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The question of 
whether emerging 

object-oriented 
analysis and design 

methodologies require 
incremental or radical 

changes on the part 
of prospective 

adopters is being 
vigorously debated. 

lthough the concepts underlying object-orientation as a programming 
discipline go back two decades, it’s only in the last few years that object- 
oriented analysis (OOA) and object-oriented design (OOD) methodol- 

ogies have begun to emerge. Object orientation certainly encompasses many novel 
concepts, and some have called it a new paradigm for software development. Yet, 
the question of whether object-oriented methodologies represents a radical change 
over such conventional methodologies as structured analysis remains a subject of 
much debate. 

Yourdon has divided various object-oriented methodologists into two camps, 
revolutionaries and synthesists.’ Revolutionaries believe that object orientation is 
a radical change that renders conventional methodologies and ways of thinking 
about design obsolete. Synthesists, by contrast, see object orientation as simply an 
accumulation of sound software engineering principles that adopters can graft 
onto their existing methodologies with relative ease. 

On the side of the revolutionaries, Booch2 states 

Let there be no doubt that object-oriented design is fundamentally different from 
traditional structured design approaches: it requires a different way of thinking about 
decomposition, and i t  produces software architectures that are largely outside the realm 
of the structured design culture. 

Coad and Yourdon3 add 

We have no doubt that one could arrive at the same results [as Coad and Yourdon’s OOA 
methodology produces] using different methods; but it has also been our experience that 
the thinking process, the discovery process, and the communication between user and 
analyst are fundamentally different with OOA than with structured analysis. 

On the side of the synthesists, Wasserman, Pircher, and Muller4 take the position 
that their object-oriented structured design (OOSD) methodology is essentially an 
elaboration of structured design. They state that the “foundation of OOSD is 
structured design” and that structured design “includes most of the necessary 
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concepts and notations” for OOSD. 
Page-Jones and Weiss5 take a similar 
position in stating that 

The  problem is that object orientation has 
been widely touted as a revolutionary 
approach, a complete break with the  past. 
This would be  fascinating if it were true,  
but it isn’t. Like most engineeringdevelop- 
ments, the object-oriented approach is a 
refinement of some of the  best software 
engineering ideas of the past. 

Factors to consider. One of the most 
important assessments a company must 
make in considering the adoption of a 
technical innovation is where the inno- 
vation falls on the incremental-radical 
continuum in relation to its own current 
practice. Incremental innovations intro- 
duce relatively minor changes to an ex- 
isting process or  product and reinforce 
the established competencies of adopt- 
ing firms. Radical innovations are based 
on a different set of engineering and 
scientific principles, and draw on new 
technical and problem-solving skills. 

If object-oriented analysis and design 
comes to be regarded as a radical change 
by most organizations, then a strong, 
negative impact on the ultimate rate of 
adoption of the technology can be ex- 
pected. Compared with incremental 
change, implementation of radical 
change involves greater expense and 
risk, and requires different management 
strategies. Many development groups 
have already invested considerable re- 
sources in conventional methodologies 
like structured analysis/structured de- 
sign or  information engineering. These 
investments can take many forms, in- 
cluding training in the specifics of the 
methodology, acquisition of automated 
tools t o  support the methodology, and 
repositories of analysis and design mod- 
els accumulated over the course of em- 
ploying the methodology. 

On an industry-wide level, vendors 
have been actively developing more 
powerful tools t o  support conventional 
methodologies, and a growing pool of 
expertise now exists in the use of these 
tools. T o  the extent that object orienta- 
tion is a radical change, investments in 
conventional methodologies will be lost: 
Staff will have to be retrained, new tools 
will have to be purchased, and a likely 
expensive conversion process will be 
necessary. 

Implementation of radically new tech- 
nologies also involves a much greater 
element of risk because the full range of 

impacts is typically unknown. Moreover, 
the implementation of a radically new 
methodology requires different strate- 
gies to manage this risk and to over- 
come other implementation barriers 
(such as resistance to change). 

The radical-versus-incremental de- 
bate is crucial to assessing the future of 
object orientation and formulating a 
transition strategy, but unfortunately 
no comprehensive analyses have been 
performed comparing leading object- 
oriented methodologies with conven- 
tional methodologies. Two surveys of 
object-oriented methodologies have 
been compiled. but these only cover 
either analysish or  design,’ and neither 
draws specific comparisons with con- 
ventional methodologies. Loy’ provides 
an insightful commentary on the issue 
of conventional versus object-oriented 
methodologies, although no specific 
methodologies are compared. 

The current research fills the gap left 
by other surveys by analyzing several 
leading convent ional  and object-  
oriented analysis and design methodol- 
ogies. including a detailed point-by-point 
comparison of the kinds of modeling 
tools provided by each. A review (de- 
scribed below in greater detail) was 
performed that resulted in the selection 
of six analysis methodologies and five 
de sign methodologies. The  analysis 
methodologies were 

DeMarco structured analysis, 
Yourdon modern structured analy- 

Martin information engineering 

Bailin object-oriented requirements 

Coad and Yourdon object-oriented 

Shlaer and Mellor object-oriented 

sis, 

analysis. 

specification, 

analysis, and 

analysis. 

The design methodologies were 

Yourdon and Constantine structured 

Martin information engineeringde- 

Wasserman et  al. object-oriented 

Booch object-oriented design, and 
Wirfs-Brock et  al. responsibility- 

design, 

sign, 

structured design. 

driven design. 

Incremental or radical? We conclude 
that the object-oriented analysis meth- 

odologies reviewed here represent a 
radical change over process-oriented 
methodologies such as DeMarco struc- 
tured analysis but only an incremental 
change over data-oriented methodolo- 
gies such as Martin information engi- 
neering. Process-oriented methodolo- 
gies focus attention away from the 
inherent properties of objects during 
the modeling process and lead to a mod- 
el of the problem domain that is orthog- 
onal to the three essential principles of 
object orientation: encapsulation, clas- 
sification of objects, and inheritance. 

By contrast, data-oriented method- 
ologies rely heavily on the same basic 
technique - information modeling - 
as each of the three O O A  methodolo- 
gies. The  main differences between 
OOA and data-oriented conventional 
methodologies arise from the principle 
of encapsulation of data and behavior: 
OOA methodologies require that all 
operations be encapsulated within ob- 
jects, while conventional methodologies 
permit operations to exist as subcom- 
ponents of disembodied processes. At  
the level of detail required during anal- 
ysis, however, we conclude that expert 
information modelers will be able to  
learn and apply the principle of encap- 
sulation without great difficulty. 

Regarding design methodologies, we 
conclude that object-oriented design is 
a radical change from both process- 
oriented and data-oriented methodolo- 
gies. The OOD methodologies we re- 
view here collectively model several 
important dimensions of a target sys- 
temnot addressed by conventional meth- 
odologies. These dimensions relate to 
the detailed definition of classes and 
inheritance, class and object relation- 
ships, encapsulated operations, and 
message connections. The  need for 
adopters to acquire new competencies 
related to  these dimensions, combined 
with Booch’s uncontested observation 
that OOD uses a completely different 
structuring principle (based on object- 
oriented rather than function-oriented 
decomposition of system components), 
renders OOD as a radical change. 

Conventional 
methodologies 

A systems development methodolo- 
gy combines tools and techniques to 
guide the process of developing large- 
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scale information systems. The evolu- 
tion of modern methodologies began in 
the late 1960s with the development of 
the concept of a systems development 
life cycle (SDLC). Dramatic increases 
in hardware performance and the adop- 
tion of high-level languages had enabled 
much larger and more complicated sys- 
tems to be built. The SDLC attempted 
to bring order t o  the development pro- 
cess, which had outgrown the ad hoc 
project control methods of the day, by 
decomposing the process into discrete 
project phases with “frozen” deliver- 
ables-formal documents- that served 
as the input to the next phase. 

Structured methodologies. The sys- 
tems development life cycle concept gave 
developers a measure of control, but 
provided little help in improving the 
productivity and quality of analysis and 
design per se. Beginning in the 1970s, 
structured methodologies were devel- 

oped to promote more effective analy- 
sis and more stable and maintainable 
designs. Early structured methodolo- 
gies were largely process-oriented, with 
only a minor emphasis on modeling of 
entities and data. This emphasis on pro- 
cesses seemed natural, given the proce- 
dural programming languages and batch, 
file-based applications commonplace at 
the time. Although many authors con- 
tributed to the so-called structured rev- 
olution, our review concentrates on the 
critical contributions of Yourdon and 
Constantine,”DeMarco,’”and Ward and 
Mellor.” 

