
 
Product-Line Requirements Specification (PRS): an Approach and Case Study 

 
Stuart R. Faulk 

University of Oregon 
faulk@cs.uoregon.edu 

 
 

Abstract 
 

   Software product-line engineering can provide 
significant gains in quality and productivity through 
systematic reuse of software’s conceptual structures. For 
embedded safety- or mission-critical systems, much of the 
development effort goes into understanding, specifying, 
and validating the requirements. If developers can re-use 
rather than re-do requirements for families of similar 
systems, we can improve productivity while significantly 
reducing the opportunity for requirements errors. 

   This paper describes a systematic approach to 
developing a Product-line Requirements Specification 
(PRS) for such systems. The PRS explicitly represents the 
family’s common requirements as well as the allowed 
variations that distinguish family members. When 
completed, the PRS definition also supports generation of 
well-formed Software Requirements Specifications (SRS) 
for members of the product line. We describe a process 
for developing a PRS starting from an analysis of a 
program family’s commonalities and variabilities. The 
approach is illustrated with examples from a case study of 
a real family of systems, the Rockwell Collins Commercial 
Flight Control System product-line. 
 
1. Introduction 
 

Much of the effort of building complex software 
systems goes into understanding, specifying, and 
validating system requirements. For mission- and safety-
critical systems, requirements errors represent a major 
source of development problems.  

Prior work in product-line engineering has shown that 
we can substantially increase productivity while 
decreasing errors by systematically re-using (rather than 
re-creating) the work products for families of systems 
where system requirements are sufficiently similar (e.g., 
[1] and [3]). Embedded software for commercial product 
lines like printers, mobile phones, or flight-control 
systems are typically families in this sense. 

To date, much of the product-line engineering research 
has focused on the reuse of work products relating to the 
software’s architecture, detail design, and code. Our work 
focuses on the systematic reuse of work products relating 
to a software product-line’s requirements.  

Of particular interest is the systematic reuse of 
requirements for embedded, mission- and safety-critical 
systems. The high up-front costs incurred by their rigorous 
verification and validation provides an opportunity for 
substantial time and cost savings where requirements can 
be reused. 

Our technical approach to requirements specification 
leverages prior work in “practical formal methods.” Since 
the domain of interest includes industrial, safety-critical 
systems we seek to develop specifications for which 
properties like completeness, consistency and safety can 
be demonstrated, in the context of methods that are 
practical for real-world application [8]. To validate the 
approach as well as assess its practicality, we have applied 
it to portions of a real family of safety-critical systems, the 
Rockwell Collins Commercial Flight Control System 
(FCS) product-line [10].  

Our long-term goal is to develop a systematic approach 
to specifying requirements for embedded-system product 
lines, then rapidly generating demonstrably correct 
requirements specifications for applications in the product 
line. This paper outlines one approach to this objective 
and illustrates it with examples from the FCS family.  

To meet these long-term objectives, we have 
constrained the scope of our approach. By exploiting 
existing requirements methods and tools, ([7], [8]) we 
limit the scope to embedded applications and to the kinds 
of requirements directly addressed by the underlying 
models. Further, we have not attempted to provide general 
mechanisms for capturing variability; rather, we have 
addressed such mechanisms to the extent needed to 
capture the variability present in the real system. 
 
2. Product-line Requirements Objectives 

 
Our approach focuses on methods and techniques for 

creating a new kind of work product we call the Product-
line Requirements Specification (PRS). Prior work 
suggests that two kinds of requirements documents are 
potentially useful in product-line engineering: a Product-
Line Requirements Specification (PRS) and a Software 
Requirements Specification (SRS). Where an SRS 
describes the requirements for a single family member, the 
PRS specifies the requirements for a program family [12]. 

Proceedings of the Fifth International Symposium on Requirements Engineering (RE’01) 
1090-705X/01 $10.00 © 2001 IEEE 



In a product-line development process, the PRS would 
be created in the domain engineering phase – i.e., the 
phase that scopes the product-line and develops the means 
to rapidly produce product-line members. As such, it 
serves two related but distinct purposes. First, it records 
decisions about the product line as a whole including 
which requirements are common to all members of the 
product line and which requirements may vary from one 
family member to the next. Second, it supports the 
application engineering phase (i.e., producing members 
of the product line) by providing the basis for rapidly 
creating the SRS for a given family member (Figure 1). 

