
Object-Oriented and
Conventional Analvsis and

J

Design Methodologies
Comparison and Critique

Robert G. Fichman and Chris F. Kemerer

Massachusetts Institute of Technology

The question of
whether emerging

object-oriented
analysis and design

methodologies require
incremental or radical

changes on the part
of prospective

adopters is being
vigorously debated.

lthough the concepts underlying object-orientation as a programming
discipline go back two decades, it’s only in the last few years that object-
oriented analysis (OOA) and object-oriented design (OOD) methodol-

ogies have begun to emerge. Object orientation certainly encompasses many novel
concepts, and some have called it a new paradigm for software development. Yet,
the question of whether object-oriented methodologies represents a radical change
over such conventional methodologies as structured analysis remains a subject of
much debate.

Yourdon has divided various object-oriented methodologists into two camps,
revolutionaries and synthesists.’ Revolutionaries believe that object orientation is
a radical change that renders conventional methodologies and ways of thinking
about design obsolete. Synthesists, by contrast, see object orientation as simply an
accumulation of sound software engineering principles that adopters can graft
onto their existing methodologies with relative ease.

On the side of the revolutionaries, Booch2 states

Let there be no doubt that object-oriented design is fundamentally different from
traditional structured design approaches: it requires a different way of thinking about
decomposition, and i t produces software architectures that are largely outside the realm
of the structured design culture.

Coad and Yourdon3 add

We have no doubt that one could arrive at the same results [as Coad and Yourdon’s OOA
methodology produces] using different methods; but it has also been our experience that
the thinking process, the discovery process, and the communication between user and
analyst are fundamentally different with OOA than with structured analysis.

On the side of the synthesists, Wasserman, Pircher, and Muller4 take the position
that their object-oriented structured design (OOSD) methodology is essentially an
elaboration of structured design. They state that the “foundation of OOSD is
structured design” and that structured design “includes most of the necessary

22

concepts and notations” for OOSD.
Page-Jones and Weiss5 take a similar
position in stating that

The problem is that object orientation has
been widely touted as a revolutionary
approach, a complete break with the past.
This would be fascinating if it were true,
but it isn’t. Like most engineeringdevelop-
ments, the object-oriented approach is a
refinement of some of the best software
engineering ideas of the past.

Factors to consider. One of the most
important assessments a company must
make in considering the adoption of a
technical innovation is where the inno-
vation falls on the incremental-radical
continuum in relation to its own current
practice. Incremental innovations intro-
duce relatively minor changes to an ex-
isting process or product and reinforce
the established competencies of adopt-
ing firms. Radical innovations are based
on a different set of engineering and
scientific principles, and draw on new
technical and problem-solving skills.

If object-oriented analysis and design
comes to be regarded as a radical change
by most organizations, then a strong,
negative impact on the ultimate rate of
adoption of the technology can be ex-
pected. Compared with incremental
change, implementation of radical
change involves greater expense and
risk, and requires different management
strategies. Many development groups
have already invested considerable re-
sources in conventional methodologies
like structured analysis/structured de-
sign or information engineering. These
investments can take many forms, in-
cluding training in the specifics of the
methodology, acquisition of automated
tools t o support the methodology, and
repositories of analysis and design mod-
els accumulated over the course of em-
ploying the methodology.

On an industry-wide level, vendors
have been actively developing more
powerful tools t o support conventional
methodologies, and a growing pool of
expertise now exists in the use of these
tools. T o the extent that object orienta-
tion is a radical change, investments in
conventional methodologies will be lost:
Staff will have to be retrained, new tools
will have to be purchased, and a likely
expensive conversion process will be
necessary.

Implementation of radically new tech-
nologies also involves a much greater
element of risk because the full range of

impacts is typically unknown. Moreover,
the implementation of a radically new
methodology requires different strate-
gies to manage this risk and to over-
come other implementation barriers
(such as resistance to change).

The radical-versus-incremental de-
bate is crucial to assessing the future of
object orientation and formulating a
transition strategy, but unfortunately
no comprehensive analyses have been
performed comparing leading object-
oriented methodologies with conven-
tional methodologies. Two surveys of
object-oriented methodologies have
been compiled. but these only cover
either analysish or design,’ and neither
draws specific comparisons with con-
ventional methodologies. Loy’ provides
an insightful commentary on the issue
of conventional versus object-oriented
methodologies, although no specific
methodologies are compared.

The current research fills the gap left
by other surveys by analyzing several
leading convent ional and object-
oriented analysis and design methodol-
ogies. including a detailed point-by-point
comparison of the kinds of modeling
tools provided by each. A review (de-
scribed below in greater detail) was
performed that resulted in the selection
of six analysis methodologies and five
de sign methodologies. The analysis
methodologies were

DeMarco structured analysis,
Yourdon modern structured analy-

Martin information engineering

Bailin object-oriented requirements

Coad and Yourdon object-oriented

Shlaer and Mellor object-oriented

sis,

analysis.

specification,

analysis, and

analysis.

The design methodologies were

Yourdon and Constantine structured

Martin information engineeringde-

Wasserman et al. object-oriented

Booch object-oriented design, and
Wirfs-Brock et al. responsibility-

design,

sign,

structured design.

driven design.

Incremental or radical? We conclude
that the object-oriented analysis meth-

odologies reviewed here represent a
radical change over process-oriented
methodologies such as DeMarco struc-
tured analysis but only an incremental
change over data-oriented methodolo-
gies such as Martin information engi-
neering. Process-oriented methodolo-
gies focus attention away from the
inherent properties of objects during
the modeling process and lead to a mod-
el of the problem domain that is orthog-
onal to the three essential principles of
object orientation: encapsulation, clas-
sification of objects, and inheritance.

By contrast, data-oriented method-
ologies rely heavily on the same basic
technique - information modeling -
as each of the three O O A methodolo-
gies. The main differences between
OOA and data-oriented conventional
methodologies arise from the principle
of encapsulation of data and behavior:
OOA methodologies require that all
operations be encapsulated within ob-
jects, while conventional methodologies
permit operations to exist as subcom-
ponents of disembodied processes. At
the level of detail required during anal-
ysis, however, we conclude that expert
information modelers will be able to
learn and apply the principle of encap-
sulation without great difficulty.

Regarding design methodologies, we
conclude that object-oriented design is
a radical change from both process-
oriented and data-oriented methodolo-
gies. The OOD methodologies we re-
view here collectively model several
important dimensions of a target sys-
temnot addressed by conventional meth-
odologies. These dimensions relate to
the detailed definition of classes and
inheritance, class and object relation-
ships, encapsulated operations, and
message connections. The need for
adopters to acquire new competencies
related to these dimensions, combined
with Booch’s uncontested observation
that OOD uses a completely different
structuring principle (based on object-
oriented rather than function-oriented
decomposition of system components),
renders OOD as a radical change.

Conventional
methodologies

A systems development methodolo-
gy combines tools and techniques to
guide the process of developing large-

October 1992 23

scale information systems. The evolu-
tion of modern methodologies began in
the late 1960s with the development of
the concept of a systems development
life cycle (SDLC). Dramatic increases
in hardware performance and the adop-
tion of high-level languages had enabled
much larger and more complicated sys-
tems to be built. The SDLC attempted
to bring order t o the development pro-
cess, which had outgrown the ad hoc
project control methods of the day, by
decomposing the process into discrete
project phases with “frozen” deliver-
ables-formal documents- that served
as the input to the next phase.

Structured methodologies. The sys-
tems development life cycle concept gave
developers a measure of control, but
provided little help in improving the
productivity and quality of analysis and
design per se. Beginning in the 1970s,
structured methodologies were devel-

oped to promote more effective analy-
sis and more stable and maintainable
designs. Early structured methodolo-
gies were largely process-oriented, with
only a minor emphasis on modeling of
entities and data. This emphasis on pro-
cesses seemed natural, given the proce-
dural programming languages and batch,
file-based applications commonplace at
the time. Although many authors con-
tributed to the so-called structured rev-
olution, our review concentrates on the
critical contributions of Yourdon and
Constantine,”DeMarco,’”and Ward and
Mellor.”

Yourdon and Constantine structured
design provided a method for develop-
ing a system architecture that conformed
to the software engineering principles
of modularity. loosely coupled modules,
and module cohesion. The structure
chart (see the sidebar, “Tools for struc-
tured methodologies”) was the primary
tool for modeling a system design. (Al-

Tools for structured methodologies

Dataflow diagram (DFD) - Depicts processes (shown as bubbles) and
the flow Of data between them (shown as directed arcs). DFDs are usually
organized into a hierarchy of nested diagrams, where a bubble on one dia-
gram maps to an entire diagram at the next lower level of detail. Does not
depict conditional logic or flow of control between modules.

Data-dictionary - A repository of definitions for data elements, files, and
processes. A precursor to the more comprehensive “encyclopedias.”

Entity-relationship diagram (ERD) - Depicts real-world entities (people,
places, things, concepts) and the relationships between them. Various nota-
tions are used, but usually entities are portrayed as boxes and relationships
as arcs, with different terminating symbols on the arcs to depict cardinality
and whether the relationship is mandatory or optional.

Hierarchy diagram - A simple diagram that shows a top-to-bottom hier-
archical decomposition of data files and data items (enclosed within boxes)
connected by undirected arcs.

Mini-spec - A structured-English specification of the detailed procedural
logic within a process; performs the same function as the traditional flow-
chart. A mini-spec is developed for each process at the lowest level of nest-
ing in a set of DFDs.

State-transition diagram - Depicts the different possible states of a sys-
tem or system component, and the events or messages that cause transi-
tions between the states.

Structure chart - Depicts the architecture of a system as a hierarchy of
functions (boxes) arranged in a tree-like structure. Identifies interconnec-
tions between functions, and input and output parameters. Does not depict
control structures like condition, sequence, iteration, or selection.

though the emphasis of structured de-
sign was on creating a module architec-
ture, the methodology also suggested
dataflow diagrams for modeling process-
es and hierarchy diagrams for defining
data structure.)

DeMarco’s seminal work enlarged the
structured approach to encompass anal-
ysis. DeMarco prescribed a series of steps
for performing structured analysis, flow-
ing from modeling of existing systems
(using dataflow diagrams) to modeling
of the system to be developed (using
dataflow diagrams, mini-specifications,
and a data dictionary). Although model-
ing of data was not ignored, the empha-
sis was on modeling processes. The ulti-
mate goal of structured analysis and
design was to create a top-down decom-
position of the functions to be performed
by the target system.