Yourdon and Constantine structured 
design provided a method for develop- 
ing a system architecture that conformed 
to the software engineering principles 
of modularity. loosely coupled modules, 
and module cohesion. The structure 
chart (see the sidebar, “Tools for struc- 
tured methodologies”) was the primary 
tool for modeling a system design. (Al- 

Tools for structured methodologies 

Dataflow diagram (DFD) - Depicts processes (shown as bubbles) and 
the flow Of data between them (shown as directed arcs). DFDs are usually 
organized into a hierarchy of nested diagrams, where a bubble on one dia- 
gram maps to an entire diagram at the next lower level of detail. Does not 
depict conditional logic or flow of control between modules. 

Data-dictionary - A repository of definitions for data elements, files, and 
processes. A precursor to the more comprehensive “encyclopedias.” 

Entity-relationship diagram (ERD) - Depicts real-world entities (people, 
places, things, concepts) and the relationships between them. Various nota- 
tions are used, but usually entities are portrayed as boxes and relationships 
as arcs, with different terminating symbols on the arcs to depict cardinality 
and whether the relationship is mandatory or optional. 

Hierarchy diagram - A simple diagram that shows a top-to-bottom hier- 
archical decomposition of data files and data items (enclosed within boxes) 
connected by undirected arcs. 

Mini-spec - A structured-English specification of the detailed procedural 
logic within a process; performs the same function as the traditional flow- 
chart. A mini-spec is developed for each process at the lowest level of nest- 
ing in a set of DFDs. 

State-transition diagram - Depicts the different possible states of a sys- 
tem or system component, and the events or messages that cause transi- 
tions between the states. 

Structure chart - Depicts the architecture of a system as a hierarchy of 
functions (boxes) arranged in a tree-like structure. Identifies interconnec- 
tions between functions, and input and output parameters. Does not depict 
control structures like condition, sequence, iteration, or selection. 

though the emphasis of structured de- 
sign was on creating a module architec- 
ture, the methodology also suggested 
dataflow diagrams for modeling process- 
es and hierarchy diagrams for defining 
data structure.) 

DeMarco’s seminal work enlarged the 
structured approach to encompass anal- 
ysis. DeMarco prescribed a series of steps 
for performing structured analysis, flow- 
ing from modeling of existing systems 
(using dataflow diagrams) to modeling 
of the system to be developed (using 
dataflow diagrams, mini-specifications, 
and a data dictionary). Although model- 
ing of data was not ignored, the empha- 
sis was on modeling processes. The ulti- 
mate goal of structured analysis and 
design was to create a top-down decom- 
position of the functions to be performed 
by the target system. 

Continuing in the structured tradition, 
Ward and Mellor recommended signifi- 
cant extensions to structured analysis to 
better support modeling of real-time 
systems. Their methodology added enti- 
ty-relationship diagrams and state-tran- 
sition diagrams to the structured analy- 
sis toolset. Entity-relationship diagrams 
illustrate the structure of entities and 
their interrelationships, while state-tran- 
sition diagrams focus on system and sub- 
system states and the events that caused 
transitions between states. 

In recognition of the evolution of sys- 
tems, languages, and tools over the past 
two decades, YourdonI2 updated struc- 
tured analysis under the name modern 
structured analysis. Modern structured 
analysis differs from DeMarco’s origi- 
nal work in several respects: It no longer 
recommends modeling of current im- 
plemented systems; it adds a prelimi- 
nary phase to develop an  “essential 
model” of the system; it substitutes a 
technique known as “event partition- 
ing” for top-down functional decompo- 
sition as the preferred technique for con- 
s t ruct ing dataflow diagrams; it 
places more emphasis on information 
modeling (via entity-relationship dia- 
grams) and behavior modeling (via state- 
transition diagrams); and it encourages 
prototyping. 

These updates have served to blur 
somewhat the one-time clear distinc- 
tions between structured methods and 
the data-oriented methods that we de- 
scribe next. 

Information engineering. In the late 
1970s and early 1980s, planning and 
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modeling of data began to take on a 
more central role in systems develop- 
ment, culminating in the development 
of data-oriented methodologies such as 
information engineering. The concep- 
tual roots of data-oriented methodolo- 
gies go back to the 1970s with the inven- 
tion of the relational database model 
and entity-relationship modeling, al- 
though it took several years for mature 
data-oriented methodologies to emerge. 

The data-oriented approach has two 
central assumptions: 

(1) Organizational data provides a 
more stable foundation for a system 
design than organizational procedures. 

(2) Data should be viewed as an or- 
ganizational resource independent of 
the systems that (currently) process the 
data. 

One outgrowth of the data-oriented 
approach was the creation of a new 
information systems subfunction, data 
administration, to  help analyze, define, 
store, and control organizational data. 

Martin" information engineering is a 
comprehensive methodology that ex- 
tends the data-oriented approach across 
the entire development life cycle. While 
structured methods evolved backwards 
through the life cycle from program- 
ming, information engineering evolved 
forward through the life cycle from plan- 
ning and analysis. Martin defines infor- 
mation engineering as consisting of four 
phases: 

(1) Information strategy planning, 
(2) Business area analysis, 
(3) System design, and 
(4) Construction. 

Information engineering distinguish- 
es activities that are performed on the 
level of a business unit (planning and 
analysis) from those that are project- 
specific (design and construction). Com- 
pared with structured methods, infor- 
mation engineering recommends a much 
broader range of analysis techniques 
and modeling tools, including enterprise 
modeling, critical-success-factors anal- 
ysis, data modeling. process modeling. 
joint-requirements planning. joint- 
applications design, time-box method- 
ology, and prototyping (see the sidebar. 
"Tools for Martin information engineer- 
ing"). 

Information engineering describes 

Tools for Martin information engineering 

Actlon diagram - Used to depict detailed procedural logic at a given lev- 
el of detail (for example, at a system level or within individual modules). 
Similar to structured English, except graphical constructs are used to high- 
light various control structures (condition, sequence, iteration, and selec- 
tion). 

Bubble chart - A low-level diagram used as an aide to normalization of 
relational tables. Shows attributes (depicted as bubbles) and the functional 
dependencies between them (depicted as directed arcs). 

Dataflow diagram (DFD) - Conforms to the conventional notation and 
usage for dataflow diagrams (see the sidebar, "Tools for structured method- 
ologies"). 

Data-model diagram - Depicts data entities (boxes) and their relational 
connections (lines). Shows cardinality and whether the connections are op- 
tional or mandatory. Similar to the entity-relationship diagram. 

Data-structure diagram - Shows data structures in a format appropriate 
to the database management system to be used for implementation. 

Encyclopedia - A more comprehensive version of the data dictionary 
that serves as an integrated repository for modeling information from all de- 
velopment phases, including the enterprise model; organizational goals, crit- 
ical success factors, strategies, and rules; data models and data definitions; 
process models and process definitions; and other design-related informa- 
tion. Automated support is assumed. 

Enterprise model - A model that defines, at a high level, the functional 
areas of an organization and the relationships between them. It consists of 
text descriptions of functions (usually an identifiable business unit such as a 
department) and processes (a repetitive, well-defined set of tasks that sup- 
port a function). 

Entity-process matrix - Cross-references entities to the processes that 
use them. 

Process-decomposition diagram - A hierarchical chart that shows the 
breakdown of processes into progressively increasing detail. Similar to the 
conventional tree diagram, except a particularly compact notation is used to 
fit many levels on one page. 

Process-dependency diagram - A diagram consisting of processes (de- 
picted by bubbles) and labeled arcs. It shows how each process depends on 
the prior execution other processes. Similar to a dataflow diagram, except 
conditional logic and flow of control is also depicted. 

State-transition diagram - Conforms to the conventional notation and 
usage for state-transition diagrams (see the sidebar, "Tools for structured 
methodologies"). 

planning as an organization-wide activ- 
i ty  that develops an enterprise model 
and a high-level data architecture. Busi- 
ness area analysis attempts to capture a 
more detailed understanding of busi- 
ness activities and their interdependen- 

cies, using such tools as data-model di- 
agrams, decomposition diagrams, pro- 
cess-dependency diagrams, and entity- 
process matrices. The design phase 
builds on the results of prior phases and 
produces a detailed model of a target 
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system consisting of process-decompo- 
sition diagrams, process-dependency 
diagrams, dataflow diagrams, action di- 
agrams, and data-structure diagrams. 
System construction, the last phase of 
information engineering, consists of 
translating the models from the design 
phase to an operational system-ideal- 
ly using a code generator. 