While it is possible to create a software product line 
without developing a distinct specification of 
requirements (e.g., where the domain is well-understood 
by all the stakeholders), producing explicit specifications 
of both the family, and each family member, offers 
potential advantages: 
• The PRS provides a single document characterizing 

the family as a whole for domain engineers and other 
stakeholders interested in the product line. 

• The PRS provides a place to record decisions that 
pertain to the family but not to any particular member 
of the family - e.g., how the family is likely to evolve 
over time or the order in which the ability to generate 
different family members should be implemented. 

• The SRS (derived from the PRS) for a family member 
provides a basis for requirements validation and 
verification. 

To address the needs particular to a PRS as well as 
those for any derived SRS, we identified the following 
PRS objectives: 
1. Specify commonalities: The PRS should specify all of 

the requirements common to members of the family. 
2. Specify variabilities: The PRS should specify which 

requirements may vary from one family member to 
the next, the range of variation, and any constraints 
among variations or combinations of variations. 

3. Support requirements reuse: To support systematic 
reuse and rapid product development, the PRS should 
contain the information necessary to generate the SRS 
for individual members of the family. 

4. Support analysis: Requirements should be analyzable 
for key properties like consistency, completeness, or 
safety. It should be possible to systematically analyze 
the SRS, PRS or both for such properties. 

Our work on product-line methods has shown that we 
can mitigate the risk of investing in product-lines by 
applying a systematic process (e.g., [1]). Thus, a goal of 
the work is to create and validate a PRS development 
process that can be applied in the context of an overall 
product-line development process (e.g., FAST [14]). 

3. Related Work 

This research integrates several previous lines of work: 
our work on software engineering processes for 
developing programs as families (Synthesis [4], [13]), our 
work on practical formal methods for embedded system 
requirements (SCR [8]), and our work on object-oriented 
requirements specification methods (CoRE [6],[7]).  

Previous work on Synthesis and related technologies 
[14] created processes and methods supporting systematic 
reuse. We use the term systematic reuse to denote a 
software development process that plans for, and 
systematically develops, reusable work products including 
documentation, design and code. In particular, we exploit 
Commonality Analysis ([5], [14]) as a systematic process 
for characterizing a product line in terms of its 
commonalities and variabilities. 

The SCR requirements research and related work has 
shown the effectiveness of “practical formal methods” for 
specifying, verifying, and validating embedded system 
requirements. On the practical side, the SCR method 
focuses on ease of use and producing specifications that 
are easy to understand, develop, and maintain. SCR’s 
underlying formal model allows specifications to be 
(automatically) analyzed for properties like completeness 
and consistency as well a providing support for analyzing 
application dependent properties like safety.  

The CoRE method [7] provides the capability to 
modularize SCR-style specifications – i.e., to divide the 
specification into relatively independent parts and control 
the relationships between the parts. CoRE’s class structure 
provides mechanisms to limit dependencies and support 
properties like separation-of-concerns or ease-of-change 
in a requirements specification. In particular, CoRE 
provides facilities for modularization and encapsulation of 
requirements without unnecessarily constraining the 
design [6]. We exploit these capabilities to structure a 
PRS such that parts of the specification describing 
variable requirements can be changed without impacting 
other parts of the document. 

 
PRS 

Decisions on
Variations 

SRS1 SRS2 SRSn 

Generate 

Figure 1: Member SRS derived from PRS 

Proceedings of the Fifth International Symposium on Requirements Engineering (RE’01) 
1090-705X/01 $10.00 © 2001 IEEE 



Recent work has begun to address the development of 
product-line requirements including [9] and parts of [2]. 
However, these approaches rely on informal specification 
methods and do not address our concerns for formally 
analyzable specifications. 
 
4. Approach 
 

We assume that a PRS is produced as part of a 
product-line development process following commonality 
analysis. The commonality analysis process characterizes 
the product family by identifying the characteristics family 
members share (commonalities) and the ways in which 
family members may differ (variabilities). Output of the 
commonality analysis is a written specification of the 
product line’s terminology, commonalities, variabilities, 
and dependencies we call the Domain Definition. 