Continuing in the structured tradition,
Ward and Mellor recommended signifi-
cant extensions to structured analysis to
better support modeling of real-time
systems. Their methodology added enti-
ty-relationship diagrams and state-tran-
sition diagrams to the structured analy-
sis toolset. Entity-relationship diagrams
illustrate the structure of entities and
their interrelationships, while state-tran-
sition diagrams focus on system and sub-
system states and the events that caused
transitions between states.

In recognition of the evolution of sys-
tems, languages, and tools over the past
two decades, YourdonI2 updated struc-
tured analysis under the name modern
structured analysis. Modern structured
analysis differs from DeMarco’s origi-
nal work in several respects: It no longer
recommends modeling of current im-
plemented systems; it adds a prelimi-
nary phase to develop an “essential
model” of the system; it substitutes a
technique known as “event partition-
ing” for top-down functional decompo-
sition as the preferred technique for con-
s t ruct ing dataflow diagrams; it
places more emphasis on information
modeling (via entity-relationship dia-
grams) and behavior modeling (via state-
transition diagrams); and it encourages
prototyping.

These updates have served to blur
somewhat the one-time clear distinc-
tions between structured methods and
the data-oriented methods that we de-
scribe next.

Information engineering. In the late
1970s and early 1980s, planning and

24 COMPUTER

modeling of data began to take on a
more central role in systems develop-
ment, culminating in the development
of data-oriented methodologies such as
information engineering. The concep-
tual roots of data-oriented methodolo-
gies go back to the 1970s with the inven-
tion of the relational database model
and entity-relationship modeling, al-
though it took several years for mature
data-oriented methodologies to emerge.

The data-oriented approach has two
central assumptions:

(1) Organizational data provides a
more stable foundation for a system
design than organizational procedures.

(2) Data should be viewed as an or-
ganizational resource independent of
the systems that (currently) process the
data.

One outgrowth of the data-oriented
approach was the creation of a new
information systems subfunction, data
administration, to help analyze, define,
store, and control organizational data.

Martin" information engineering is a
comprehensive methodology that ex-
tends the data-oriented approach across
the entire development life cycle. While
structured methods evolved backwards
through the life cycle from program-
ming, information engineering evolved
forward through the life cycle from plan-
ning and analysis. Martin defines infor-
mation engineering as consisting of four
phases:

(1) Information strategy planning,
(2) Business area analysis,
(3) System design, and
(4) Construction.

Information engineering distinguish-
es activities that are performed on the
level of a business unit (planning and
analysis) from those that are project-
specific (design and construction). Com-
pared with structured methods, infor-
mation engineering recommends a much
broader range of analysis techniques
and modeling tools, including enterprise
modeling, critical-success-factors anal-
ysis, data modeling. process modeling.
joint-requirements planning. joint-
applications design, time-box method-
ology, and prototyping (see the sidebar.
"Tools for Martin information engineer-
ing").

Information engineering describes

Tools for Martin information engineering

Actlon diagram - Used to depict detailed procedural logic at a given lev-
el of detail (for example, at a system level or within individual modules).
Similar to structured English, except graphical constructs are used to high-
light various control structures (condition, sequence, iteration, and selec-
tion).

Bubble chart - A low-level diagram used as an aide to normalization of
relational tables. Shows attributes (depicted as bubbles) and the functional
dependencies between them (depicted as directed arcs).

Dataflow diagram (DFD) - Conforms to the conventional notation and
usage for dataflow diagrams (see the sidebar, "Tools for structured method-
ologies").

Data-model diagram - Depicts data entities (boxes) and their relational
connections (lines). Shows cardinality and whether the connections are op-
tional or mandatory. Similar to the entity-relationship diagram.

Data-structure diagram - Shows data structures in a format appropriate
to the database management system to be used for implementation.

Encyclopedia - A more comprehensive version of the data dictionary
that serves as an integrated repository for modeling information from all de-
velopment phases, including the enterprise model; organizational goals, crit-
ical success factors, strategies, and rules; data models and data definitions;
process models and process definitions; and other design-related informa-
tion. Automated support is assumed.

Enterprise model - A model that defines, at a high level, the functional
areas of an organization and the relationships between them. It consists of
text descriptions of functions (usually an identifiable business unit such as a
department) and processes (a repetitive, well-defined set of tasks that sup-
port a function).

Entity-process matrix - Cross-references entities to the processes that
use them.

Process-decomposition diagram - A hierarchical chart that shows the
breakdown of processes into progressively increasing detail. Similar to the
conventional tree diagram, except a particularly compact notation is used to
fit many levels on one page.

Process-dependency diagram - A diagram consisting of processes (de-
picted by bubbles) and labeled arcs. It shows how each process depends on
the prior execution other processes. Similar to a dataflow diagram, except
conditional logic and flow of control is also depicted.

State-transition diagram - Conforms to the conventional notation and
usage for state-transition diagrams (see the sidebar, "Tools for structured
methodologies").

planning as an organization-wide activ-
i ty that develops an enterprise model
and a high-level data architecture. Busi-
ness area analysis attempts to capture a
more detailed understanding of busi-
ness activities and their interdependen-

cies, using such tools as data-model di-
agrams, decomposition diagrams, pro-
cess-dependency diagrams, and entity-
process matrices. The design phase
builds on the results of prior phases and
produces a detailed model of a target

October 1992 25

system consisting of process-decompo-
sition diagrams, process-dependency
diagrams, dataflow diagrams, action di-
agrams, and data-structure diagrams.
System construction, the last phase of
information engineering, consists of
translating the models from the design
phase to an operational system-ideal-
ly using a code generator.

Ob ject-oriented
analysis methodologies

As with traditional analysis, the pri-
mary goal of object-oriented analysis is
the development of an accurate and
complete representation of the prob-
lem domain. We conducted a literature
search to identify well-documented,
broadly representative O O A method-
ologies first published in book form or
as detailed articles in refereed journals
from 1980 to 1990. This search resulted
in the selection of three methodologies
from Coad and Yourdon,’ Bailin,I4 and
Shlaer and Mellor.’5.’6 Numerous O O A
methodologies have emerged in recent
years. Since no more than a few meth-
odologies could be compared in depth,
two criteria - maturity (first published
prior to 1990) and form of publication
(book or refereed journal) -were used
to select among them. Several method-
ologies were identified that did not meet
these criteria (see Fichman and Kemer-
er”) although this should not be taken
to mean they are inferior to those that
did. Object-oriented analysis is, of
course, quite young; it is much too early
to predict which (if any) of the current
methodologies will come to be recog-
nized as standard works in the field. The
goal here is to provide a detailed com-
parison of representative methodolo-
gies at a single point in time, not a
comprehensive review.

The three methodologies are present-
ed in the order of their similarity to
conventional methodologies. Bailin’s
methodology is viewed as most similar,
followed by Coad and Yourdon’s, and
then Shlaer and Mellor’s.

Bailin object-oriented requirements
specification. Bailin developed object-
oriented requirements specification
(00s) in response to a perceived in-
compatibility between conventional
structured analysis and object-oriented
design. Outwardly, the method resem-

bles structured analysis in that a system
decomposition is performed using a
dataflow diagram-like notation. Yet,
there is an important difference: Struc-
tured analysis specifies that functions
should be grouped together only if they
are “constituent steps in the execution
of a higher level function,” while 0 0 s
groups functions together only if they
“operate on the same data ab~tract ion.”’~
In other words, functions cannot exist
as part of disembodied processes, but
must be subordinated to a single entity.
(Bailin uses the term entity rather than
object for stylistic reasons only; the terms
are assumed to be interchangeable.) This
restriction is used to promote encapsu-
lation of functions and data.

Two distinctions are central to 00s.
First, Bailin distinguishes between enti-
ties, which possess underlying states that
can persist across repeated execution
cycles, andfunctions, which exist solely
to transform inputs to outputs and thus
have no underlying states remembered
between cycles. Entities can be further
decomposed into subentities or func-
tions, but functions can only be decom-
posed into subfunctions.

Second, Bailin distinguishes between
two classes of entities, active and pas-
sive. Active entities perform operations
(on themselves or other entities) im-
portant enough to be considered in de-
tail during the analysis phase, while pas-
sive entities are of lesser importance
and can therefore be treated as a “black
box” until the design phase. These dis-
tinctions are important because, as we
show below, active entities, passive
entities, and functions are each mod-
eled differently during the analysis
process.

The 00s methodology consists of a
seven-step procedure:

(1) Identify key problem domain en-
tities. Draw dataflow diagrams and then
designate objects that appear in process
names as candidate entities.

(2) Distinguish between uctive and
passive entities. Distinguish between
entities whose operations are signifi-
cant in terms of describing system re-
quirements (active entities) versus
those whose detailed operations can be
deferred until design (passive). Con-
struct an entity-relationship diagram
(ERD).

(3) Establish datuflowws between ac-
tiveentities. Construct the top-level (level
0) entity-dataflow diagram (EDFD).

Designate each active entity as a pro-
cess node and each passive entity as a
dataflow or data store.

(4) Decompose entities (or functions)
into subentities and/or functions. This
step is performed iteratively together
with steps 5 and 6. Consider each active
entity in the top-level EDFD and deter-
mine whether it is composed of lower
level entities. Also consider what each
entity does and designate these opera-
tions as functions. For each of the sub-
entities identified, create a new EDFD
and continue the decomposition pro-
cess.

(5) Check for new entities. At each
stage of decomposition, consider wheth-
e r any new entities are implied by
the new functions that have been intro-
duced and add them to the appropriate
EDFD, reorganizing EDFDs as neces-
sary.

(6) Group functions under new enti-
ties. Identify all the functions performed
by or on new entities. Change passive to
active entities if necessary and reorga-
nize EDFDs as appropriate.

(7) Assign entities to uppropriate do-
mains. Assign each entity to some ap-
plication domain, and create a set of
ERDs, one for each domain.

The end result of 00s is an entity-
relationship diagram, together with a
hierarchy of entity-dataflow diagrams
(see the sidebar “Tools for Bailin ob-
ject-oriented requirements specifica-
tion’’). Bailin’s methodology conforms
to the essential principals of object ori-
entat ion, a l though explicit object-
oriented terminology is not used. (Loy8
lists three principles that distinguish
object orientation from other approach-
es: encapsulation of attributes, opera-
tions, and services within objects; clas-
sification of object abstractions; and
inheritance of common attributes be-
tween classes.) The entity-relationship
diagrams capture a classification of ob-
jects as well as opportunities for inher-
itance, and Bailin’s functions map to
the object-oriented concept of encapsu-
lated services.