Ob ject-oriented 
analysis methodologies 

As with traditional analysis, the pri- 
mary goal of object-oriented analysis is 
the development of an accurate and 
complete representation of the prob- 
lem domain. We conducted a literature 
search to  identify well-documented, 
broadly representative O O A  method- 
ologies first published in book form or 
as detailed articles in refereed journals 
from 1980 to  1990. This search resulted 
in the selection of three methodologies 
from Coad and Yourdon,’ Bailin,I4 and 
Shlaer and Mellor.’5.’6 Numerous O O A  
methodologies have emerged in recent 
years. Since no more than a few meth- 
odologies could be compared in depth, 
two criteria - maturity (first published 
prior to  1990) and form of publication 
(book or refereed journal) -were used 
to  select among them. Several method- 
ologies were identified that did not meet 
these criteria (see Fichman and Kemer- 
er”) although this should not be taken 
to mean they are inferior to those that 
did. Object-oriented analysis is, of 
course, quite young; it is much too early 
to predict which (if any) of the current 
methodologies will come to  be recog- 
nized as standard works in the field. The 
goal here is to provide a detailed com- 
parison of representative methodolo- 
gies at a single point in time, not a 
comprehensive review. 

The three methodologies are present- 
ed in the order of their similarity to  
conventional methodologies. Bailin’s 
methodology is viewed as most similar, 
followed by Coad and Yourdon’s, and 
then Shlaer and Mellor’s. 

Bailin object-oriented requirements 
specification. Bailin developed object- 
oriented requirements specification 
(00s) in response to  a perceived in- 
compatibility between conventional 
structured analysis and object-oriented 
design. Outwardly, the method resem- 

bles structured analysis in that a system 
decomposition is performed using a 
dataflow diagram-like notation. Yet, 
there is an important difference: Struc- 
tured analysis specifies that functions 
should be grouped together only if they 
are “constituent steps in the execution 
of a higher level function,” while 0 0 s  
groups functions together only if they 
“operate on the same data ab~tract ion.”’~ 
In other words, functions cannot exist 
as part of disembodied processes, but 
must be subordinated to  a single entity. 
(Bailin uses the term entity rather than 
object for stylistic reasons only; the terms 
are assumed to  be interchangeable.) This 
restriction is used to  promote encapsu- 
lation of functions and data. 

Two distinctions are central to 00s. 
First, Bailin distinguishes between enti- 
ties, which possess underlying states that 
can persist across repeated execution 
cycles, andfunctions, which exist solely 
to transform inputs to outputs and thus 
have no underlying states remembered 
between cycles. Entities can be further 
decomposed into subentities or func- 
tions, but functions can only be decom- 
posed into subfunctions. 

Second, Bailin distinguishes between 
two classes of entities, active and pas- 
sive. Active entities perform operations 
(on themselves or other entities) im- 
portant enough to be considered in de- 
tail during the analysis phase, while pas- 
sive entities are of lesser importance 
and can therefore be treated as a “black 
box” until the design phase. These dis- 
tinctions are important because, as we 
show below, active entities, passive 
entities, and functions are each mod- 
eled differently during the analysis 
process. 

The 00s methodology consists of a 
seven-step procedure: 

(1) Identify key problem domain en- 
tities. Draw dataflow diagrams and then 
designate objects that appear in process 
names as candidate entities. 

(2) Distinguish between uctive and 
passive entities. Distinguish between 
entities whose operations are signifi- 
cant in terms of describing system re- 
quirements (active entities) versus 
those whose detailed operations can be 
deferred until design (passive). Con- 
struct an entity-relationship diagram 
(ERD).  

(3) Establish datuflowws between ac- 
tiveentities. Construct the top-level (level 
0 )  entity-dataflow diagram (EDFD).  

Designate each active entity as a pro- 
cess node and each passive entity as a 
dataflow or data store. 

(4) Decompose entities (or functions) 
into subentities and/or functions. This 
step is performed iteratively together 
with steps 5 and 6. Consider each active 
entity in the top-level EDFD and deter- 
mine whether it  is composed of lower 
level entities. Also consider what each 
entity does and designate these opera- 
tions as functions. For each of the sub- 
entities identified, create a new EDFD 
and continue the decomposition pro- 
cess. 

(5) Check for  new entities. At each 
stage of decomposition, consider wheth- 
e r  any new entities are  implied by 
the new functions that have been intro- 
duced and add them to the appropriate 
EDFD, reorganizing EDFDs as neces- 
sary. 

(6) Group functions under new enti- 
ties. Identify all the functions performed 
by or on new entities. Change passive to 
active entities if necessary and reorga- 
nize EDFDs as appropriate. 

(7) Assign entities to uppropriate do- 
mains. Assign each entity to some ap- 
plication domain, and create a set of 
ERDs,  one for each domain. 

The end result of 00s is an entity- 
relationship diagram, together with a 
hierarchy of entity-dataflow diagrams 
(see the sidebar “Tools for Bailin ob- 
ject-oriented requirements specifica- 
tion’’). Bailin’s methodology conforms 
to the essential principals of object ori- 
entat ion,  a l though explicit object- 
oriented terminology is not used. (Loy8 
lists three principles that distinguish 
object orientation from other approach- 
es: encapsulation of attributes, opera- 
tions, and services within objects; clas- 
sification of object abstractions; and 
inheritance of common attributes be- 
tween classes.) The entity-relationship 
diagrams capture a classification of ob- 
jects as well as opportunities for inher- 
itance, and Bailin’s functions map to 
the object-oriented concept of encapsu- 
lated services. 

Coad and Yourdon object-oriented 
analysis. Coad and Yourdonj view their 
O O A  methodology as building “upon 
the best concepts from information 
modeling, object-oriented programming 
languages, and knowledge-based sys- 
tems.” O O A  results in a five-layer mod- 
el of the problem domain, where each 
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layer builds on the previous layers. The 
layered model is constructed using a 
five-step procedure: 

(1)  Define objects and classes. Look 
for structures, other systems, devices, 
events, roles, operational procedures, 
sites, and organizational units. 

(2) Define structures. Look for rela- 
tionships between classes and represent 
them as either general-to-specific struc- 
tures (for example, employee-to-sales 
manager) or whole-to-part structures 
(for example, car-to-engine). 

( 3 )  Definesubject areas. Examine top- 
level objects within whole-to-part hier- 
archies and mark these as candidate 
subject areas. Refine subject areas to 
minimize interdependencies between 
subjects. 

(4) Define attributes. Identify the 
atomic characteristics of objects as at- 
tributes of the object. Also look for 
associative relationships between ob- 
jects and determine the cardinality of 
those relationships. 

(5) Defineservices. For each class and 
object, identify all the services it per- 
forms, either on its own behalf or for the 
benefit of other classes and objects. 

Tools for Bailin object-oriented requirements 
specification 

Entity-reiatlon8hip diagram - Conforms to the conventional notation 
and usage for entity-relationship diagrams (see the sidebar, Tools for struc- 
tured methodobgies”). 

Entity-dataflow diagram (EDFD) - A variant on the conventional data- 
flow diagram wherein each process node contains either an active entity or 
some function related to an active “y, rather than disembodied process- 
es. Active entities and functions are enclosed within bubbles. Bubbles are 
connected to each other and to data stores by labeled arcs containing data- 
flows. Dataflows and data stores are passive entities. 

Entity dictionary - A repository of entity names and descriptions, analo- 
gous to the data dictionary of DeMarco structured analysis. 

modeling exclusive services and mes- 
sage connections. 

Shlaer and Mellor object-oriented 
analysis. Shlaer and Mellor developed 
their object-oriented analysis method- 
ology over the course of several years of 
consultingpractice in information mod- 
eling. Although information modeling 
forms the foundation of the method, 

the system, contained in interrelated 
information, state, and process models, 
is proposed as a complete description of 
the problem domain. Shlaer and Mellor 
advocate a six-step procedure: 

(1) Develop an information model. 
This model consists of objects, attributes, 
relationships, and multiple-object con- 
structions (based on is-a, is-part-of, and 

two other views of the target system are 
prescribed as well: a state model and a 
process model. This three-way view of 

associative relationships). (The term 
object, as used by Shlaer and Mellor, is 
equivalent to the conventional notion 

The primary tools for Coadand Your- 
don O O A  are class and object diagrams 
and service charts (see the sidebar, 
“Tools for Coad and Yourdon object- 
oriented analysis”). The class and ob- 

Tools for Coad and Yourdon object-oriented ject diagram has five levels, which are 
built incrementally during each of the 
five analysis steps outlined above. Ser- adysk 
vice charts, whiih are “much like a [tra- 
ditional] flow chart,” are used during 
the service definition phase to repre- 
sent the internal logic of services.,, In 
addition, service charts portray state- 
dependent behavior such as precondi- 
tions and triggers (operations that are show generalizati . 
activated by the occurrence of a pre- (3) ”4- lawrs 

attributes layer, w defined event). 
Goad and Yourdon explicitly support boxes and identifies associative relationships between objects, and (5) $er- 

each of the essential principles of object vice layer, which adds a list of services inside the dass and object boxes 
orientation, The class and objects dia- and provides arcs showing message connections between boxes. 