Our goal is to proceed, as systematically as possible, 
from commonality analysis to a well-defined PRS. The 
(idealized) process is as follows: 
1. Organize the Domain Definition:  organize the 

specification to group together requirements that vary 
together and separate those varying independently. 

2. Create a Decision Model: create a model of the 
decisions that must be made to characterize a family 
member and any constraints on their relative order. 

3. Encapsulate variations in CoRE: construct a CoRE-
style requirements specification applying the 
information-hiding principle to localize and 
encapsulate related variations. 

4. Define variations: specify how requirements vary as a 
function of the values of the variabilities. 

5. Provide Traceability: trace the variabilities to 
conditional inclusion statements in the PRS. 

Output of the process is a PRS in the form of an 
annotated CoRE model.  Briefly, CoRE provides a set of 
mechanisms for structuring the mathematical relations of 
Parnas’ Four-Variable model [11] as a hierarchy of object 
classes. Applying the CoRE structuring mechanisms to the 
SCR version of the Four-Variable model helps address 
our long-term goal of applying the SCR analysis and 
property proving tools [8]. 

Briefly, SCR specifies the behavioral requirements of a 
system as a set of relations between the quantities 
monitored by the system and the quantities controlled by 
the system. Each of the monitored and controlled 
quantities (e.g. pressure) is represented by a variable. The 
required value of each controlled quantity, over all 
possible system states, is then given in terms of the 
possible values of the monitored quantities. Intermediate 
variables are introduced to simplify writing the relations. 
These include conditions (predicates over system state), 
events (predicates over successive states), terms 
(expressions over one or more variables), and modes 
(state machines capturing history).  

Expressed in terms of SCR’s formal model, a CoRE 
class structure induces a partition (or set of partitions) 
over the directly-depends-on relation. In its simplest form 
(the one relevant here), the SCR variable A (term, mode, 
etc.) directly depends on SCR variable B if B appears in 
the expression used to define the required value of A.   

 
A simple CoRE class structure is illustrated in Figure 

2. Here the SCR model is partitioned into four classes. 
Class2 defines Term1 and Term2 using the Monitored 
Quantity A. Mode machine M is defined in Class2; its 
definition depends on Term1 and Term2. Controlled 
Quantity X depends on mode machine M as does Y. In a 
more complex CoRE specification, each class may be 
further partitioned into child classes.  

CoRE’s class structuring mechanism allows one to 
apply information hiding and abstraction to an SCR-style 
specification. Originally, these capabilities were 
introduced to control the effects of requirements changes 
(i.e., by encapsulating likely changes). In the current 
work, we use the class structure to localize and 
encapsulate the effects of requirements variations. The 
general strategy is to group together parts of the 
requirements that vary together and encapsulate them in a 
class.  Conversely, the class interface is used to abstract 
from local variability. 

This encapsulation and abstraction serves two 
purposes. First, it helps put the requirements that vary 
together in one place so they can be specified, understood 
or changed relatively independently.  Second, it supports 
developing an overall class structure that is common (does 
not change) to all the members of the product line. While 
it is not, in general possible to constrain the effects of 
every variation to one place in the specification, these 
organizing principles help limit the effects of variations on 
the structure of the specification making it easier to read, 
analyze, and derive instances from. 

Steps of our process preceding development of the 
class structure help organize the product-line’s 
requirements so it is clear which requirements vary 

 

Class2 

Class2 

Class3 

Monitored 
Quantity A 

Term1 

Term2 

Mode M Controlled 
Quantity Y 

Class4 

Controlled 
Quantity X 

Mode M 

 
Figure 2:  a simple CoRE Class Structure 

Proceedings of the Fifth International Symposium on Requirements Engineering (RE’01) 
1090-705X/01 $10.00 © 2001 IEEE 



together and how choices among the variabilities depend 
on one another. We organize the Domain Definition to 
bring together related definitions of commonalities and 
variabilities. In particular, requirements that change 
depending on the same choice of variability are brought 
together in one part of the Domain Definition and 
organized according to their inter-dependencies. This 
helps impose structure on the output of the commonality 
analysis process and helps clarify any dependencies 
among the variabilities. 