Coad and Yourdon object-oriented
analysis. Coad and Yourdonj view their
O O A methodology as building “upon
the best concepts from information
modeling, object-oriented programming
languages, and knowledge-based sys-
tems.” O O A results in a five-layer mod-
el of the problem domain, where each

26 COMPUTER

layer builds on the previous layers. The
layered model is constructed using a
five-step procedure:

(1) Define objects and classes. Look
for structures, other systems, devices,
events, roles, operational procedures,
sites, and organizational units.

(2) Define structures. Look for rela-
tionships between classes and represent
them as either general-to-specific struc-
tures (for example, employee-to-sales
manager) or whole-to-part structures
(for example, car-to-engine).

(3) Definesubject areas. Examine top-
level objects within whole-to-part hier-
archies and mark these as candidate
subject areas. Refine subject areas to
minimize interdependencies between
subjects.

(4) Define attributes. Identify the
atomic characteristics of objects as at-
tributes of the object. Also look for
associative relationships between ob-
jects and determine the cardinality of
those relationships.

(5) Defineservices. For each class and
object, identify all the services it per-
forms, either on its own behalf or for the
benefit of other classes and objects.

Tools for Bailin object-oriented requirements
specification

Entity-reiatlon8hip diagram - Conforms to the conventional notation
and usage for entity-relationship diagrams (see the sidebar, Tools for struc-
tured methodobgies”).

Entity-dataflow diagram (EDFD) - A variant on the conventional data-
flow diagram wherein each process node contains either an active entity or
some function related to an active “y, rather than disembodied process-
es. Active entities and functions are enclosed within bubbles. Bubbles are
connected to each other and to data stores by labeled arcs containing data-
flows. Dataflows and data stores are passive entities.

Entity dictionary - A repository of entity names and descriptions, analo-
gous to the data dictionary of DeMarco structured analysis.

modeling exclusive services and mes-
sage connections.

Shlaer and Mellor object-oriented
analysis. Shlaer and Mellor developed
their object-oriented analysis method-
ology over the course of several years of
consultingpractice in information mod-
eling. Although information modeling
forms the foundation of the method,

the system, contained in interrelated
information, state, and process models,
is proposed as a complete description of
the problem domain. Shlaer and Mellor
advocate a six-step procedure:

(1) Develop an information model.
This model consists of objects, attributes,
relationships, and multiple-object con-
structions (based on is-a, is-part-of, and

two other views of the target system are
prescribed as well: a state model and a
process model. This three-way view of

associative relationships). (The term
object, as used by Shlaer and Mellor, is
equivalent to the conventional notion

The primary tools for Coadand Your-
don O O A are class and object diagrams
and service charts (see the sidebar,
“Tools for Coad and Yourdon object-
oriented analysis”). The class and ob-

Tools for Coad and Yourdon object-oriented ject diagram has five levels, which are
built incrementally during each of the
five analysis steps outlined above. Ser- adysk
vice charts, whiih are “much like a [tra-
ditional] flow chart,” are used during
the service definition phase to repre-
sent the internal logic of services.,, In
addition, service charts portray state-
dependent behavior such as precondi-
tions and triggers (operations that are show generalizati .
activated by the occurrence of a pre- (3) ”4- lawrs

attributes layer, w defined event).
Goad and Yourdon explicitly support boxes and identifies associative relationships between objects, and (5) $er-

each of the essential principles of object vice layer, which adds a list of services inside the dass and object boxes
orientation, The class and objects dia- and provides arcs showing message connections between boxes.

Class and object diagram - A complex diagram consisting of five lay-
ers, each adding a level of detail. The layers are (1) class and object layer,
which shows classes and objects endosed within boxes with rounded cor-
ners, (2) structures layer, which connects clamee and obitrots with arcs to

gram (levels 1, 2, and 4) provides an
object classification and identifies
tential inheritance relationships, In ad-
&ion, of objects is mod-
eled through the concept of exclusive

Object-state diagram - A simple diagram that shows all the possible
states of an object and the allowed transitions between states. States are
enclosed within boxes and transitions are represented as directed, unta-
beled arcs between states’

services. Coad and Yourdon O O A is
similar to modern structured analysis
(MSA) and information engineering in
its emphasis on information modeling,

Service chart - A flowchart-like diagram that depicts the detailed logic
within an individual service, including object-atate changes that trigger or re-
sult from the service*

but differs in providing constructs for

October 1992 27

I

Tools for Shlaer and Mellor object-oriented
analysis

Actlon-daatlow diagram (ADFD) - Similar to DFDs, except ADFDs are
used to model elementary “action” processes rather than to create a top-
down functional decomposition of the entire system. Standard DeMarco no-
tation is used, except additional notations are provided to show control flows
and to show conditionality in the execution of dataflows and control flows.

Domain chart - A simple diagram that illustrates all domains relevant to
the implementation of an OOA model. Domains are enclosed within bubbles
and are connected by directed a m . These arcs represent bridges between
domains. Four types of domains are identified: application, service, architec-
tural, and implementation.

Information structure diagram - A variant on the entity-relationship dia-
gram that shows objects (boxes) connected by relationships (labeled arcs).
Attributes are listed within object boxes. Relationship conditionality and mul-
tiplicity are also shown.

Object and attribute description - A text description of an object, in-
cluding object name, object description, object identifier, a list of attributes,
and descriptions of each attribute.

Object-access model - Shows the synchronous interactions between
state models at the global system level. Synchronous interactions occur
when one state model accesses the instance data of another object via an
accessor process. State models (enclosed in ovals) are connected to each
other by directed arcs labeled with the accessor process.

Object-communlcatlon model - Shows the asynchronous interactions
between state models and extemal entities at the global system level. State
models (enclosed in ovals) are connected to each other and to external enti-
ties (enclosed in boxes) by directed arcs labeled with communicating events.

Process desctlptlon - A narrative description of a process. A process
description is needed for every process appearing on an action-dataflow dia-
gram.

Relationship specfflcatlon - A text description of each relationship, in-
cluding the name of the relationship (from the point of view of each object),
conditionality (required or optional), multiplicity (one-to-one, oneto-many,
many-to-many), a general description of the relationship, and identification of
the attributes (foreign keys) through which the relationship is formalized.

State m W l - State models conform to the conventional notation for
state-transition diagrams (see the sidebar, “Tools for structured methodolo-
gies”), except they are used to model the states of problem domain entities.
(Traditional STDs, by contrast. model the states of a system, system compo-
nent, or process.)

Subsystem access model - Shows synchronous interactions between
object-access models (one OAM exists for each subsystem). Directed, la-
beled arcs represent synchronous processes flowing between OAMs (en-
closed in boxes).

Subsystem communication model - Shows asynchronous interactions
between object-communication models (one OCM exists for each sub-
system). Directed, labeled arcs represent asynchronous events flowing be-
tween OAMs (enclosed in boxes).

Subsystem relationship model - Shows relationships between informa-
tion models(where each subsystem has exactly one information model). In-
formation models (enclosed in boxes) are connected by undirected arcs (la-
beled with relationships).

of an entity, that is, a person, place,
thing, or event that exists in the real
world.)

(2) Define object life cycles. The fo-
cus here is on analyzing the life cycle of
each object (from creation through de-
struction) and formalizing the life cycle
into a collection of states (some pre-
defined condition of an object), events
(signals that cause transitions from state
to state), transition rules (which specify
the allowable transit ions be tween
states), and actions (activities or opera-
tions that must be done by an object
upon arrival in a state). This step also
defines timers, mechanisms used by ac-
tions to generate a future event. The
primary tool during this step is the state
model. (See the sidebar, “Tools for
Shlaer and Mellor object-oriented anal-
ysis.”)

(3) Define the dynamics of relation-
ships. This step develops a state model
for those relationships between objects
that evolve over time (dynamic rela-
tionships). For each dynamic relation-
ship, an associative object is defined in
the information model. Special assigner
state models are defined for relation-
ships in which there may be contention
between object instances for resources
of another object instance.

(4) Definesystem dynamics. This step
produces a model of time and control at
the system level. An object-communi-
cation model (OCM) is developed to
show asynchronous control (akin to sim-
ple message passing). An object-access
model is developed to show synchro-
nous control (instances where one ob-
ject accesses the instance data of anoth-
er through an accessor process). Shlaer
and Mellor also describe a procedure
for tracing threads of control at a high
level (by following events on the OCM)
and at a more detailed level (by creating
a thread-of-control chart for individual
actions).

(5) Developprocessmodels. For each
action, an action-dataflow diagram is
created that shows all of the processes
for that action, and the data flows among
the processes and data stores. (Stan-
dard DeMarco notation for DFDs is
used, except additional notations are
provided to show control flows and to
show conditionality in the execution of
dataflows and control flows.) OOA de-
fines four types of processes (accessors,
event generators, transformations, and
tests) and provides guidelines for de-

COMPUTER

I

composing actions into these constitu-
ent processes.

(6) Define domains und subsysterns.
For large problems, it can be useful to
decompose the subject matter into con-
ceptually distinct domains. Four types
of domains are identified: application,
service, architectural, and implementa-
tion. In addition, it is sometimes useful
to decompose the application domain
into multiple subsystems.

Shlaer and Mellor provide implicit.
rather than explicit,support for the three
essential principles of object orienta-
tion - classification, inheritance, and
encapsulation. The objects and relation-
ships contained in the information struc-
ture diagram, while not identical to ob-
ject-oriented concepts of classification
and inheritance, can easily be mapped
to these concepts during design. (Regu-
lar entities and parent entities engaged
in is-a style relationships correspond to
classes and superclasses, respectively.
and identify candidate inheritance rela-
tionships. The is-part-of style relation-
ships correspond to whole-to-part class
relationships.) The requirement that
each action process (and associated data-
flow diagram) be associated with exact-
ly one object preserves encapsulation
of those operations.

Comparison of analysis
methodologies

The conventional and OOA method-
ologies reviewed here can be compared
along 1 1 modeling dimensions: these
dimensions represent the superset of
dimensions supported by the individual
methodologies (see Table 1). Since the
various methodologists tend to use wide-
ly divergent terminology and notations
for similar concepts, Table 1 presents
the dimensions at a level that captures
essential similarities and differences
between the methodologies. We exam-
ined the concepts and notations advo-
cated by each methodology in detail to
determine those that were variants on
the same basicidea. (For example, Coad
and Yourdon’s concept of a generaliza-
tion-specialization relationship between
objects is viewed as essentially the same
as the is-a style or subtypehper type
entity relationships described in the oth-
er analysis methodologies. When used
as part of an OOA methodology, gener-

alization-specialization and is-a relation-
ships are both intended to identify can-
didate opportunities for inheritance.)