Class and object diagram - A complex diagram consisting of five lay- 
ers, each adding a level of detail. The layers are (1) class and object layer, 
which shows classes and objects endosed within boxes with rounded cor- 
ners, (2) structures layer, which connects clamee and obitrots with arcs to 

gram (levels 1, 2, and 4) provides an 
object classification and identifies 
tential inheritance relationships, In  ad- 
&ion, of objects is mod- 
eled through the concept of exclusive 

Object-state diagram - A simple diagram that shows all the possible 
states of an object and the allowed transitions between states. States are 
enclosed within boxes and transitions are represented as directed, unta- 
beled arcs between states’ 

services. Coad and Yourdon O O A  is 
similar to modern structured analysis 
(MSA) and information engineering in 
its emphasis on information modeling, 

Service chart - A flowchart-like diagram that depicts the detailed logic 
within an individual service, including object-atate changes that trigger or re- 
sult from the service* 

but differs in providing constructs for 
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Tools for Shlaer and Mellor object-oriented 
analysis 

Actlon-daatlow diagram (ADFD) - Similar to DFDs, except ADFDs are 
used to model elementary “action” processes rather than to create a top- 
down functional decomposition of the entire system. Standard DeMarco no- 
tation is used, except additional notations are provided to show control flows 
and to show conditionality in the execution of dataflows and control flows. 

Domain chart - A simple diagram that illustrates all domains relevant to 
the implementation of an OOA model. Domains are enclosed within bubbles 
and are connected by directed a m .  These arcs represent bridges between 
domains. Four types of domains are identified: application, service, architec- 
tural, and implementation. 

Information structure diagram - A variant on the entity-relationship dia- 
gram that shows objects (boxes) connected by relationships (labeled arcs). 
Attributes are listed within object boxes. Relationship conditionality and mul- 
tiplicity are also shown. 

Object and attribute description - A text description of an object, in- 
cluding object name, object description, object identifier, a list of attributes, 
and descriptions of each attribute. 

Object-access model - Shows the synchronous interactions between 
state models at the global system level. Synchronous interactions occur 
when one state model accesses the instance data of another object via an 
accessor process. State models (enclosed in ovals) are connected to each 
other by directed arcs labeled with the accessor process. 

Object-communlcatlon model - Shows the asynchronous interactions 
between state models and extemal entities at the global system level. State 
models (enclosed in ovals) are connected to each other and to external enti- 
ties (enclosed in boxes) by directed arcs labeled with communicating events. 

Process desctlptlon - A narrative description of a process. A process 
description is needed for every process appearing on an action-dataflow dia- 
gram. 

Relationship specfflcatlon - A text description of each relationship, in- 
cluding the name of the relationship (from the point of view of each object), 
conditionality (required or optional), multiplicity (one-to-one, oneto-many, 
many-to-many), a general description of the relationship, and identification of 
the attributes (foreign keys) through which the relationship is formalized. 

State m W l -  State models conform to the conventional notation for 
state-transition diagrams (see the sidebar, “Tools for structured methodolo- 
gies”), except they are used to model the states of problem domain entities. 
(Traditional STDs, by contrast. model the states of a system, system compo- 
nent, or process.) 

Subsystem access model - Shows synchronous interactions between 
object-access models (one OAM exists for each subsystem). Directed, la- 
beled arcs represent synchronous processes flowing between OAMs (en- 
closed in boxes). 

Subsystem communication model - Shows asynchronous interactions 
between object-communication models (one OCM exists for each sub- 
system). Directed, labeled arcs represent asynchronous events flowing be- 
tween OAMs (enclosed in boxes). 

Subsystem relationship model - Shows relationships between informa- 
tion models(where each subsystem has exactly one information model). In- 
formation models (enclosed in boxes) are connected by undirected arcs (la- 
beled with relationships). 

of an entity, that is, a person, place, 
thing, or event that exists in the real 
world.) 

( 2 )  Define object life cycles. The fo- 
cus here is on analyzing the life cycle of 
each object (from creation through de- 
struction) and formalizing the life cycle 
into a collection of states (some pre- 
defined condition of an object), events 
(signals that cause transitions from state 
to state), transition rules (which specify 
the allowable transit ions be tween 
states), and actions (activities or opera- 
tions that must be done by an object 
upon arrival in a state). This step also 
defines timers, mechanisms used by ac- 
tions to generate a future event. The 
primary tool during this step is the state 
model. (See the sidebar, “Tools for 
Shlaer and Mellor object-oriented anal- 
ysis.”) 

(3 )  Define the dynamics of relation- 
ships. This step develops a state model 
for those relationships between objects 
that evolve over time (dynamic rela- 
tionships). For each dynamic relation- 
ship, an associative object is defined in 
the information model. Special assigner 
state models are defined for relation- 
ships in which there may be contention 
between object instances for resources 
of another object instance. 

( 4 )  Definesystem dynamics. This step 
produces a model of time and control at 
the system level. An object-communi- 
cation model (OCM) is developed to 
show asynchronous control (akin to sim- 
ple message passing). An object-access 
model is developed to show synchro- 
nous control (instances where one ob- 
ject accesses the instance data of anoth- 
er through an accessor process). Shlaer 
and Mellor also describe a procedure 
for tracing threads of control at a high 
level (by following events on the OCM) 
and at a more detailed level (by creating 
a thread-of-control chart for individual 
actions). 

( 5 )  Developprocessmodels. For each 
action, an action-dataflow diagram is 
created that shows all of the processes 
for that action, and the data flows among 
the processes and data stores. (Stan- 
dard DeMarco notation for DFDs is 
used, except additional notations are 
provided to show control flows and to 
show conditionality in the execution of 
dataflows and control flows.) OOA de- 
fines four types of processes (accessors, 
event generators, transformations, and 
tests) and provides guidelines for de- 
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composing actions into these constitu- 
ent processes. 

(6) Define domains und subsysterns. 
For large problems, it can be useful to 
decompose the subject matter into con- 
ceptually distinct domains. Four types 
of domains are identified: application, 
service, architectural, and implementa- 
tion. In addition, it is sometimes useful 
to decompose the application domain 
into multiple subsystems. 

Shlaer and Mellor provide implicit. 
rather than explicit,support for the three 
essential principles of object orienta- 
tion - classification, inheritance, and 
encapsulation. The objects and relation- 
ships contained in the information struc- 
ture diagram, while not identical to ob- 
ject-oriented concepts of classification 
and inheritance, can easily be mapped 
to these concepts during design. (Regu- 
lar entities and parent entities engaged 
in is-a style relationships correspond to 
classes and superclasses, respectively. 
and identify candidate inheritance rela- 
tionships. The is-part-of style relation- 
ships correspond to whole-to-part class 
relationships.) The requirement that 
each action process (and associated data- 
flow diagram) be associated with exact- 
ly one object preserves encapsulation 
of those operations. 

Comparison of analysis 
methodologies 

The conventional and OOA method- 
ologies reviewed here can be compared 
along 1 1  modeling dimensions: these 
dimensions represent the superset of 
dimensions supported by the individual 
methodologies (see Table 1). Since the 
various methodologists tend to use wide- 
ly divergent terminology and notations 
for similar concepts, Table 1 presents 
the dimensions at a level that captures 
essential similarities and differences 
between the methodologies. We exam- 
ined the concepts and notations advo- 
cated by each methodology in detail to 
determine those that were variants on 
the same basicidea. (For example, Coad 
and Yourdon’s concept of a generaliza- 
tion-specialization relationship between 
objects is viewed as essentially the same 
as the is-a style or subtypehper type  
entity relationships described in the oth- 
er analysis methodologies. When used 
as part of an OOA methodology, gener- 

alization-specialization and is-a relation- 
ships are both intended to identify can- 
didate opportunities for inheritance.) 