We then create a Decision Model for the product-line. 
The decision model captures the decisions an application 
engineer must make to define a member of the family, and 
the order in which he or she must make them. As such, it 
captures the dependencies among variations. For example, 
where one must make a choice about the value of 
variability B only if a particular value of variability A is 
chosen. The decision model provides much of the 
information needed to describe how to derive the SRS for 
a family member from the PRS for the family. 

We annotate the PRS with embedded meta-text to 
specify how the requirements structure varies depending 
on the assignment of specific values to the variabilities. 
Wherever the choice of requirements depends on the 
value of a variability, meta-text is added to specify exactly 
how the requirements change depending on the value of 
the variability – for example, whether a particular table is 
included or a particular class. In developing the meta-text 
constructs, we have not attempted to solve the general 
problem of variations and dependencies. Rather, we have 
added constructs only as needed to address variability in 
our case study. 
 
5. The Collins FCS Example 

 
We have experimentally validated the effectiveness of 

our approach by applying it to a portion of a commercial 
avionics product line: the Collins Flight Control System 
(FCS) family produced by Rockwell Collins Avionics. 
This work has concentrated on a part of the flight 
guidance system, the mode control logic. An aircraft’s 
flight guidance system compares measured aircraft state 
(position, speed, and attitude) with the desired state. The 
system generates commands to alter the aircraft’s roll and 
pitch to minimize the difference between the measured 
and desire state. When engaged, the autopilot translates 
these commands to movements in the aircraft’s control 
surfaces. Different flight-control laws may be used to 
determine how commands are generated depending on 
pilot choices and aircraft conditions. These relationships 
are implemented in the system’s mode logic. The logic for 
determining the current mode is a significant part of the 
system’s real-time control logic.  

In related efforts, Collins Commercial Avionics 
developed a CoRE/SCR style requirements specification 

of the mode control logic for a General Aviation class 
aircraft [10] and a Domain Definition for the FCS family. 
The Collins’ specifications provided input for defining the 
FCS product-line requirements. 

The FCS product line includes the flight control 
software for a number of civilian light aircraft using 
Collins avionics.  Our case study has created a PRS for a 
subset of the FCS-family mode control logic. While it 
represents only a portion of the complete FCS system, the 
requirements are some of the most complex in these 
systems. FCS family members also share the 
characteristics of being embedded, real-time, and safety-
critical. In the following sections, we illustrate our PRS 
definition process using examples from the Collins FCS. 
 
6. Organizing the Domain Definition 

 
A well-organized Domain Definition provides the basis 

for creating the decision model and class structure of a 
PRS. Since our goal for the class structure is to localize 
and encapsulate requirements that vary together, we first 
structure the information in the Domain Definition so such 
requirements can be found in one part of the document. 
We then order the variabilities so that (where possible), 
requirements that depend on the value selected for some 
variability V are subordinated in the text. We apply the 
following organizational heuristics. 
1. Most common first: requirements that hold for all 

members of the family or vary for all members are 
placed first and grouped according to subject (e.g. 
requirements for the roll mode are grouped together).  

2. Subordinate dependencies: where inclusion of one 
requirement depends on another, that requirement is 
subordinated in the Domain Definition. Organizing 
the model in this way supports readability, and 
subsequent construction of both the decision tree and 
the class structure. 

3. Preserve traceability: we assign unique identifiers to 
the commonalities and variabilities reflecting their 
type and place in the Domain Definition. This 
supports traceability in subsequent development 
steps.  

Example: This organization of the domain definition is 
illustrated in Figure 3. Each numbered line represents a 
commonality (denoted by a “C”) or variability (denoted 
by a “V”). The numbers provide traceability. Applying 
“most common first,” commonalities of a given 
requirements type that hold for all members of the family 
are listed first followed by the related variabilities. Where 
commonalities or variabilities depend on which value of a 
variability is chosen, these are subordinated and indented. 
For example, the variability:  

4.7.1.2 V 5.1.3 There may or may not be a roll knob to 
adjust the roll reference 

Proceedings of the Fifth International Symposium on Requirements Engineering (RE’01) 
1090-705X/01 $10.00 © 2001 IEEE 



becomes a choice only if the FCS family member has a 
Roll Mode, hence it is subordinate to the variability: 

4.7.2.V 5.1 An FCS may or may not have a Roll Mode.  
This organization assumes rather simple, hierarchical 

dependencies between family requirements (or simple 
conjunctions, disjunctions or negations over such 
requirements). Clearly, other dependency relationships are 
possible such as multiple dependencies or those that 
cannot be partially ordered.  These would require a more 
robust representation of the dependency relationships 
(e.g., sets of tables).  However, in the FCS case study we 
found that where more complex dependencies appeared to 
occur, the definition could usually be decomposed and 
rewritten in hierarchical form. Thus, for the FCS case 
study this simple approach proved sufficient. 
 