Object-oriented versus conventional
analysis. As Table 1 shows, object-
oriented analysis covers many of the
same dimensions as Yourdon MSA and
Martin information engineering, al-
though there is a marked contrast be-
tween OOA and DeMarco structured
analysis. MSA, information engineer-
ing, and all of the object-oriented meth-
odologies provide a variety of tools for
modeling entities. These include tools
for defining entity relationships and at-
tributes (see Table 1 , rows 1 through 4)
and partitioning large models by group-
ing naturally related entities (row 5).
MSA. Coad and Yourdon OOA, and
Shlaer and Mellor OOA support mod-
eling of states (row 6), although within
MSA states are modeled at the level of
a system or system component, while in
the OOA methodologies states are
modeled at the level of problem domain
entities (objects). DeMarco structured
analysis, MSA, Coad and Yourdon
OOA, and Shlaer and Mellor OOA pro-
vide tools for defining the detailed logic
within functions or services (row 7) .

The most important differences be-
tween object-oriented and convention-
al analysis methodologies ultimately
stem from the object-oriented require-
ment of encapsulated operations. Con-
ventional methodologies provide tools
to create a functional decomposition of
operations (row 8) and to model end-
to-end processing sequences (row 9). A
functional decomposition of systems
violates encapsulation because opera-
tions can directly access a multitude of
different entities and are not subordi-
nated to any one entity; so it is appropri-
ate that no object-oriented methodolo-
gy provides support here. It is less clear
why none of the OOA methodologies
as reviewed here provide an explicit
model of end-to-end processingsequenc-
es, since there is no inherent incompat-
ibility between this view of a system and
object orientation. This issue is discussed
further in the concluding section.

All the OOA methodologists recog-
nize a need to develop some sort of
model of system operations, albeit in a
way that preserves encapsulation. As a
result, each methodology provides new
tools, or variants on conventional tools,
for modeling operations as exclusive
services of objects (row 10). Row 11

illustrates a further distinction between
object-oriented and conventional anal-
ysis that arises from the need in object
orientation for active communication
between entities. (Entities communi-
cate explicitly in an object-oriented sys-
tem, whereas in a conventional system,
entities are passive data stores manipu-
lated by active, independent proce-
dures.)

OOA methodology similarities. The
three OOA methodologies illustrated
inTable 1 overlapsignificantly, although
different notations and terminology are
used for essentially the same concepts.
These stylistic differences obscure the
fact that, in each of the three methodol-
ogies, entities (objects) and relation-
ships establish a foundation for later
stages of analysis. Bailin uses a standard
ERD notation, which includes the idea
of subtypehper type relationships, as
well as any number of user-defined re-
lationships. Shlaer and Mellor’s infor-
mation structure diagrams are similar
in terms of content to ERDs. While
neither of these methodologies specifi-
cally mentions such object-oriented no-
tions as inheritance and object classifi-
cat ion, E R D s do, in fact, capture
candidate instances of these sorts of
relationships using subtypekupertype
constructs.

Dynamic entity connections and us-
ing-style relationships are also captured
in ERDs through such relationship types
as creates, destroys, uses, and modifies.
Unlike the other two methodologies,
Coad and Yourdon refer explicitly to
object-oriented concepts such as inher-
itance and object decomposition. None-
theless, layers I , 2, and 4 of the class and
objects diagram can easily be mapped
to an ERD notation, and these three
layers serve essentially the same pur-
pose as an ERD. (The objects and class-
es identified in level 1 map to the ERD
concept of an entity. The generaliza-
tion-specialization relationships defined
in level 2 correspond to sub typehpe r -
type relationships in an ERD. The whole-
part structures defined in level2 and the
associative relationships identified in
layer 4 correspond to general relation-
ships in an ERD.)

OOA methodology differences. The
clearest differences between the meth-
odologies occur in three areas:

(1) depiction of entity states,

October 1992 29

I

Table 1. Comparison of analysis methodologies.

Bailin Coad and Shlaer and
Yourdon Object- Yourdon Mellor

DeMarco Modern Martin Oriented 0 bj ec t- Object-
Structured Structured Information Requirements Oriented Oriented

Component Analysis Analysis Engineering Specification Analy5is Analysis

Data-model
diagram

Entity-
relationship
diagram

Class and
objects
diagram
layer I

Class and
objects
diagram
layer 2

Information-
structure
diagram

1. Identification/
classification
of entities'

Not
supported

Not
supported

Not
supported

Data
dictionary

Dataflow
diagram

Not
supported

Mini-

Entity-
relationship
diagram

2. General-to-
specific and
whole-to-part
entity-
relationships

3. Other entity-
relationship
(creates,
uses, etc.)

4. Attributes
of entities

Entity-
relationship
diagram

Data-model
diagram

Entity-
relationship
diagram

Information-
structure
diagram

Entity-
relationship
diagram

Data-model
diagram

Entity-
relationship
diagram

Class and
objects
diagram
layer 4

Class and
objects
diagram
layer 4

Class and
objects
diagram
layer 3

Information-
structure
diagram

Data
dictionary

Bubble
chart

Not
supported

Information-
structure
diagram

Domain chart;
subsystem
communication,
access, and
relationship
models

State
model

5. Large-scale
model
partitioning

Event-
partitioned
dataflow
diagram

Subject
databases

Domain-
partitioned
entity-
relationship
diagrams

6. States and
transi tions**

State-
transition
diagram

Not
s iipp o r te o'

Not
supported

Object-state
diagram:
service
chart

Service
chart

Action data-
flow diagram;
process
descriptions

Not
Supported

7. Detailed logic
for functions1
Services

Mini- Not
supported

Not
supported specification specification

8. Top-down
decomposition
of functions""

9. End-to-end
processing
sequences

10. Identification
of exclusive
services

Dataflow
diagram

Dataflow
diagram

Not
supported

Not
supported

Dataflow
diagram

Dataflow
diagram

Not
supported

Not
supported

Process-
decomposition
diagram

Process-
dependency
diagram

Not
supported

Not
Supported

Not
Supported

Not
supported

Not
supported

Not
supported

Entity-
dataflow
diagram

Class and
objects
diagram
layer 5

Class and
objects
diagram
layer 5

State model,
action-data-
flow diagram

11. Entity
communication
(via messages
or events)

Not
supported

Entity-
dataflow
diagram

Object
communication
model; object-
access model

* For stylistic reasons, the term entity, when it appears in this column, is intended to encompass the terms entity (as used in conventional methodologies and
by Bailin), object (as used by Shlaer and Mellor). and class (as used by Coad and Yourdon).

** Conventional STDs as used in Yourdon's MSA describe the states of a system or system component. whereas Shlaer and Mellor's state model and Coad and
Yourdon'sobject-state diagram describe the statesof problem domain entities. STDs are not an integral part of information engineering because they are thought
to be too detailed for the analysis phase. although Martin allows that they may be used occasionally.

*** Bailin does provide some support for decomposition of functions via entity-dataflow diagrams. but functions are decomposed only at the lowest levels of
the diagram rather than at all levels.

(2) definition of exclusive services, and
(3) attention to attribute modeling.

Shlaer and Mellor place the most em-
phasis on modeling entity states and
devote an entire phase of their method-
ology to defining entity life cycles and
depicting them in state models. Coad
and Yourdon also model entity states,
although this does not appear t o be a
significant component of the methodol-
ogy. (Coad and Yourdon’s service chart
contains much of the same information
as Shlaer and Mellor’s state model, al-
though it also contains procedural logic
unrelated to entity states and transitions.
Coad and Yourdon recommend the use
of an object-state diagram where help-
ful, but this diagram does not explicitly
name the events that trigger transitions.
The object-state model is referred to
only sparingly, and does not appear to
be a significant component of the final
system model.) Bailin has no formal
means of depicting entity states and tran-
sitions, although he notes that state-tran-
sition diagrams are being considered as
one possible extension of the method.

Coad and Yourdon and Shlaer and
Mellor provide the most detailed repre-
sentations of exclusive services. In Coad
and Yourdon, exclusive services are as-
signed to objects in layer 5 of the class
and objects diagram. and the procedural
logic contained in each service is defined
in detail in an associated service chart.
Shlaer and Mellor also identify exclu-
sive services, which they term actions.
Actions are identified on state models
(object specific) and are defined in de-
tail in t he action-dataflow diagram
(ADFD) and corresponding process de-
scriptions. The primary tool for model-
ing Bailin’s functions - the entity-data-
flow diagram-contains much less detail
than Coad and Yourdon’s service chart
or Shlaer and Mellor’s ADFD with pro-
cess descriptions.

The methodologies differ substantial-
ly in their level of attention to attribute
modeling. Bailin places a very low em-
phasis on defining attributes of entities;
in fact, he makes no mention of attribute
modeling at all. Coad and Yourdon de-
vote a phase to identifying attributes,
although not to the extent of ensuring
that attributes are normalized within
entities. Shlaer and Mellor provide the
most emphasis on attribute modeling of
the three methodologies, including ex-
tensive guidance for describing and nor-
malizing attributes.

Finally, Shlaer and Mellor support
some concepts not addressed by Coad
and Yourdon or Bailin. These include

(1) a distinction between asynchro-
nous and synchronous control,

(2) the use of timers to generate fu-
ture events, and

(3) the concept of a dynamic rela-
tionship and its role in handling
contention between concurrent
processes.

OOA: Incremental versus radical
change. With regard to the incremental
versus radical debate, object-oriented
analysis does represent a radical depar-
ture from older process-oriented meth-
odologies such as DeMarco structured
analysis, but is only an incremental
change from data-oriented methodolo-
gies like Martin information engineer-
ing. Table 1 shows that O O A methodol-
ogies typically model six dimensions of
the problem domain not contained in a
structured analysis model (see rows 1-3,
6,10-11) and d o not model two process-
oriented dimensions (rows 8-9) that form
the foundation of a D e Marco struc-
tured analysis model. O O A decompos-
es the problem domain based on a clas-
sification of entities (objects) and their
relationships, while structured analysis
provides a decomposition based on pro-
cesses. Developers schooled in DeMar-
CO structured analysis will find the com-
petencies they developed in the
construction of hierarchies of DFDs to
be, for the most part, irrelevant. Mean-
while, a whole new set of competencies
relating to the classification and model-
ingof entities will have to be developed.