Object-oriented versus conventional 
analysis. As Table 1 shows, object- 
oriented analysis covers many of the 
same dimensions as Yourdon MSA and 
Martin information engineering, al- 
though there is a marked contrast be- 
tween OOA and DeMarco structured 
analysis. MSA, information engineer- 
ing, and all of the object-oriented meth- 
odologies provide a variety of tools for 
modeling entities. These include tools 
for defining entity relationships and at- 
tributes (see Table 1 ,  rows 1 through 4) 
and partitioning large models by group- 
ing naturally related entities (row 5). 
MSA. Coad and Yourdon OOA, and 
Shlaer and Mellor OOA support mod- 
eling of states (row 6), although within 
MSA states are modeled at the level of 
a system or system component, while in 
the OOA methodologies states are  
modeled at the level of problem domain 
entities (objects). DeMarco structured 
analysis, MSA, Coad and Yourdon 
OOA, and Shlaer and Mellor OOA pro- 
vide tools for defining the detailed logic 
within functions or services (row 7 ) .  

The most important differences be- 
tween object-oriented and convention- 
al analysis methodologies ultimately 
stem from the object-oriented require- 
ment of encapsulated operations. Con- 
ventional methodologies provide tools 
to create a functional decomposition of 
operations (row 8) and to model end- 
to-end processing sequences (row 9). A 
functional decomposition of systems 
violates encapsulation because opera- 
tions can directly access a multitude of 
different entities and are not subordi- 
nated to any one entity; so it is appropri- 
ate that no object-oriented methodolo- 
gy provides support here. It is less clear 
why none of the OOA methodologies 
as reviewed here provide an explicit 
model of end-to-end processingsequenc- 
es, since there is no inherent incompat- 
ibility between this view of a system and 
object orientation. This issue is discussed 
further in the concluding section. 

All the OOA methodologists recog- 
nize a need to develop some sort of 
model of system operations, albeit in a 
way that preserves encapsulation. As a 
result, each methodology provides new 
tools, or variants on conventional tools, 
for modeling operations as exclusive 
services of objects (row 10). Row 11 

illustrates a further distinction between 
object-oriented and conventional anal- 
ysis that arises from the need in object 
orientation for active communication 
between entities. (Entities communi- 
cate explicitly in an object-oriented sys- 
tem, whereas in a conventional system, 
entities are passive data stores manipu- 
lated by active, independent proce- 
dures.) 

OOA methodology similarities. The 
three OOA methodologies illustrated 
inTable 1 overlapsignificantly, although 
different notations and terminology are 
used for essentially the same concepts. 
These stylistic differences obscure the 
fact that, in each of the three methodol- 
ogies, entities (objects) and relation- 
ships establish a foundation for later 
stages of analysis. Bailin uses a standard 
ERD notation, which includes the idea 
of subtypehper type  relationships, as 
well as any number of user-defined re- 
lationships. Shlaer and Mellor’s infor- 
mation structure diagrams are similar 
in terms of content to ERDs. While 
neither of these methodologies specifi- 
cally mentions such object-oriented no- 
tions as inheritance and object classifi- 
cat ion,  E R D s  do,  in fact, capture  
candidate instances of these sorts of 
relationships using subtypekupertype 
constructs. 

Dynamic entity connections and us- 
ing-style relationships are also captured 
in ERDs through such relationship types 
as creates, destroys, uses, and modifies. 
Unlike the other two methodologies, 
Coad and Yourdon refer explicitly to 
object-oriented concepts such as inher- 
itance and object decomposition. None- 
theless, layers I ,  2, and 4 of the class and 
objects diagram can easily be mapped 
to an ERD notation, and these three 
layers serve essentially the same pur- 
pose as an ERD. (The objects and class- 
es identified in level 1 map to the ERD 
concept of an entity. The generaliza- 
tion-specialization relationships defined 
in level 2 correspond to sub typehpe r -  
type relationships in an ERD. The whole- 
part structures defined in level2 and the 
associative relationships identified in 
layer 4 correspond to general relation- 
ships in an ERD.) 

OOA methodology differences. The 
clearest differences between the meth- 
odologies occur in three areas: 

(1) depiction of entity states, 
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Table 1. Comparison of analysis methodologies. 

Bailin Coad and Shlaer and 
Yourdon Object- Yourdon Mellor 

DeMarco Modern Martin Oriented 0 bj ec t- Object- 
Structured Structured Information Requirements Oriented Oriented 

Component Analysis Analysis Engineering Specification Analy5is Analysis 

Data-model 
diagram 

Entity- 
relationship 
diagram 

Class and 
objects 
diagram 
layer I 

Class and 
objects 
diagram 
layer 2 

Information- 
structure 
diagram 

1. Identification/ 
classification 
of entities' 

Not 
supported 

Not 
supported 

Not 
supported 

Data 
dictionary 

Dataflow 
diagram 

Not 
supported 

Mini- 

Entity- 
relationship 
diagram 

2. General-to- 
specific and 
whole-to-part 
entity- 
relationships 

3. Other entity- 
relationship 
(creates, 
uses, etc.) 

4. Attributes 
of entities 

Entity- 
relationship 
diagram 

Data-model 
diagram 

Entity- 
relationship 
diagram 

Information- 
structure 
diagram 

Entity- 
relationship 
diagram 

Data-model 
diagram 

Entity- 
relationship 
diagram 

Class and 
objects 
diagram 
layer 4 

Class and 
objects 
diagram 
layer 4 

Class and 
objects 
diagram 
layer 3 

Information- 
structure 
diagram 

Data 
dictionary 

Bubble 
chart 

Not 
supported 

Information- 
structure 
diagram 

Domain chart; 
subsystem 
communication, 
access, and 
relationship 
models 

State 
model 

5. Large-scale 
model 
partitioning 

Event- 
partitioned 
dataflow 
diagram 

Subject 
databases 

Domain- 
partitioned 
entity- 
relationship 
diagrams 

6. States and 
transi tions** 

State- 
transition 
diagram 

Not 
s iipp o r te o' 

Not 
supported 

Object-state 
diagram: 
service 
chart 

Service 
chart 

Action data- 
flow diagram; 
process 
descriptions 

Not 
Supported 

7. Detailed logic 
for functions1 
Services 

Mini- Not 
supported 

Not 
supported specification specification 

8. Top-down 
decomposition 
of functions"" 

9. End-to-end 
processing 
sequences 

10. Identification 
of exclusive 
services 

Dataflow 
diagram 

Dataflow 
diagram 

Not 
supported 

Not 
supported 

Dataflow 
diagram 

Dataflow 
diagram 

Not 
supported 

Not 
supported 

Process- 
decomposition 
diagram 

Process- 
dependency 
diagram 

Not 
supported 

Not 
Supported 

Not 
Supported 

Not 
supported 

Not 
supported 

Not 
supported 

Entity- 
dataflow 
diagram 

Class and 
objects 
diagram 
layer 5 

Class and 
objects 
diagram 
layer 5 

State model, 
action-data- 
flow diagram 

11. Entity 
communication 
(via messages 
or  events) 

Not 
supported 

Entity- 
dataflow 
diagram 

Object 
communication 
model; object- 
access model 

* For stylistic reasons, the term entity, when it appears in this column, is intended to encompass the terms entity (as used in conventional methodologies and 
by Bailin), object (as used by Shlaer and Mellor). and class (as used by Coad and Yourdon). 

** Conventional STDs as used in Yourdon's MSA describe the states of a system or system component. whereas Shlaer and Mellor's state model and Coad and 
Yourdon'sobject-state diagram describe the statesof problem domain entities. STDs are not an integral part of information engineering because they are thought 
to be too detailed for the analysis phase. although Martin allows that they may be used occasionally. 

*** Bailin does provide some support for decomposition of functions via entity-dataflow diagrams. but functions are decomposed only at the lowest levels of 
the diagram rather than at all levels. 



(2) definition of exclusive services, and 
(3) attention to attribute modeling. 

Shlaer and Mellor place the most em- 
phasis on modeling entity states and 
devote an entire phase of their method- 
ology to defining entity life cycles and 
depicting them in state models. Coad 
and Yourdon also model entity states, 
although this does not appear t o  be a 
significant component of the methodol- 
ogy. (Coad and Yourdon’s service chart 
contains much of the same information 
as Shlaer and Mellor’s state model, al- 
though it also contains procedural logic 
unrelated to entity states and transitions. 
Coad and Yourdon recommend the use 
of an object-state diagram where help- 
ful, but this diagram does not explicitly 
name the events that trigger transitions. 
The object-state model is referred to 
only sparingly, and does not appear to 
be a significant component of the final 
system model.) Bailin has no formal 
means of depicting entity states and tran- 
sitions, although he notes that state-tran- 
sition diagrams are being considered as 
one possible extension of the method. 