7. Creating the Decision Model 

We represent the set of choices that distinguish the 
members of a family using a decision model. In general, a 
decision model specifies the choices among possible 
variations must be made to distinguish a family member 
and any constraints on the ordering of those choices.  

For the FCS case study, a simple tabular representation 
of the underlying decision tree captures the dependencies 
between requirements by its form while remaining easy to 
read or write. The decision table is derived from our 
structured domain definition as follows: 
• For each variability, we create a variable ranging over 

the possible choices. 
• Where the inclusion or exclusion of requirements 

depends on a variable’s value, these requirements are 
subordinated in the table. 

• For each decision, the table gives a name, a brief 
description of the decision, the range of possible 
values for the decision, and the traceability number. 

Figure 4 shows a piece of the FCS mode logic decision 
table corresponding to the subsection of the Domain 
Definition given in Figure 3. For example, the variability: 

4.7.2.V 5.1 An FCS may or may not have a Roll Mode. 
is represented in the decision table as follows: 
• The variable “RollMode” is assigned to represent the 

variability (decision)  
• A description of the necessary decision is provided 

(“Does the FCS have a Roll Mode?”) 
• Possible values of the decision are specified (“yes” 

and “no” for RollMode) 
• The corresponding traceability number is given 

In constructing the table, we carried over the 
subordination scheme of the Domain Definition. This 
helps one to determine, from the table’s form, which 
decisions depend on others in the table. While this simple 
translation will not serve for all possible relations between 
variations, it proved adequate to the needs of the FCS 
family and illustrates one approach to preserving 
relationships and traceability between the work products. 

4.7.2 Lateral Modes 
4.7.2 C 1 Every FCS has one or more lateral modes exactly one of which must be active at any time. 
4.7.2.C 2 Every FCS has a default (basic) lateral mode 
4.7.2 V 3 The basic lateral mode varies from aircraft to aircraft. 
4.7.2 V 4 The FCS may or may not select the basic lateral mode upon transfer of flight guidance computations. 
4.7.2 V 5 The set of lateral modes varies from aircraft to aircraft. 
 4.7.2.V 5.1 An FCS may or may not have a Roll Mode.  
  4.7.2 C 5.1.1 Every FCS that has a roll mode uses a roll reference. 
  4.7.2 C 5.1.2 The roll reference is synchronized when the SYNC switch is 
                                              enabled and pressed  with the flight director on. 
  4.7.2 V 5.1.3 There may or may not be a roll knob to adjust the roll reference. 
   4.7.2 V 5.1.3.1 The roll knob may have a detent angle of 0, 5, or 6 degrees. 
  4.7.2 V 5.1.4 Roll/Heading transition angle can assume values of 5 or 6 deg.   

Figure 3: Example of organized domain definition from Collins Flight Control System mode requirements 

Mnemonic Decision Values Traceability 
LatBasic What is the basic lateral mode? Roll, Heading 4.7.2 V 3 
RollMode Does the FCS have a Roll Mode? Yes, No 4.7.2.V 5.1 
RollKnob Yes Does the FCS have a Roll Knob? Yes, No 4.7.2 V 5.1.3 
DetentAngle “       Yes What is the detent angle of the Roll Knob? 0, 5, 6 4.7.2 V 5.1.3.1 
RollHdgAngle “ What is the Roll Heading Transition Angle? 5, 6 4.7.2 V 5.1.4 
RollLimit “ What is the Bank Limit in Roll Mode? 31.5, 32 4.7.2 V 5.1.5 

Figure 4: Decision table for FCS Roll Mode 

Proceedings of the Fifth International Symposium on Requirements Engineering (RE’01) 
1090-705X/01 $10.00 © 2001 IEEE 



8. Encapsulating Variations in CoRE 
 

The PRS is written in terms of a CoRE model. Input to 
this stage includes the Domain Definition and the decision 
model. The output is a meta-specification that can be used 
to generate a CoRE-style SRS for any family member. 