The revolutionaries quoted in the in-
troduction rightly observe that object
orientation is fundamentally at odds with
the process-oriented view of systems
favored by structured methodologies
during the 1970s. However, they ignore
important changes in these same meth-
odologies over the course of the 1980s
towards a more balanced view of data
and processes. O O A methodologies only
model two dimensions of the problem
domain not modeled by Yourdon MSA
or Martin information engineering (see
Table 1. rows 10-1 I) .

All the OOA methodologies reviewed
here contain a heavy information mod-
eling component, and potential adopt-
ers with a strong information modeling
background should require only limited
exposure to absorb the notational dif-

ferences between conventional infor-
mation modeling diagrams and the vari-
ants developed by OOA methodolo-
gists. T h e idea of shift ing f r o m
disembodied processes (modeled in
dataflow diagrams) to encapsulated ser-
vices will be more challenging. Howev-
er, at the level of detail required for
analysis, this conceptual shift can prob-
ably be absorbed without great difficul-
ty. Shlaer and Mellor OOA, with its
emphasis on modeling object life cycles,
appears to represent the most signifi-
cant change of the three O O A method-
ologies.

Object-oriented design
methodologies

Design is the process of mapping sys-
tem requirements defined during anal-
ysis t o an abstract representation of a
specific system-based implementation,
meeting cost and performance con-
straints. As was done with OOA meth-
odologies, we conducted a literature
search to identify broadly representa-
tive OOD methodologies first published
in book form or as detailed articles in
refereed journals from 1980 to 1990.
This resulted in the selection of three
methodologies from Booch,’ Wasser-
man et al.,” and Wirfs-Brock et al.’’
Implementation-specific methodologies,
such as those targeted at real-time sys-
tems using the Ada language, were ex-
cluded from consideration.

We present the methodologies in an
order based on their similarities to con-
ventional methodologies. Wasserman et
al. draws most heavily on structured
design and is presented first, followed
by Booch, and Wirfs-Brock et al.

Wasserman et al. object-oriented
structured design. Object-oriented struc-
tured design (OOSD) was developed
by Wasserman, Pircher, and Muller. The
methodology provides a detailed nota-
tion for describing an architectural de-
sign, which they define as a high-level
design that identifies individual mod-
ules but not their detailed internal rep-
resentation. Wasserman et al. state that
the overall goal of OOSD is to provide
a standard design notation that can sup-
port every software design, including
both object-oriented and conventional
approaches.

OOSD offers a hybrid notation that

October 1992 31

Tools for Wasserman et al. object-oriented
structured design

Object-oriented structure chert - An updated version of the classical
structure chart that adds notations for objects and classes (“information
clusters”), methods, visibility, instantiation, exception handling, hidden oper-
ations, generic definitions (abstract classes), inheritance, and concurrency.
The charts can also be used to show multiple inheritance, message passing,
polymorphism, dynamic binding, and asynchronous processes.

incorporates concepts from previous
work from several areas, including struc-
ture charts from structured design;
Booch’s notation for Ada packages and
tasks; hierarchy and inheritance from
object orientation: and the concept of
monitors from concurrent programming.
However, as Wasserman et al. observe,
OOSD does not provide a detailed pro-
cedure for developing the design itself.

The primary tool for OOSD is the
object-oriented structure chart (see the
sidebar, “Tools for Wasserman et al.
object-oriented structured design”). This
chart takes the symbols and notations
from conventional structure charts. in-
cluding modules. data parameters, and
control parameters, and adds notations
for such object-oriented constructs as
objects and classes (called “informa-
tion clusters” by the authors), methods,
instantiation, exception handling. ge-
neric definitions (similar t o abstract
classes). inheritance. and concurrency.
Object-oriented structure charts can be
used to show multiple inheritance, mes-
sage passing, polymorphism. and dy-
namic binding. OOSD also supports the
concept of a monitor. which i s useful in
depicting the asynchronous processes
typically found in real-time systems.

Although OOSD is intended prima-
rily for architectural design, the authors
state that OOSD provides a foundation
for representing design decisions asso-
ciated with the physical design. The
authors recommend that annotations
be used to reflect the idiosyncrasies of
individual implementation languages.
while preserving the generic character
of basic symbols. For example. OOSD
includes optional Ada language-specif-
ic annotations to provide for packages,
sequencing, and selective activation.

Booch object-oriented design. Booch

pioneered the field of object-oriented
design. As originally defined in the ear-
ly 1980s. Booch’smethodology was Ada
language specific, but it has been signif-
icantly expanded and generalized since
then. Booch views his methodology as
an alternative to. rather than an exten-
sion of, structured design.

Although Booch describes a host of
techniques and tools to assist design,
ranging from informal lists to formal
diagrams and templates, he is reluctant
to prescribe a fixed ordering of phases
for object-oriented design. Rather, he
recommends that analysts work itera-
tively and incrementally, augmenting
formal diagrams with informal tech-
niques as appropriate to the problem at
hand. Nevertheless, Booch does delin-
eate four major steps that must be per-
formed during the course of OOD:

(1) Identify classes and objects. Iden-
tify key abstractions in the problem space
and label them as candidate classes and
objects.

(2) Identifj the semantics o f classes
and objects. Establish the meaning of
the classes and objects identified in the
previous step using a variety of tech-
niques. including creating “scripts” that
define the life cyclcs of each object from
creation to destruction .

(3) Iden t i f j relatiotzsh i p s between
classes and objects. Establish class and
object interactions. such as patterns of
inheritance among classes and patterns
of cooperation among objects. Thisstep
also captures visibility decisions among
classes and objects.

(4) Implenient c1as.sr.s r i n d objects.
Construct detailed internal views of
classes and objects, including definitions
of their various behaviors (services).
Also. allocate objects and classes to
modules (as defined in the target lan-

guage environment) and allocate pro-
grams to processors (where the target
environment supports multiple proces-
sors).

The primary tools used during O O D
are

class diagrams and class templates
(which emphasize class definitions
and inheritance relationships);
object diagrams and timing diagrams
(which stress message definitions,
visibility, and threads of control);
state-transition diagrams (to model
object states and transitions);
operation templates (to capture def-
initions of services);
module diagrams and templates (to
capture physical design decisions
about the assignment of objects and
classes to modules): and
process diagrams and templates (to
assign modules to processors in sit-
uations where a multiprocessor con-
figuration will be used).

(See the sidebar, “Tools for Booch ob-
ject-oriented design.”)

Booch O O D provides the widest va-
riety of modeling tools of the O O D
methodologies reviewed here. Although
he does not prescribe a fixed sequence
of design steps. Booch does provide a
wealth of guidance on the design pro-
cess by describing in detail the types of
activities that must be performed and
by working through the design of five
hypothetical systems from different
problem domains.

Wirfs-Brock et al. responsibility-
driven design. Wirfs-Brock. Wilkerson,
and Wiener developed their responsi-
bility-driven design (RDD) methodol-
ogy during several years of internal soft-
ware development experience in various
corporate settings. R D D is based on a
client-server model of computing in
which systems are seen as being com-
posed of collections of servers that hold
private responsibilities and also render
services to clients based on contracts
that define the nature and scope of valid
client-server interactions.

T o map these terms to more conven-
tional object-oriented terminology. cli-
ents and servers are different kinds of
objects, while services and responsibil-
ities correspond to methods. Contracts
and collaborations are metaphors for

32 COMPUTER

I

the idea that, to preserve encapsula-
tion, some objects must be willing to
perform certain tasks (such as modify-
ing the values of their own internal vari-
ables) for the benefit of other objects,
and that some kinds of services require
several objects to work together to
achieve the desired result.

Their methodology is responsibility
driven because the focus of attention
during design is on contracts between
clients and server objects. These con-
tracts spell out what actions each object
is responsible for performing and what
information each object is responsible
for sharing. Wirfs-Brock et al. contrast
their approach with what they term data-
driven object-oriented design method-
ologies (they cite no specific authors),
which are said to emphasize the design
of data structures internal to objects
and inheritance relationships based on
common attributes. In contrast, the re-
sponsibility-driven approach is intend-
ed to maximize the level of encapsula-
tion in the resultingdesign. Data-driven
design is said to focus more on classes
and inheritance, while responsibility-
driven design focuses more on object
interactions and encapsulation.

Like Booch, Wirfs-Brock et al. rec-
ommend an incrementaliiterative ap-
proach to design, as opposed to rigid
phases with fixed deliverables. R D D
provides for a six-step procedure spread
across two phases. An exploration phase
finds candidate classes, responsibilities,
and collaborations. A second analysis
phase builds hierarchies, defines sub-
systems, and defines protocols. The steps
are

(1) Find classes. Extract noun phras-
es from the requirements specification
and build a list of candidate classes by
looking for nouns that refer to physical
objects, conceptual entities, categories
of objects, and external interfaces. At-
tributes of objects and candidate super-
classes are also identified.

(2) Find responsibilities and assign to
classes. Consider the purpose of each
class and examine the specification for
action phrases to find candidate respon-
sibilities. Assign responsibilities to
classes such that system intelligence is
evenly distributed, behaviors reside
with related information. and responsi-
bilities a r e shared among related
classes.

(3) Find collaborations. Examine re-
sponsibilities associated with each class

and consider which other classes are
needed for collaboration to fulfill each
responsibility.

(4) Definehierarchies. Construct class
hierarchies for kind-of inheritance rela-
tionships such that common responsi-
bilities are factored as high as possible
and abstract classes do not inherit from
concrete classes. Construct contracts by
grouping together responsibilities used
by the same clients.

(5) Define subsystems. Draw a col-
laborations graph for the complete sys-
tem. Look for frequent and complex
collaborations and identify these as
candidate subsystems. Classes within a
subsystem should support a small and
strongly cohesive set of responsibilities
and should be strongly interdepen-
dent.

(6) Defineprotocols. Develop design
detail by writing design specifications
for classes, subsystems, and contracts.
Construct the protocols for each class

(the signatures for the messages to which
each class responds).

Tools used throughout the design pro-
cess include

Class cards (steps 1 , 2 and 3);
Hierarchy diagrams (step 4);
Venn diagrams (step 4);
Collaborations graphs (steps 4 and

Subsystem cards (step 5) ;
Class specifications (step 6); and
Subsystem specifications (step 6).

5) ;

(See the sidebar, “Tools for Wirfs-Brock
et al. responsibility-driven design.”)