Coad and Yourdon and Shlaer and 
Mellor provide the most detailed repre- 
sentations of exclusive services. In Coad 
and Yourdon, exclusive services are  as- 
signed to objects in layer 5 of the class 
and objects diagram. and the procedural 
logic contained in each service is defined 
in detail in an associated service chart. 
Shlaer and Mellor also identify exclu- 
sive services, which they term actions. 
Actions are identified on state models 
(object specific) and are defined in de- 
tail in t he  action-dataflow diagram 
(ADFD) and corresponding process de- 
scriptions. The primary tool for model- 
ing Bailin’s functions - the entity-data- 
flow diagram-contains much less detail 
than Coad and Yourdon’s service chart 
or Shlaer and Mellor’s ADFD with pro- 
cess descriptions. 

The methodologies differ substantial- 
ly in their level of attention to attribute 
modeling. Bailin places a very low em- 
phasis on defining attributes of entities; 
in fact, he  makes no mention of attribute 
modeling at  all. Coad and Yourdon de- 
vote a phase to identifying attributes, 
although not to the extent of ensuring 
that attributes are normalized within 
entities. Shlaer and Mellor provide the 
most emphasis on attribute modeling of 
the three methodologies, including ex- 
tensive guidance for describing and nor- 
malizing attributes. 

Finally, Shlaer and Mellor support 
some concepts not addressed by Coad 
and Yourdon or  Bailin. These include 

(1) a distinction between asynchro- 
nous and synchronous control, 

(2) the use of timers to generate fu- 
ture events, and 

(3) the concept of a dynamic rela- 
tionship and its role in handling 
contention between concurrent 
processes. 

OOA: Incremental versus radical 
change. With regard to the incremental 
versus radical debate, object-oriented 
analysis does represent a radical depar- 
ture from older process-oriented meth- 
odologies such as DeMarco structured 
analysis, but is only an incremental 
change from data-oriented methodolo- 
gies like Martin information engineer- 
ing. Table 1 shows that O O A  methodol- 
ogies typically model six dimensions of 
the problem domain not contained in a 
structured analysis model (see rows 1-3, 
6,10-11) and d o  not model two process- 
oriented dimensions (rows 8-9) that form 
the foundation of a D e  Marco struc- 
tured analysis model. O O A  decompos- 
es the problem domain based on a clas- 
sification of entities (objects) and their 
relationships, while structured analysis 
provides a decomposition based on pro- 
cesses. Developers schooled in DeMar- 
CO structured analysis will find the com- 
petencies they developed in the  
construction of hierarchies of DFDs to 
be, for the most part, irrelevant. Mean- 
while, a whole new set of competencies 
relating to the classification and model- 
ingof entities will have to be developed. 

The revolutionaries quoted in the in- 
troduction rightly observe that object 
orientation is fundamentally at odds with 
the process-oriented view of systems 
favored by structured methodologies 
during the 1970s. However, they ignore 
important changes in these same meth- 
odologies over the course of the 1980s 
towards a more balanced view of data 
and processes. O O A  methodologies only 
model two dimensions of the problem 
domain not modeled by Yourdon MSA 
or Martin information engineering (see 
Table 1. rows 10-1 I ) .  

All the OOA methodologies reviewed 
here contain a heavy information mod- 
eling component, and potential adopt- 
ers with a strong information modeling 
background should require only limited 
exposure to absorb the notational dif- 

ferences between conventional infor- 
mation modeling diagrams and the vari- 
ants developed by OOA methodolo- 
gists. T h e  idea of shift ing f r o m  
disembodied processes (modeled in 
dataflow diagrams) to  encapsulated ser- 
vices will be more challenging. Howev- 
er, at  the level of detail required for 
analysis, this conceptual shift can prob- 
ably be absorbed without great difficul- 
ty. Shlaer and Mellor OOA, with its 
emphasis on modeling object life cycles, 
appears to represent the most signifi- 
cant change of the three O O A  method- 
ologies. 

Object-oriented design 
methodologies 

Design is the process of mapping sys- 
tem requirements defined during anal- 
ysis t o  an  abstract representation of a 
specific system-based implementation, 
meeting cost and performance con- 
straints. As was done with OOA meth- 
odologies, we conducted a literature 
search to identify broadly representa- 
tive OOD methodologies first published 
in book form or as detailed articles in 
refereed journals from 1980 to 1990. 
This resulted in the selection of three 
methodologies from Booch,’ Wasser- 
man et  al.,” and Wirfs-Brock et  al.’’ 
Implementation-specific methodologies, 
such as those targeted at  real-time sys- 
tems using the Ada language, were ex- 
cluded from consideration. 

We present the methodologies in an 
order based on their similarities to con- 
ventional methodologies. Wasserman et  
al. draws most heavily on structured 
design and is presented first, followed 
by Booch, and Wirfs-Brock et  al. 

Wasserman et al. object-oriented 
structured design. Object-oriented struc- 
tured design (OOSD) was developed 
by Wasserman, Pircher, and Muller. The 
methodology provides a detailed nota- 
tion for describing an architectural de- 
sign, which they define as a high-level 
design that identifies individual mod- 
ules but not their detailed internal rep- 
resentation. Wasserman et  al. state that 
the overall goal of OOSD is to provide 
a standard design notation that can sup- 
port every software design, including 
both object-oriented and conventional 
approaches. 

OOSD offers a hybrid notation that 
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Tools for Wasserman et al. object-oriented 
structured design 

Object-oriented structure chert - An updated version of the classical 
structure chart that adds notations for objects and classes (“information 
clusters”), methods, visibility, instantiation, exception handling, hidden oper- 
ations, generic definitions (abstract classes), inheritance, and concurrency. 
The charts can also be used to show multiple inheritance, message passing, 
polymorphism, dynamic binding, and asynchronous processes. 

incorporates concepts from previous 
work from several areas, including struc- 
ture charts from structured design; 
Booch’s notation for Ada packages and 
tasks; hierarchy and inheritance from 
object orientation: and the concept of 
monitors from concurrent programming. 
However, as Wasserman et  al. observe, 
OOSD does not provide a detailed pro- 
cedure for developing the design itself. 

The primary tool for OOSD is the 
object-oriented structure chart (see the 
sidebar, “Tools for Wasserman et al. 
object-oriented structured design”). This 
chart takes the symbols and notations 
from conventional structure charts. in- 
cluding modules. data parameters, and 
control parameters, and adds notations 
for such object-oriented constructs as 
objects and classes (called “informa- 
tion clusters” by the authors), methods, 
instantiation, exception handling. ge- 
neric definitions (similar t o  abstract 
classes). inheritance. and concurrency. 
Object-oriented structure charts can be 
used to show multiple inheritance, mes- 
sage passing, polymorphism. and dy- 
namic binding. OOSD also supports the 
concept of a monitor. which i s  useful in 
depicting the asynchronous processes 
typically found in real-time systems. 

Although OOSD is intended prima- 
rily for architectural design, the authors 
state that OOSD provides a foundation 
for representing design decisions asso- 
ciated with the physical design. The 
authors recommend that annotations 
be used to reflect the idiosyncrasies of 
individual implementation languages. 
while preserving the generic character 
of basic symbols. For example. OOSD 
includes optional Ada language-specif- 
ic annotations to provide for packages, 
sequencing, and selective activation. 

Booch object-oriented design. Booch 

pioneered the field of object-oriented 
design. As originally defined in the ear- 
ly 1980s. Booch’smethodology was Ada 
language specific, but it has been signif- 
icantly expanded and generalized since 
then. Booch views his methodology as 
an alternative to. rather than an exten- 
sion of, structured design. 

Although Booch describes a host of 
techniques and tools to assist design, 
ranging from informal lists to formal 
diagrams and templates, he is reluctant 
to prescribe a fixed ordering of phases 
for object-oriented design. Rather, he 
recommends that analysts work itera- 
tively and incrementally, augmenting 
formal diagrams with informal tech- 
niques as appropriate to the problem at 
hand. Nevertheless, Booch does delin- 
eate four major steps that must be per- 
formed during the course of OOD: 

( 1 )  Identify classes and objects. Iden- 
tify key abstractions in the problem space 
and label them as candidate classes and 
objects. 

(2) Identifj the semantics o f  classes 
and objects. Establish the meaning of 
the classes and objects identified in the 
previous step using a variety of tech- 
niques. including creating “scripts” that 
define the life cyclcs of each object from 
creation to destruction . 

( 3 )  Iden t i f j  relatiotzsh i p s  between 
classes and objects. Establish class and 
object interactions. such as patterns of 
inheritance among classes and patterns 
of cooperation among objects. Thisstep 
also captures visibility decisions among 
classes and objects. 

(4)  Implenient c1as.sr.s r i n d  objects. 
Construct detailed internal views of 
classes and objects, including definitions 
of their various behaviors (services). 
Also. allocate objects and classes to 
modules (as defined in the target lan- 

guage environment) and allocate pro- 
grams to processors (where the target 
environment supports multiple proces- 
sors). 