Figure 5 gives a notional view of part of the FCS class 
hierarchy represented as a set of embedded rectangles. An 
embedded rectangle denotes an embedded (child) class. If 
the embedded class is common to all instances of its 
parent class, the rectangle is solid. If its inclusion depends 
on the value of a variability in the parent class, the 
rectangle is dashed. For example, the class Roll_Guidance 
is included in the SRS for a family member only if the 
Lateral_Guidance class has a roll mode. The nested class 
Roll_Active_Guidance will be included only if its parent 
is included. Each class rectangle contains a brief 
description of the requirements encapsulated by the class 
and the commonalities and variabilities encapsulated by 
the class definition. 1 

                                                           
1 CoRE uses a different notation but this one presents the 
relationships more clearly in a small example. 

The class structure illustrated in Figure 5 was 
constructed following the heuristics discussed in Section 
4.  We use the Domain Definition and Decision Models to 
help identify requirements that vary together and 
dependencies among the variabilities. We then try to 
organize the class structure so the requirements that vary 
together are in the same class definition. We apply this 
approach iteratively where some subset set of the 
requirements depends on a variability. This has the effect 
of creating a child class that will be included or excluded 
in the SRS depending on the value of the variability. For 
example, to manage the commonalities and variabilities 
given in Figures 3 and 4: 
1. Since all members of the family have lateral modes, a 

class is defined that encapsulates the rules for 
determining the current lateral mode and references 
(most common first). 

2. Since every aircraft has lateral modes but the exact 
set of modes and the rules for transitioning between 
modes differs from one aircraft to the next, the class 
Active_Lateral_Mode is defined to encapsulate the 
mode class definition (encapsulating dependencies). 

3. Since aircraft differ in the set of lateral modes, and 
the rules for selecting guidance commands for 

 C1. Class Lateral_Guidance 
      Encapsulates rules for selecting the lateral guidance modes and references. 
      4.7.2 C 1 Every FCS has one or more lateral modes exactly one of which must be active at 
      4.7.2.C 2 Every FCS has a default (basic) lateral mode
      4.7.2 V 3 The basic lateral mod varies from aircraft to aircraft.
      4.7.2 V 4 The FCS may or may not select the basic lateral mode upon 
                      transfer of flight guidance computations. 

C1.1. Class Active_Lateral_Mode 
Class Active_Lateral_Mode encapsulates the definition of the Lateral modes 
and the rules for mode transitions. These vary depending on the aircraft. 

     4.7.2 V 5 The set of lateral modes varies from aircraft to aircraft 

C1.2. Class Roll_Guidance 
      4.7.2.V 5.1 An FCS may or may not have a Roll Mode
      Encapsulates all requirements associated with inclusion of a Roll Mode. 

C1.2.1 Class Roll Active Guidance 
 Encapsulates rules for determining lateral guidance command/active reference
4.7.1.2 C 5.1.1 Every FCS that has a roll mode uses a roll reference  

C1.2.1 Class Roll_Guidance_Crew_Interface  
Encapsulates the physical crew interface for roll adjustment. 

      4.7.1.2 V 5.1.3 There may or may not be a roll knob to adjust the roll reference 
4.7.1.2 V 5.1.3.1 The roll knob may have a detent angle of 0, 5, or 6 degrees. 

Figure 5: Illustration of a PRS class structure 

Proceedings of the Fifth International Symposium on Requirements Engineering (RE’01) 
1090-705X/01 $10.00 © 2001 IEEE 



different modes, we create a separate class for each 
possible mode that encapsulates all the requirements 
(common and variable) associated with that mode. 
This puts all of the rules associated with a mode 
(which are likely to change together) in one place. It 
also allows all requirements associated with a 
particular mode to be included or excluded from an 
SRS as a group when the mode itself is a variation. 
For example, since some aircraft have a Roll Mode 
and some do not, the class Roll_Guidance is defined 
to encapsulate all the requirements that should be 
included when there is a Roll Mode and omitted when 
there is not (Encapsulating dependencies). 

