSE2000.pdf

Simson Garfinkel, History's Worst Software Bugs, Wired News, 2005
http://www.wired.com/news/technology/bugs/0,2924.69355,00.html

INCOSE Requirements Working Group
http://www.incose.org/practice/techactivities/wg/rgmts/

Tools Survey: Requirements Management (RM) Tools
http://www.incose.org/productspubs/products/rmsurvey.aspx

http://www.volere.co.uk/tools.htm

IEEE (1993) Recommended Practice for Software Requirements Specifications. IEEE Std
830-1993, NY, USA.

IEEE (1995) Guide for Developing System Requirements Specifications. IEEE Std
P1233/D3, NY, USA.

Requirements Engineering Conference

http://www.requirements-engineering.org/

Main References

d.

® oo T

Jeremy Dick, Elizabeth Hull, Ken Jackson: Requirements Engineering, Springer-Verlag,
2004

Soren Lauesen: Software Requirements - Styles and Techniques, Addison Wesley, 2002
lan K. Bray: An Introduction to Requirements Engineering, Addison Wesley, 2002
Karl E. Wiegers: Software Requirements, Microsoft Press, 2003

Gerald Kotonya, lan Sommerville: Requirements Engineering — Processes and
Techniques, Wiley, 1998

Roger S. Pressman: Software Engineering — A Practitioner's Approach, McGraw-Hill,
2005

Tim Lethbridge, Robert Laganiére: Object Oriented Software Engineering: Practical
Software Developement using UML and Java, 2nd edition, McGraw-Hill, 2005

lvy F. Hooks, Kristin A. Farry: Customer-Centered Products — Creating Successful
Products Through Smart Requirements Management, Amacom, 2001

CHAQOS Report, Standish Group

	RE Overview
	Slide 2
	Importance of RE (1)
	Importance of RE (2)
	(I) Introduction
	(II) Eliciting and Planning
	(III) Modeling & Analyzing
	(IV) Communicating & Agreeing
	(V) Realizing and Evolving
	Definition and Importance of Requirements
	What are “Requirements”?
	According to IEEE 830-1993
	What is “Requirements Engineering”?
	Requirements Engineering Activities
	About these RE Activities…
	General Problems with the Requirements Process
	Statistics from NIST Report
	Why Focus on Requirements ?
	View of the Software Engineering Institute (SEI)
	CHAOS Report (2004)1
	Progression since 1994
	Success Factors
	Problem Causes
	Evolution of Success Factors
	Managing Evolving Requirements
	Types of Requirements
	So Many “Requirements”… (1)
	Different types of non-functional requirements
	So Many “Requirements”… (2)
	So Many “Requirements”… (3)
	Functional Requirements
	Examples of Functional Requirements
	Non-Functional Requirements (NFR) (1)
	Non-Functional Requirements (NFR) (2)
	Various NFR Types
	Examples of Non-Functional Requirements
	Measurable Non-Functional Requirements
	Goals
	Example of Goal and NFR
	Application-Domain Requirements
	Examples of Application-Domain Requirements
	Problems Concerning Application-Domain Requirements
	Emergent Properties (when the system consists of several sub-systems)
	The Requirements Engineering Process
	Requirements within the software development process
	What is the right system to build ?
	RE activities and documents (Wiegers)
	Notes on previous slide
	RE process model
	Typical Layered Approach (V-shaped)
	Slide 51
	Difference between RE and design ?
	Harel’s “scenario-based programming” (1)
	Harel’s “scenario-based programming” (2)
	Requirements and Modeling go together
	Comments on previous slide
	Back to the Sandwich – consider different levels of details
	Benefits of Requirement Levels (Sandwich)
	RE Process and Related Activities
	Requirements Engineering
	The Problem Domain and the System/Software-to-be
	Problem Domain
	Problem Domain and System-to-be
	System interface and software interface
	Software objects representing real objects
	Main Requirements Activities
	Requirements Inception
	Requirements Elicitation (1)
	Requirements Elicitation (2)
	Requirements Analysis
	Requirements Specification
	Requirements Verification and Validation
	Requirements Management
	Requirements Documents
	Types of Requirements Documents
	The Requirements Analyst1
	For More Information
	Main References