The primary tools used during O O D  
are 

class diagrams and class templates 
(which emphasize class definitions 
and inheritance relationships); 
object diagrams and timing diagrams 
(which stress message definitions, 
visibility, and threads of control); 
state-transition diagrams (to model 
object states and transitions); 
operation templates (to capture def- 
initions of services); 
module diagrams and templates (to 
capture physical design decisions 
about the assignment of objects and 
classes to modules): and 
process diagrams and templates (to 
assign modules to processors in sit- 
uations where a multiprocessor con- 
figuration will be used). 

(See the sidebar, “Tools for Booch ob- 
ject-oriented design.”) 

Booch O O D  provides the widest va- 
riety of modeling tools of the O O D  
methodologies reviewed here. Although 
he does not prescribe a fixed sequence 
of design steps. Booch does provide a 
wealth of guidance on the design pro- 
cess by describing in detail the types of 
activities that must be performed and 
by working through the design of five 
hypothetical systems from different 
problem domains. 

Wirfs-Brock et al. responsibility- 
driven design. Wirfs-Brock. Wilkerson, 
and Wiener developed their responsi- 
bility-driven design (RDD)  methodol- 
ogy during several years of internal soft- 
ware development experience in various 
corporate settings. R D D  is based on a 
client-server model of computing in 
which systems are seen as being com- 
posed of collections of servers that hold 
private responsibilities and also render 
services to clients based on contracts 
that define the nature and scope of valid 
client-server interactions. 

T o  map these terms to more conven- 
tional object-oriented terminology. cli- 
ents and servers are different kinds of 
objects, while services and responsibil- 
ities correspond to methods. Contracts 
and collaborations are metaphors for 
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the idea that, to preserve encapsula- 
tion, some objects must be willing to 
perform certain tasks (such as modify- 
ing the values of their own internal vari- 
ables) for the benefit of other objects, 
and that some kinds of services require 
several objects to work together to  
achieve the desired result. 

Their methodology is responsibility 
driven because the focus of attention 
during design is on contracts between 
clients and server objects. These con- 
tracts spell out what actions each object 
is responsible for performing and what 
information each object is responsible 
for sharing. Wirfs-Brock et al. contrast 
their approach with what they term data- 
driven object-oriented design method- 
ologies (they cite no specific authors), 
which are said to emphasize the design 
of data structures internal to  objects 
and inheritance relationships based on 
common attributes. In contrast, the re- 
sponsibility-driven approach is intend- 
ed to maximize the level of encapsula- 
tion in the resultingdesign. Data-driven 
design is said to focus more on classes 
and inheritance, while responsibility- 
driven design focuses more on object 
interactions and encapsulation. 

Like Booch, Wirfs-Brock et al. rec- 
ommend an incrementaliiterative ap- 
proach to design, as opposed to rigid 
phases with fixed deliverables. R D D  
provides for a six-step procedure spread 
across two phases. An exploration phase 
finds candidate classes, responsibilities, 
and collaborations. A second analysis 
phase builds hierarchies, defines sub- 
systems, and defines protocols. The steps 
are 

(1) Find classes. Extract noun phras- 
es from the requirements specification 
and build a list of candidate classes by 
looking for nouns that refer to physical 
objects, conceptual entities, categories 
of objects, and external interfaces. At- 
tributes of objects and candidate super- 
classes are also identified. 

(2) Find responsibilities and assign to 
classes. Consider the purpose of each 
class and examine the specification for 
action phrases to find candidate respon- 
sibilities. Assign responsibilities to 
classes such that system intelligence is 
evenly distributed, behaviors reside 
with related information. and responsi- 
bilities a r e  shared among related 
classes. 

(3) Find collaborations. Examine re- 
sponsibilities associated with each class 

and consider which other classes are 
needed for collaboration to fulfill each 
responsibility. 

(4) Definehierarchies. Construct class 
hierarchies for kind-of inheritance rela- 
tionships such that common responsi- 
bilities are factored as high as possible 
and abstract classes do  not inherit from 
concrete classes. Construct contracts by 
grouping together responsibilities used 
by the same clients. 

( 5 )  Define subsystems. Draw a col- 
laborations graph for the complete sys- 
tem. Look for frequent and complex 
collaborations and identify these as 
candidate subsystems. Classes within a 
subsystem should support a small and 
strongly cohesive set of responsibilities 
and should be strongly interdepen- 
dent. 

(6) Defineprotocols. Develop design 
detail by writing design specifications 
for classes, subsystems, and contracts. 
Construct the protocols for each class 

(the signatures for the messages to which 
each class responds). 

Tools used throughout the design pro- 
cess include 

Class cards (steps 1 , 2  and 3); 
Hierarchy diagrams (step 4); 
Venn diagrams (step 4); 
Collaborations graphs (steps 4 and 

Subsystem cards (step 5 ) ;  
Class specifications (step 6); and 
Subsystem specifications (step 6). 

5 ) ;  

(See the sidebar, “Tools for Wirfs-Brock 
et al. responsibility-driven design.”) 

In advocating an approach that em- 
phasizes the dynamic behavior and re- 
sponsibilities of objects rather than their 
static class relationships, R D D  provides 
a significant contrast to Booch OOD 
and to the O O A  methodologies re- 
viewed earlier. Unlike these other meth- 

Tools for Booch object-oriented design 

Class diagramhemplate - Shows the existence of classes (enclosed in 
dotted-line “clouds”) and their relationships (depicted by various kinds of di- 
rected and undirected arcs) in the logical design of a system. Relationships 
supported include uses, instantiates, inherits, metaclass, and undefined. 

Module diagramemplate - Documents the allocation of objects and 
classes to modules in the physical design of a system. Only needed for lan- 
guages (such as Ada) that support the idea of a module as distinct from ob- 
jects and classes. 

Object diagramemplate - Used to model some of dynamics of objects. 
Each object (enclosed in solid line “clouds”) represents an arbitrary instance 
of a class. Objects are connected by directed arcs that define object visibility 
and message connections. Does not show flow of control or ordering of 
events. 

Operation template - Structured text that provides detailed design docu- 
mentation for operations. 

Process diagramempiate - Used to show the allocation of processes 
to processors in the physical design of a system. Only for implementations 
in multiprocessor environments. 

State-transition diagram - Shows the states (depicted by circles) of a 
class, the events (directed arcs) that cause transitions from one state to an- 
other, and the actions that result from a state change. 

Timing diagram - A companion diagram to the object diagram, shows 
the flow of control and ordering of events among a group of collaborating 
objects. 
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Tools for Wirh-Brock et al. responsibility- 
driven design 

Class cards - A physical card used to record text describing classes, in- 
cluding name, superclasses, subclasses, responsibilities, and collabora- 
tions. 

Class specification - An expanded version of the class card. Identifies 
superclasses, subclasses, hierarchy graphs, collaborations graphs. Also in- 
cludes a general description of the class, and documents all of its contracts 
and methods. 

Collaborations graph - A diagram showing the classes, subsystems, 
and contracts within a system and the paths of collaboration between them. 
Classes are drawn as boxes. Subsystems are drawn as rounded-corner 
boxes enclosing multiple classes. Collaborations are directed arcs from one 
class to the contract of another class. 

Hierarchy diagram - A simple diagram that shows inheritance relation- 
ships in a lattice-like structure. Classes (enclosed within boxes) are con- 
nected by undirected arcs that represent an inheritance relationship. Super- 
classes appear above subclasses. 

Subsystem card - A physical card used to record text describing sub- 
systems, including name and a list of contracts. 

Subsystem specification - Contains the same information as a class 
specification, only at the level of a subsystem. 

Venn diagram - Used to show the overlap of responsibilities between 
classes to help identify opportunities to create abstract superclasses. Class- 
es are depicted as intersecting ellipses. 

odologies, the initial steps of RDD do 
not focus on establishing a hierarchy of 
classes, but rather attempt to  construct 
a close simulation of object behaviors 
and interactions. 

Comparison of design 
methodologies 

Object-oriented design versus con- 
ventional design. The distinctions be- 
tween conventional and object-orient- 
ed development, some of which were 
identified in the discussion of analysis 
methodologies, are amplified during 
design due to  the growing importance 
of implementation-specific issues (see 
Table 2). None of the conventional 
methodologies support the definition 
of classes, inheritance, methods, or mes- 
sage protocols, and while it may not be 
necessary to consider these constructs 
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explicitly during object-oriented analy- 
sis, they form the foundation of an ob- 
ject-oriented design (Table 2, rows 6 
through 10). In addition, while conven- 
tional and object-oriented methodolo- 
gies both provide tools that define a 
hierarchy of modules (row l), a com- 
pletely different method of decomposi- 
tion is employed, and the very defini- 
tion of the term module is different. 