4. In those aircraft that do have a Roll Mode, there may 
or may not be a roll knob that allows the crew to 
adjust the roll. Since the requirements associated with 
the roll knob are included or excluded as a group, we 
add a sub-class of Roll_Guidance, the class 
Roll_Guidance_Crew_Interface to encapsulate these 
requirements. It encapsulates detailed variations 
associated with the roll knob such as the possible 
detent angle. 

While it is an oversimplification to say that the class 
structure will always follow the dependency relation, the 
two clearly go hand-in-hand since encapsulation in a 
common class is the mechanism for localizing 
interdependent requirements. Thus, the structure of the 
decision table helps guide construction of the class 
structure. 

 
9. Defining Variation 

 
In developing the FCS case study we have deliberately 

kept the set of extensions to CoRE/SCR syntax as small as 
possible. This is consistent with our long-standing 
principle of adding constructs to CoRE/SCR only when a 
clear need for them has first been demonstrated. 

Representing all of the variation in the FRS has required 
only three basic meta-text constructs as follows: 
• Text Replacement Variables: a distinguished symbol 

that is used in the family specification to denote a 
particular variation. On instantiation of a family 
member, it is replaced by one of its possible values. 
Example: For the FCS example the variable LatBasic 
to represent the choice of the Lateral Basic mode. It 
has the possible replacement values “Roll” and 
“Heading.” The variable LatBasic is used in the PRS 
wherever the basic mode should appear and is 
replaced with the name of the basic mode when the 
family is instantiated. 

• Decision Variables: variables representing 
variabilities in the decision model. Decision variables 
can be used in expressions (i.e., as the test value of an 
if statement) to select among possible variations. 
Example: In the FCS specification, the decision 
about whether a variation does or does not have a roll 
mode is represented by the variable RollMode with 
possible values Yes and No.  

• Nested if-then-else: A meta-text construct that is used 
to select portions of the specification for inclusion or 
exclusion based on the value of a decision variable. 
For the following examples we use the form: 
<<if condition then text [else text]>>
where “<<” and “>>” denote the start and end of the 
construct, condition is a Boolean expression over 
one or more of the variables, text is any legal 
CoRE/SCR syntactic construct, and the optional 
else clause has the usual semantics. An if construct 
may be nested by the inclusion of dependent if 
clauses in place of the text. 

These three constructs proved sufficient to both 
represent variation in our example and provide a basis for 
generating requirements for family members. A large-
scale example makes this clearer but is beyond the scope 

Table 1 - mode_Active_Lateral Transition Table 
From Events To 

Any @T(Flight_Director_On) OR  @Basic_Selected mode_<<LatBasic>> 
Any @T(Nav_Guidance.term_Active) mode_NAV 
<<if RollMode=Yes then “

Any @T(Roll_Guidance.term_Active) mode_ROLL 
“>>

Instantiated with the values: LatBasic = ROLL and RollMode = Yes results in the following table: 
From Events To 

Any @T(Flight_Director_On) OR  @Basic_Selected mode_ROLL 
Any @T(Nav_Guidance.term_Active) mode_NAV 
Any @T(Roll_Guidance.term_Active) mode_ROLL 

Figure 6: Generating a table for an FCS family member 

Proceedings of the Fifth International Symposium on Requirements Engineering (RE’01) 
1090-705X/01 $10.00 © 2001 IEEE 



of this paper. Intuitively, nested, conditional inclusion 
allows one to include or exclude arbitrary blocks of text, 
tables, etc. based on the values assigned to the 
variabilities. With proper encapsulation in the class 
structure, generation proved straightforward for all the 
situations we encountered. 
 
10. Results and Conclusions 
 

Applying the techniques described herein, we 
developed a PRS for a portion of the lateral modes of a 
Collins FCS with the property that the top-level class 
structure was common to all family members. Variabilities 
were constrained to single classes or encapsulated within a 
class. From the PRS, we were able to generate the 
corresponding SRS each FCS family member. 

We were able to structure the PRS to address our 
goals, including systematic reuse, by applying software 
engineering principles like information-hiding. We do so 
understanding it is appropriate in developing product lines 
to treat common design attributes as family requirements. 