In advocating an approach that em-
phasizes the dynamic behavior and re-
sponsibilities of objects rather than their
static class relationships, R D D provides
a significant contrast to Booch OOD
and to the O O A methodologies re-
viewed earlier. Unlike these other meth-

Tools for Booch object-oriented design

Class diagramhemplate - Shows the existence of classes (enclosed in
dotted-line “clouds”) and their relationships (depicted by various kinds of di-
rected and undirected arcs) in the logical design of a system. Relationships
supported include uses, instantiates, inherits, metaclass, and undefined.

Module diagramemplate - Documents the allocation of objects and
classes to modules in the physical design of a system. Only needed for lan-
guages (such as Ada) that support the idea of a module as distinct from ob-
jects and classes.

Object diagramemplate - Used to model some of dynamics of objects.
Each object (enclosed in solid line “clouds”) represents an arbitrary instance
of a class. Objects are connected by directed arcs that define object visibility
and message connections. Does not show flow of control or ordering of
events.

Operation template - Structured text that provides detailed design docu-
mentation for operations.

Process diagramempiate - Used to show the allocation of processes
to processors in the physical design of a system. Only for implementations
in multiprocessor environments.

State-transition diagram - Shows the states (depicted by circles) of a
class, the events (directed arcs) that cause transitions from one state to an-
other, and the actions that result from a state change.

Timing diagram - A companion diagram to the object diagram, shows
the flow of control and ordering of events among a group of collaborating
objects.

October 1992 33

Tools for Wirh-Brock et al. responsibility-
driven design

Class cards - A physical card used to record text describing classes, in-
cluding name, superclasses, subclasses, responsibilities, and collabora-
tions.

Class specification - An expanded version of the class card. Identifies
superclasses, subclasses, hierarchy graphs, collaborations graphs. Also in-
cludes a general description of the class, and documents all of its contracts
and methods.

Collaborations graph - A diagram showing the classes, subsystems,
and contracts within a system and the paths of collaboration between them.
Classes are drawn as boxes. Subsystems are drawn as rounded-corner
boxes enclosing multiple classes. Collaborations are directed arcs from one
class to the contract of another class.

Hierarchy diagram - A simple diagram that shows inheritance relation-
ships in a lattice-like structure. Classes (enclosed within boxes) are con-
nected by undirected arcs that represent an inheritance relationship. Super-
classes appear above subclasses.

Subsystem card - A physical card used to record text describing sub-
systems, including name and a list of contracts.

Subsystem specification - Contains the same information as a class
specification, only at the level of a subsystem.

Venn diagram - Used to show the overlap of responsibilities between
classes to help identify opportunities to create abstract superclasses. Class-
es are depicted as intersecting ellipses.

odologies, the initial steps of RDD do
not focus on establishing a hierarchy of
classes, but rather attempt to construct
a close simulation of object behaviors
and interactions.

Comparison of design
methodologies

Object-oriented design versus con-
ventional design. The distinctions be-
tween conventional and object-orient-
ed development, some of which were
identified in the discussion of analysis
methodologies, are amplified during
design due to the growing importance
of implementation-specific issues (see
Table 2). None of the conventional
methodologies support the definition
of classes, inheritance, methods, or mes-
sage protocols, and while it may not be
necessary to consider these constructs

34

explicitly during object-oriented analy-
sis, they form the foundation of an ob-
ject-oriented design (Table 2, rows 6
through 10). In addition, while conven-
tional and object-oriented methodolo-
gies both provide tools that define a
hierarchy of modules (row l), a com-
pletely different method of decomposi-
tion is employed, and the very defini-
tion of the term module is different.

In conventional systems, modules -
such as programs, subroutines, and func-
tions - only contain procedural code.
In object-oriented systems, the object
-a bundling of procedures and data -
is the primary unit of modularity. Struc-
tured design and information engineer-
ing both use function-oriented decom-
position rules, resulting in a set of
procedure-oriented program modules.
OOD methodologies, by contrast, em-
ploy an object-oriented decomposition
resulting in collections of methods en-
capsulated within objects.

The greatest overlap between con-
ventional and object-oriented design
methodologies is between Booch OOD
and information engineering. Both
methodologies provide a tool for defin-
ing end-to-end processing sequences
(row 4), although Booch’s timing dia-
gram contains much less detail than in-
formation engineering’s data-dependen-
cy diagram. Both methodologiesprovide
for a detailed definition of procedural
logic.

Booch recommends the use of a ge-
neric program definition language
(PDL) or structured English, while in-
formation engineering recommends the
use of a graphical action diagram for
this purpose. Finally, for information-
intensive applications, Booch recom-
mends that a normalization procedure
be used for designing data. This nor-
malization procedure is very similar to
the one employed by information engi-
neering.

OOD methodology differences. The
most notable differences among the
three OOD methodologies have to do
with

(1) data design.
(2) level of detail in describing the

(3) level of detail provided by dia-
process of OOD, and

gram notations.

Booch, as mentioned above, employs a
detailed procedure (where appropriate)
for designing the data encapsulated with-
in objects. In fact, Booth* sees many
parallels between database design and
OOD:

In a process not unlike object-oriented
design, database designers bounce between
logical and physical design throughout the
development of the database. . . T h e ways
in which we describe the elements of a
database are very similar to the ways in
which we describe the key abstractions in
an application using object-oriented design.

Wasserman et al. and Wirfs-Brock et
al., by contrast, say little on the issue of
data design or normalization.

Wirfs-Brocket al. providea very thor-
ough description of the design process,
which they break into 26 identifiable
design activities spread across six steps.
Booch offers less in the way of explicit,
step-wise design procedures, although
he does provide a wealth of implicit
guidance, using a detailed description
of five hypothetical design projects.

COMPUTER

I

Table 2. Comparison of design methodologies.

Wasserman Wirfs-Brock
Yourdon and et al. Object- Booch et al.
Constantine
Structured Information Structured Oriented Driven

Component Design Engineering Design Design Design

Mart in Oriented Object- Responsibility-

1. Hierarchy
of modules
(physical
design)

2. Data
definitions

3. Procedural
logic

4. End-to-end
processing
sequences

5. Object
states and
transitions

6. Definition
of classes
and inheritance

7. Other class
relationships
(instantiates,
uses, etc.)

8. Assignment
of operations/
services
to classes

9. Detailed
defiin of
operations/
services

10. Message
connections

Structure
chart

Hierarchy
diagram

Not
supported

Dataflow
diagram

Not
supported

Not
Tupported

Not
supported

Not
supported

Not
supported

Not
supported

Process-
decomposition
diagram

Data-model
diagram: data-
structure
diagram

Action
diagram

Dataflow
diagram;
process-
dependency
diagram

Not
supported

Not
supported

Not
supported

Not
supported

Not
supported

Not
supported

Object-
oriented
structure
chart

Object-
oriented
structure
chart

Not
supported

Not
supported

Not
supported

Object-
oriented
structure
chart

Object-
oriented
structure
chart

Object-
oriented
structure
chart

Not
supported

Object-
oriented
structure
chart

Module
diagram

Class
diagram

Operation
template

Timing
diagrams

State-
transition
diagram

Class
diagram

Class
diagram

Class
diagram

Operations
template

Object
diagram and
template

Not
supported

Class
specification

Class
specification

Not
supported

Not
supported

Hierarchy
diagram

Class
specification

Collaborations
graph; class
specification

Class
specification

Collaborations
graph

Wasserman et al., by contrast, assume
that the particulars of an implementa-
tion environment will dictate what kinds
of procedures and quality metrics are

best; they do not offer a procedural
description of OOSD.

Wasserman et al. and Booch both
provide a comprehensive and rigorous

set of notations for representing an ob-
ject-oriented design. Wirfs-Brock et al.
provide a less detailed notation in their
R D D methodology, and do not address

October 1992 35

such concepts as persistence, object in-
stantiation, and concurrent execution.
The authors claim that R D D is appro-
priate for object-oriented and conven-
tional development projects alike; this
may explain the lack of attention to
implementation issues that are more
closely associated with object orienta-
tion.

OOD: Incremental versus radical
change. Regarding the incremental-
versus-radical debate, object-oriented
design is clearly a radical change from
both process-oriented methodologies
and data-oriented methodologies (Your-
don and Constantine structured design
and Martin information engineering,
respectively). Table 2 shows that the
number of modeling dimensions on
which conventional and object-orient-
ed methodologies overlap ranges from
a maximum of four out of 10 (informa-
tion engineering and Booch OOD) to as
few as one out of 10 (structured design
and Wirfs-Brock OOD) . Although con-
ventional methodologies such as infor-
mation engineering support a data-ori-
ented view in modeling the problem
domain during analysis, they use a func-
tion-oriented view in establishing the
architecture of program modules dur-
ing design. As a result, not only is the
primary structuring principle for pro-
gram code different - functions versus
objects - but at least half of the specific
dimensions of the target system model
are different.

Object-oriented design requires a new
set of competencies associated with con-
structing detailed definitions of classes
and inheritance, class and object rela-
tionships, and object operations and
message connections. The design trade-
offs between maximizing encapsulation
(by emphasizing object responsibilities)
versus maximizing inheritance (by em-
phasizing commonalties among class-
es) are subtle ones. Designing classes
that are independent of the context in
which they are used is required to max-
imize reuse, and here again, very subtle
design decisions must be made.” As
mentioned in the introduction, the im-
portant point is not whether object-
oriented concepts are radically new in
some absolute sense, but rather wheth-
er they are radically new to the popula-
tion of potential adopters. The idea of
building systems devoid of global-call-
ing programs, where everything literal-
ly is defined as an object, will certainly

be a radical concept to designers
schooled in conventional design meth-
odologies.

Transition from
analysis to design

Analysis is usually defined as a pro-
cess of extracting and codifying user
requirements and establishing an accu-
rate model of the problem domain.
Design, by contrast, is the process of
mapping requirements to a system im-
plementation that conforms to desired
cost, performance, and quality parame-
ters. While these two activities are con-
ceptually distinct, in practice the line
between analysis and design is frequently
blurred. Many of the components of an
analysis model have direct counterparts
in a design model. I n addition, the pro-
cess of design usually leads to a better
understanding of requirements, and can
uncover areas where a change in re-
quirements must be negotiated to sup-
port desired performance and cost con-
straints. In recognition of these realities,
most current methodologies recommend
that analysis and design be performed
iteratively, if not concurrently.

One of the frequently cited advantag-
es of object orientation is that it pro-
vides a smoother translation between
analysis and design models than do struc-
tured methodologies. It is true that no
direct and obvious mapping exists be-
tween structured analysis and structured
design:

Anyone involved with [structured design]
knows that the transition from the analysis
model to the design model can be tricky.
For example, in moving from a dataflow
diagram view of the system to creating
design-structure charts the modeler is
forced to m a k e a significant shift in
perspective. There are strategies t o assist
in the matter (transform analysis. trans-
action analysis. etc.). hut it remains a
difficult task because the mapping is not
truly isomorphic.’

With object orientation, the mapping
from analysis to design does appear to
be potentially more isomorphic, as a
comparison of Tables 1 and 2 reveals.
Every analysis model component sup-
ported by at least one O O A methodol-
ogy can be mapped to a similar (albeit
usually more detailed) component sup-
ported by at least one design methodol-
ogy. Rows 1-3, 4, 5, 6, 7, 10, and 11 in

Table 1 correspond to rows 6-7,2, 1,5,
9, 8 and 10 in Table 2. respectively.

Only two object-oriented methodol-
ogists provided detailed procedures
encompassing both analysis and design
(Coad and Yourdon’“ and Rumbaugh
et al.z1). Shlaer and Mellor also briefly
describe a procedure for translating
OOA into OOD. Development groups
that do not elect to adopt a single meth-
odology spanning analysis and design
will face the problem of matching up
incompatible terminology and notations
from different methodologists. The blur-
ring between analysis and design is a
particularly acute issue because the
somewhat arbitrary line between analy-
sis and design is drawn in different plac-
es by different methodologists. Of the
O O A methodologies, Coad and Your-
don’s and Shlaer and Mellor’s seem to
encroach the most on design. Coad and
Yourdon explicitly identify inheritance
relationships (usually considered a de-
sign activity) and provide for a formal
and detailed specification of the logic
within services. Shlaer and Mellor pro-
vide for complete normalization of at-
tributes and advocate detailed model-
ing of entity life cycles. Of the design
methodologies reviewed here, Wirfs-
Brock et al. R D D appears to encroach
the most on analysis in that it assumes
that only an English-language specifi-
cation (rather than a full-analysis mod-
el) is the input to the methodology.

Overall critique

Object-oriented methodologies are
less mature than conventional method-
ologies, and may be expected to under-
go a period of expansion and refine-
ment as project experience uncovers
gaps in modeling capabilities or mis-
placed assumptions. Three areas cur-
rently stand out as candidates for fur-
ther development work. T o begin with,
a rigorous mechanism is needed for de-
composing very large systems into com-
ponents, such that each component can
be developed separately and subsequent-
ly integrated. Second, tools for model-
ing end-to-end processing sequences that
involve multiple objects are either cum-
bersome or wholly lacking. Third, in the
area of reuse, much is made of design-
ing in reuse (“sowing” reuse), but no
more than passing mention is made of
techniques or procedures for finding
and exploiting existing models, domain

36 COMPUTER

knowledge, or components (“harvest-
ing” reuse). The first two areas are ones
where object-oriented methodologies
lack functionality provided by conven-
tional methodologies, while the third
area lacks support in both object-ori-
ented and conventional methodologies.

Systempartitioninglobject clustering.
Traditionalmethodologies,such asstruc-
tured analysis andinformation engineer-
ing, provide mechanisms for creating a
natural, coarse-grained decomposition
of systems (nested processes in the case
of structured analysis, and subject data-
bases in the case of information engi-
neering). This decomposition is essen-
tial because many projects are too large
to be developed by a single team within
the desired time frame and, hence, must
be dividedintocomponents and assigned
to multiple teams working in parallel.
T o be most beneficial, the decomposi-
tion must be performed early in the
development process, which also sug-
gests it must be created in top-down
fashion rather than bottom-up. In addi-
tion, the decomposition must create
natural divisions between components
and allow for a rigorously defined pro-
cess of subsequent reintegration of the
components.

The most coarse-grained, formally
defined entities in object orientation
are objects and classes. While objects
and classes certainlyprovide apowerful
mechanism for aggregating system func-
tionality, they are usually defined in a
bottom-up fashion as common charac-
teristics get factored to ever higher lev-
els in an inheritance structure. In addi-
tion, very large systems, even after this
factoring process has been completed,
may still consist of hundreds of top-
level classes. D e Champeaux’’ notes

cas,? domains,Ih systems,IhJxand ensem-
blesz2

Two of these constructs - Coad and
Yourdon’s subject areas and the Wirfs-
Brock e t al. subsystems - appear to be
very similar conceptually and provide a
starting point for partitioning object-
oriented models. Yet they are quite in-
formally defined, and they provide lit-
t le indication of how individually
developed system components might
interact. Shlaer and Mellor’s concepts
of domains and subsystems are better
developed, and four of the methodolo-
gy’s diagrams are devoted to modeling
the interactions between domains and
between application domain subsystems
(domain chart, subsystem relationship
model, subsystem communication mod-
el, and subsystem access model).

D e Champeaux’s ensembles and en-
semble classesz2 are the most rigorously
defined of the clustering mechanisms.
Ensembles are analogous to conven-
tional objects, while ensemble classes
are analogous to conventional classes.
An ensemble is a flat grouping of ob-
jects (or other ensembles) that natural-
ly go together - usually because they
participate in whole-to-part relation-
ships. An automobile. for example, is
an ensemble consisting of an engine,
doors, wheels, etc. Ensembles have many
of the same characteristics as conven- End-to-end process modeling. Many
tional objects, including attributes, states problem domains contain global pro-
and transitions, and the capability of cesses that impact many objects and
interacting with other objects and en- involve the serial or parallel execution
sembles. of numerous intermediary steps between

D e Champeaux distinguishes ensem- initiation and conclusion. Examples of
bles from objects on this basis: Ensem- such processesinclude the orderingpro-
bles can have internalparallelism while cess for a manufacturer, daily account
objects cannot. That is, ensembles may reconciliation in a bank, and monthly
consist of subordinate objects or en- invoice processing by a long-distance
sembles that each exhibit behaviors in telecommunications carrier. Conven-
parallel during system execution. Ob- tional methodologies provide well-
jects, by contrast, are assumed to exhib- established tools such as dataflow dia-

While the analysis of a toy example like it only sequential behaviors (for exam- grams (see the “Tools for structured
thepopu’arcarcruisecontrolsystemyie’ds ple.asmodeledin afinite-state machine.) methodology” sidebar) and process-
only a “flat” set of objects [classes], the
analysis o f . . , an airline system or a bank De Champeaux distinguishes ensem- dependency diagrams (see the sidebar,
will yield ‘‘objects” [classes] at different bles from other clustering mechanisms “Tools for Martin information engineer-
abstraction levels. (such as, the Wirfs-Brock et al. sub- ing”) for modeling these sorts of pro-

narily be viewed as a composite object
in the real world.

Yet, in terms of how they behave,
ensembles and composite objects ap-
pear to be quite similar. De Champeaux
notes that the constituents of an ensem-
ble only interact directly with each oth-
er or with the encompassing ensemble.
An ensemble hides the details of con-
stituents that are irrelevant outside of
the ensemble, and acts as a gateway that
forwards messages or triggers t o exter-
nal objects and ensembles. Likewise,
Booch recommends that when using
composite objects, the encapsulating
object should hide the details of the
constituent objects and mediate between
constituent objects andexternal objects.2

Although De Champeaux’s use of en-
sembles seems promising on a concep-
tual level, actual project experiences
will tell whether or not ensembles pro-
vide a practical basis for partitioning
large projects. An interesting question
for language designers is whether en-
sembles, o r some similar construct,
should be explicitly supported, for ex-
ample, through mechanisms that limit
the allowable patterns of interaction
between ensembles, their constituents,
and external objects to just those envi-
sioned by de Champeaux.

The objects and classes, even at the
highest level, are too fine-grained and
defined too late in the development pro-
cess to provide a basis for partitioning
large development projects. This limi-
tation has apparently been recognized
by several methodologists; they have
responded by inventing high-level con-
structs for clustering related object class-
es. These constructs include subject ar-

systems) in that they are more than just
conceptual entities; they exist during
system execution and may have persis-
tent attributes. It is less clear how en-
sembles differ from the conventional
notion of a compound or composite
object,’ except that ensembles seem to
be a more general concept than com-
posite objects. That is, an ensemble might
refer to a cluster of related entities, such
as a fleet of ships that would not ordi-

cesses.
None of the object-oriented method-

ologies reviewed here provide a specific
model for describing global processes
end to end, although individual parts of
the process are modeled piecemeal us-
ing such concepts as operations,’4 ser-
v i c e ~ , ~ actions and processes,’h and re-
sponsibilities.lx (Shlaer and Mellor
describe a procedure for following
threads of control. but this procedure

October 1992 37

spans several different diagrams and
seems rather cumbersome. In any case,
no distinct view of end-to-end process-
ing - devoid of extraneous informa-
tion - is provided.)

Bailin supports the idea of using data-
flow diagrams (and presumably, global
process modeling as well) during analy-
sis, but only to help achieve a better
understanding of objects. The resulting
diagrams serve only as an intermediate
representation and are not part of the
object-oriented specification.I4

Booch’s timing diagram (see the side-
bar, “Tools for Booch object-oriented
design”) is the closest that any of the
methodologies come to supporting a
distinct view of end-to-end process
modeling. Yet this diagram containsvery
little expressive power compared with,
for example, information engineering’s
process-dependency diagram. A timing
diagram only shows flow of control in-
formation, whereas a process-dependen-
cy diagram shows flow of control, flow
of data, and conditional execution. Bailin
also recognizes the need for end-to-end
process modeling and has listed compo-
sition graphs (similar to timing diagrams
in terms of expressive power) as a pos-
sible extension of his methodology.
(Note that the most recent Bailin meth-
odology refers to compositions graphs
as “stimulus-response diagrams.”)

This lack of support for global pro-
cesses is not surprising since the con-
cept of a global process, not subordinat-
ed to any individual object, seems to be
at odds with the spirit of object orienta-
tion. In fact,BoochZ and de Champeaux2:
both warn against the use of even throw-
away dataflow models, for fear that it
will irrevocably bias subsequent object
modeling towards a “function” orienta-
tion.

Still, there is no reason to believe that
complicated business processes and the
system components that automate them
will no longer exist simply because one
adopts object orientation. Nor is elimi-
nation of end-to-end processes listed by
any methodologist as a precondition for
adopting object orientation. Thus, it
would seem that a separate tool is need-
ed to arrange the mosaic of encapsulat-
ed services into a model that illustrates
sequencing, conditional execution, and
related ideas for certain key global pro-
cesses.