While the approach worked for the FCS family it is 
clear that additional techniques must be added if we are to 
address more complex kinds of variation. What kinds of 
variation we will encounter in practice remains an open 
question. The FCS family is only one data point but, if 
representative, suggests that simple relationships are the 
more common case. We also found that apparent 
complexity could sometimes be resolved by careful 
attention to how commonalities and variabilities were 
expressed.  

Much work remains to be done. The approach is 
designed to generate output that can be read and analyzed 
by the SCR tool set. Actually re-casting the specification 
in a format the tool can read remains to be done. This, 
however, does not address the issue of analyzing the 
family requirements specification itself (as opposed to a 
generated SRS) for properties like consistency and 
completeness. Obviously, these properties have a different 
meaning when applied to the requirements for a set of 
systems. Both the appropriate kinds of analysis and the 
means remain open research issues.  

 
11. Acknowledgements 

 
This work has benefited throughout from the 

collaboration with Rockwell Software Process 
Technology Group at Collins Advanced Technology 
Center, particularly Dr. Steve Miller. This paper has 
benefited greatly from thoughtful reviews from the 
program committee. The work would not have been 
possible without the generous financial and academic 
support from the Rockwell Science  
Center and Dr. Joseph Lee. 

References 
 
[1] Ardis, M. and J. Green, “Successful Introduction of 
Domain Engineering into Software Development,” Bell Labs 
Technical Journal, July 1998, pp. 10. 
[2] Bosch, J., Design and Use of Software Architectures 
Adopting and Evolving a Product-Line Approach, Addison-
Wesley, 2000. 
[3] Brownsword, L. and P. Clements, A Case Study in 
Successful Product Line Development (CMU/SEI-96-TR-016). 
Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon 
University, 1996.  
[4] Campbell, G., S. Faulk, and D. Weiss, “Introduction to 
Synthesis,” INTRO_Synthesis_PROCESS-90019-N, Software 
Productivity Consortium, Herndon, VA, 1990. 
[5] Coplien, J., D Hoffman, and D Weiss, "Commonality 
and Variability in Software Engineering." IEEE Software 
15, 6 November/December 1998, pp 37-45 
[6] Faulk, S., J. Brackett, J. Kirby, and P. Ward, “The 
Core Method for Real-Time Requirements,” IEEE 
Software, Vol. 9, No. 5, Sept. 1992. 
[7] Faulk, S., et al., Consortium Requirements 
Engineering Guidebook, Version 1, SPC-92060-CMC, 
Software Productivity Consortium, Herndon, VA, 1993. 
[8] Heitmeyer, C., R. Jeffords, and B. Labaw, Tools for 
formal Specification, verification and validation of 
requirements, in Proceedings of the 12th Annual 
Conference on Computer Assurance (COMPASS ’97), 
Gaithersburg, MD, June 1997. 
[9] Kuusela, J. and J. Savolainen, “Requirements 
Engineering for Product Lines,” Proceedings, 22nd 
International Conference on Software Engineering, 
Limerick, Ireland, 4-11 June, 2000, pp. 60. 
[10]  Miller, S.P., "Specifying the mode logic of a flight 
guidance system in CoRE and SCR." Proc. 2nd Workshop 
on Formal Methods in Software Practice (FMSP'98), St. 
Petersburg, FL, March 1998. 
[11] Parnas, D.L., and J. Madey, “Functional 
Documentation for Computer systems,” Science of 
Computer Programming, v. 25(1), 41-61, Oct. 1995. 
[12] Parnas, D.L, “On the Design and Development of 
Program Families”, IEEE Transactions on Software 
Engineering, SE-2: 1-9, 1976 
[13]  Reuse-Driven Software Processes Guidebook (SPC-
92019-CMC, Version 02.00.03). Herndon, Va.: Software 
Productivity Consortium, 1993. 
[14]  Weiss, David M. & Lai, Chi Tau Robert. Software 
Product-Line Engineering: A Family-Based Software 
Development Process. Reading, MA: Addison-Wesley, 
1999 
 

Proceedings of the Fifth International Symposium on Requirements Engineering (RE’01) 
1090-705X/01 $10.00 © 2001 IEEE 


	Product-Line Requirements Specification (PRS): an Approach and Case Study
	
	Abstract