Harvesting reuse. One of the most
persistently claimed advantages of ob-

ject orientation is that it enables perva-
sive levels of software reuse. If properly
applied, object-oriented mechanisms
such as encapsulation, inheritance, poly-
morphism, and dynamic binding cer-
tainly obviate many technical barriers
to reuse of program code. In addition, it
has been claimed that object orienta-
tion opens the way to reuse of design
models, or frameworks,’ and even anal-
ysis models from relevant problem do-
mains.h At the level of analysis and de-
sign, reuse can take two basic forms:
reuse of components from previously
developed analysis and design models,
and reuse of abstractions of previously
implemented program components.

Even within an object-oriented im-
plementation environment. achieving
high levels of reuse is by n o means auto-
matic; virtually all object-oriented meth-
odologists emphasize that reuse must
be designed into an application from
the start. This emphasis on sowing re-
use is not surprising; however, it is curi-
ous how little attention object-oriented
methodologists pay to harvesting reuse
during analysis and design. Analysis and
design consume more resources than
programming, and perhaps more im-
portantly, development budgets and
management decisions- both of which
should be strongly influenced by antic-
ipated levels of reuse - are set early in
the development process.

Of the methodologies described here,
only two address the issue of harvesting
reuse from beyond the confines of the
project at hand. Coad and Yourdon re-
fer to the need to examine previous
analysis models for reusable components
and also provide a procedure for merg-
ing existing design or program compo-
nents with new applications.”’Like Coad
and Yourdon, Booch emphasizes the
importance of seeking reusable soft-
ware components from existing class
libraries during design. Yet, neither
author provides specific guidance on
how to find or evaluate existing compo-
nents.

D e Champeaux and Faure6 and
Caldiera and Basili’” discuss the issue of
harvesting reuse at the level of analysis
and design. D e Champeaux and Faure
recommend a repository-based ap-
proach to managing reuse. They sug-
gest that the software development pro-
cess can be seen as a process of creating
and modifying three cross-referenced
repositories with analysis. design, and
implementation components. In this

view, the analysis components serve as
annotations to the design and imple-
mentation components and may point
to alternative realizations of the same
requirements (for example, with differ-
ent performance parameters). They fur-
ther suggest that these annotations could
be the basis for a smart library transver-
sal mechanism. This mechanism could
assist in identifying candidate reusable
components.

Caldiera and Basili provide a much
more thorough examination of the issue
of harvesting reuse, especially in the
areas of identifying and qualifying soft-
ware components. They suggest a mod-
el for project organization where appli-
cation developers are segregated from
“reuse specialists.” Reuse specialists
work in a “component factory” and are
responsible for the development and
maintenance of a repository of reusable
components. The component factory is
responsible for identifying, qualifying,
and tailoring reusable components for
subsequent integration - by applica-
tion developers - into ongoing appli-
cations development projects.

bject-oriented analysis and de-
sign methodologies are rapidly
evolving, but the field is by no

means fully mature. None of the meth-
odologies reviewed here (with the pos-
sible exception of Booch O O D) has -
as of this writing - achieved the status
of a widely recognized standard on the
order of the conventional methodolo-
gies of Yourdon and Constantine or
DeMarco. Object-oriented methodolo-
gies will continue to evolve, as did con-
ventional methodologies before them,
as subtler issues emerge from their use
in a wide array of problem domains and
project environments. A s discussed
above, three areas - system partition-
ing, end-to-end process modeling, and
harvesting reuse - appear to be espe-
cially strong candidates for further de-
velopment work. In the meantime,
adopters of current object-oriented
methodologies may need to develop their
own extensions to contend with these
issues, or alternatively, limit applica-
tion of the methodologies to problem
domains where these issues are of lesser
importance.

Compared with object-oriented meth-
odologies, conventional methodologies
fall at different places along the incre-
mental-radical continuum. Developers

38 COMPUTER

I

schooled only in structured analysis cir-
ca 1978 can be expected to have great
difficulty making the transition to OOA,
while those with an information model-
ing background will find much of OOA
t o be based on familiar concepts.

Duringdesign, all conventional meth-
odologies revert to a process-oriented
view in establishing the architecture of
program modules, and as a result, ob-
ject orientation will likely be viewed as
radical change by developers schooled
in any of the conventional design meth-
ods reviewed here. Since organizations
will have to adopt object-oriented de-
sign methodologies to end up with ob-
ject-oriented implementations. a move
to an object-oriented environment in
general may be seen predominantly as a
radical change.

Object orientation is founded on a
collection of powerful ideas - modu-
larity, abstraction, encapsulation, reuse
- that have firm theoretical founda-
tions. In addition, trends in computing
towards complex data types and com-
plex new forms of integrated systems
seem to favor the object model over
conventional approaches.

Although little empirical evidence
exists to support many of the specific
claims made in favor of object orienta-
tion, the weight of informed opinion
among many leading-edge practitioners
and academics favors object orienta-
tion as a “better idea” for software de-
velopment than conventional approach-
es. Organizations that are able to absorb
this radical change may well find them-
selves in a significantly stronger com-
petitive position vis-a-vis those incapa-
ble of making the transition.

References

E. Yourdon. “Object-Oriented Obser-
vations.” Am. Programmer. Vol. 2. No.
7-8, Summer 1989, pp. 3-7.

G . Booch, “What Is and What Isn’t Ob-
ject-Oriented Design?” A m . Program-
mer , Vol. 2, No. 7-8, Summer 1989, pp.
14-21.

P. Coad and E. Yourdon. Object-Ori-
ented Anulysis, 2nd edition, Prenticc Hall.
Englewood Cliffs. N.J.. 1991.

A.I. Wasserman, P.A. Pircher, and R.J.
Muller, “An Object-Oriented Structured
Design Method for Code Generation,”
Sqftware Eng. Notes. Vol. 14, No. 1. Jan.
1989, pp. 32-55.

5 . M. Page-Jones and S. Weiss. “Synthesis:
An Object-Oriented Analysis and De-
sign Method,” Am. Programmer, Vol. 2.
No. 7-8. Summer 1989, pp. 64-67.

6. D. D e Champeaux and P. Faure, “ A
Comparative Study of Object-Oriented
Analysis Methods.” J . Oriented-Ori-
ented Programming. Vol. 5. No. 1. 1992.
pp. 21-33.

7. R.J. Wirfs-Br0ckandR.E. Johnson,”Sur-
veying Curren t Research in Object-
Oriented Design,” C o m m . A C M , Vol.
33, No. 9. Sept. 1990. pp. 104.124.

8. P.H. Loy. “ A Comparison of Object-
Oricntcd and Structured Development
Methodologies.“ A C M SIGSoft Software
Eng. Notes, Vol. 15. No. 1. Jan. I990, pp.
44-48.

9. E . Yourdon and L. Constantine. Struc-
rnred Design: Funriumentuls of a Disci-
pline o f Computer Programming and
Desipn. 2nd edition, Prentice Hall. New

10.

11.

12.

13.

14.

IS.

16.

17.

18.

19.

York, 1979

T. DeMarco, Structured Analysis and
System Specification. Yourdon Inc., New
York, 1978.

P.T. Ward and S.J. Mellor, Structured
Development of Real -Time Sys tems ,
Yourdon Press, Englewood Cliffs. N.J..
1985.

E . Yourdon, Modern Structured Analy-
Tis. Yourdon Press, Englewood Cliffs,
N.J. 1989.

J . Martin, lnformation Eng.. Books I. 11,
and I l l , Prentice Hall, Englewood Cliffs.
N.J.. 1990.

S.C. Bailin, “An Object-Oriented Re-
qui re men t s Specific a t i on M e t h o d . ”
Comm. A C M , Vol. 32. No. S. May 1989.
pp. 608-623.

S. S h l a e r a n d S.J. Mel lor , O h j e c t -
Oriented Analysis: Modeling the World
in Datu. Yourdon Press, Englewood
Cliffs. N.J.. 1988.

S. Shlacr and S.J. Mellor, Object Life
Cycles: Modeling the World in States.
Yourdon Press, Englewood Cliffs. N.J.,
1992.

K.G. Fichman and C.F. Kemerer, “Ob-
ject-Oriented Analybis and Design Mcth-
odologies: Comparison and Critique,’’
MITSloan Schoolof Management. Cen-
ter for Information Systems Research
Working Paper No . 230. Nov. 1991.

R. Wirfs-Brock. B. Wilkerson, and L.
Wiener. Designing Object-Oriented Soft-
ware, Prentice Hall, Englewood Cliffs.
N.J.. 1990.

G. C‘aldiera and V. Basili. “Identifying
and Qualifying Reusable Software Com-
ponents.” Computer. Vol. 24. No. 2. Feb.
1991, pp. 61-70.

20. P.Coad and E . Yourdon, Object-Ori-
ented Design, Prentice Hall, Englewood
Cliffs, N.J.. 1991.

21. J . Rumbaugh e t al., Object-Oriented
Modeling and Design. Prentice Hall.
Englewood Cliffs, N.J., 1991.

22. D . D e Champeaux, “Object-Oriented
Analysis and Top-Down Software De-
velopment.” Proc. European Conf. Oh-
jec t -Orien ted Programming, Lec ture
Notes in Computer Science, P. America.
ed., Springer-Verlag, Geneva, 1991, pp.
360-376.

Robert G. Fichman is a P h D student in the
Information Technologies group at the M I T
Sloan School of Management. Previously, hc
was an applications dcvclopment supervisor
at Williams Telecommunications. His re-
search interests include software engineer-
ing management , software development
methodologies and tools, and technology
diffusion.

Fichman received his BS and MS degrees
in industrial and operations engineering at
the University of Michigan-Ann Arbor in
1982 and 1983. respectively.

Chris F. Kemerer is the Douglas Drane Ca-
reer Development Associate Professor of
Information Technology and Management
at the MIT Sloan School of Management.
His research interests are in the measure-
ment and modeling of software development
f o r improved performance, and he has pub-
lished articles in leading academic journals
on these topics. H e serves on several editori-
al boards, including Communications ofthe
A C M .

Kemerer received his BS degree in eco-
nomics and decision sciences from the Whar-
ton School of the University of Pennsylvania
and his PhD from the Graduate School of
Industrial Administration at Carnegie Mel-
Ion University. H e is a member of the IEEE
Computer Society, the ACM, and the Insti-
tute for Management Sciences.

Readers can contact the authors a t the
Massachusetts Institute of Technology, E53-
315, Cambridge. M A 02139. fax (617) 258-
7579.

October 1992 39