In  conventional systems, modules - 
such as programs, subroutines, and func- 
tions - only contain procedural code. 
In  object-oriented systems, the object 
-a bundling of procedures and data - 
is the primary unit of modularity. Struc- 
tured design and information engineer- 
ing both use function-oriented decom- 
position rules, resulting in a set of 
procedure-oriented program modules. 
OOD methodologies, by contrast, em- 
ploy an object-oriented decomposition 
resulting in  collections of methods en- 
capsulated within objects. 

The greatest overlap between con- 
ventional and object-oriented design 
methodologies is between Booch OOD 
and information engineering. Both 
methodologies provide a tool for defin- 
ing end-to-end processing sequences 
(row 4), although Booch’s timing dia- 
gram contains much less detail than in- 
formation engineering’s data-dependen- 
cy diagram. Both methodologiesprovide 
for a detailed definition of procedural 
logic. 

Booch recommends the use of a ge- 
neric program definition language 
(PDL) or structured English, while in- 
formation engineering recommends the 
use of a graphical action diagram for 
this purpose. Finally, for information- 
intensive applications, Booch recom- 
mends that a normalization procedure 
be used for designing data. This nor- 
malization procedure is very similar to  
the one employed by information engi- 
neering. 

OOD methodology differences. The 
most notable differences among the 
three OOD methodologies have to do 
with 

(1) data design. 
(2) level of detail in describing the 

(3) level of detail provided by dia- 
process of OOD, and 

gram notations. 

Booch, as mentioned above, employs a 
detailed procedure (where appropriate) 
for designing the data encapsulated with- 
in objects. In  fact, Booth* sees many 
parallels between database design and 
OOD: 

In a process not unlike object-oriented 
design, database designers bounce between 
logical and physical design throughout the  
development of the  database.  . . T h e  ways 
in which we describe the  elements of a 
database are very similar to the  ways in 
which we describe the  key abstractions in 
an application using object-oriented design. 

Wasserman et al. and Wirfs-Brock et 
al., by contrast, say little on the issue of 
data design or normalization. 

Wirfs-Brocket al. providea very thor- 
ough description of the design process, 
which they break into 26 identifiable 
design activities spread across six steps. 
Booch offers less in the way of explicit, 
step-wise design procedures, although 
he does provide a wealth of implicit 
guidance, using a detailed description 
of five hypothetical design projects. 
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Table 2. Comparison of design methodologies. 

Wasserman Wirfs-Brock 
Yourdon and et al. Object- Booch et al. 
Constantine 
Structured Information Structured Oriented Driven 

Component Design Engineering Design Design Design 

Mart in Oriented Object- Responsibility- 

1. Hierarchy 
of modules 
(physical 
design) 

2. Data 
definitions 

3. Procedural 
logic 

4. End-to-end 
processing 
sequences 

5. Object 
states and 
transitions 

6. Definition 
of classes 
and inheritance 

7. Other class 
relationships 
(instantiates, 
uses, etc.) 

8. Assignment 
of operations/ 
services 
to  classes 

9. Detailed 
defiin of 
operations/ 
services 

10. Message 
connections 

Structure 
chart 

Hierarchy 
diagram 

Not 
supported 

Dataflow 
diagram 

Not 
supported 

Not 
Tupported 

Not 
supported 

Not 
supported 

Not 
supported 

Not 
supported 

Process- 
decomposition 
diagram 

Data-model 
diagram: data- 
structure 
diagram 

Action 
diagram 

Dataflow 
diagram; 
process- 
dependency 
diagram 

Not 
supported 

Not 
supported 

Not 
supported 

Not 
supported 

Not 
supported 

Not 
supported 

Object- 
oriented 
structure 
chart 

Object- 
oriented 
structure 
chart 

Not 
supported 

Not 
supported 

Not 
supported 

Object- 
oriented 
structure 
chart 

Object- 
oriented 
structure 
chart 

Object- 
oriented 
structure 
chart 

Not 
supported 

Object- 
oriented 
structure 
chart 

Module 
diagram 

Class 
diagram 

Operation 
template 

Timing 
diagrams 

State- 
transition 
diagram 

Class 
diagram 

Class 
diagram 

Class 
diagram 

Operations 
template 

Object 
diagram and 
template 

Not 
supported 

Class 
specification 

Class 
specification 

Not 
supported 

Not 
supported 

Hierarchy 
diagram 

Class 
specification 

Collaborations 
graph; class 
specification 

Class 
specification 

Collaborations 
graph 

Wasserman et  al., by contrast, assume 
that the particulars of an implementa- 
tion environment will dictate what kinds 
of procedures and quality metrics are 

best; they do not offer a procedural 
description of OOSD. 

Wasserman et al. and Booch both 
provide a comprehensive and rigorous 

set of notations for representing an ob- 
ject-oriented design. Wirfs-Brock et al. 
provide a less detailed notation in their 
R D D  methodology, and do not address 
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such concepts as persistence, object in- 
stantiation, and concurrent execution. 
The authors claim that R D D  is appro- 
priate for object-oriented and conven- 
tional development projects alike; this 
may explain the lack of attention to  
implementation issues that are more 
closely associated with object orienta- 
tion. 

OOD: Incremental versus radical 
change. Regarding the incremental- 
versus-radical debate, object-oriented 
design is clearly a radical change from 
both process-oriented methodologies 
and data-oriented methodologies (Your- 
don and Constantine structured design 
and Martin information engineering, 
respectively). Table 2 shows that the 
number of modeling dimensions on 
which conventional and object-orient- 
ed methodologies overlap ranges from 
a maximum of four out of 10 (informa- 
tion engineering and Booch OOD) to as 
few as one out of 10 (structured design 
and Wirfs-Brock OOD) .  Although con- 
ventional methodologies such as infor- 
mation engineering support a data-ori- 
ented view in modeling the problem 
domain during analysis, they use a func- 
tion-oriented view in establishing the 
architecture of program modules dur- 
ing design. As a result, not only is the 
primary structuring principle for pro- 
gram code different - functions versus 
objects - but at least half of the specific 
dimensions of the target system model 
are different. 

Object-oriented design requires a new 
set of competencies associated with con- 
structing detailed definitions of classes 
and inheritance, class and object rela- 
tionships, and object operations and 
message connections. The design trade- 
offs between maximizing encapsulation 
(by emphasizing object responsibilities) 
versus maximizing inheritance (by em- 
phasizing commonalties among class- 
es) are subtle ones. Designing classes 
that are  independent of the context in 
which they are used is required to max- 
imize reuse, and here again, very subtle 
design decisions must be made.” As 
mentioned in the introduction, the im- 
portant point is not whether object- 
oriented concepts are radically new in 
some absolute sense, but rather wheth- 
er  they are radically new to the popula- 
tion of potential adopters. The idea of 
building systems devoid of global-call- 
ing programs, where everything literal- 
ly is defined as an object, will certainly 

be a radical concept  to  designers 
schooled in conventional design meth- 
odologies. 

Transition from 
analysis to design 

Analysis is usually defined as a pro- 
cess of extracting and codifying user 
requirements and establishing an accu- 
rate model of the problem domain. 
Design, by contrast, is the process of 
mapping requirements to a system im- 
plementation that conforms to desired 
cost, performance, and quality parame- 
ters. While these two activities are con- 
ceptually distinct, in practice the line 
between analysis and design is frequently 
blurred. Many of the components of an 
analysis model have direct counterparts 
in a design model. I n  addition, the pro- 
cess of design usually leads to a better 
understanding of requirements, and can 
uncover areas where a change in re- 
quirements must be negotiated to sup- 
port desired performance and cost con- 
straints. In  recognition of these realities, 
most current methodologies recommend 
that analysis and design be performed 
iteratively, if not concurrently. 

One of the frequently cited advantag- 
es of object orientation is that it pro- 
vides a smoother translation between 
analysis and design models than do  struc- 
tured methodologies. It is true that no 
direct and obvious mapping exists be- 
tween structured analysis and structured 
design: 

Anyone involved with [structured design] 
knows that the transition from the analysis 
model to the design model can be  tricky. 
For example, in moving from a dataflow 
diagram view of the system to creating 
design-structure charts the  modeler is 
forced to m a k e  a significant shift in 
perspective. There  are strategies t o  assist 
in the matter (transform analysis. trans- 
action analysis. etc.). hut it remains a 
difficult task because the  mapping is not 
truly isomorphic.’ 

With object orientation, the mapping 
from analysis to design does appear to 
be potentially more isomorphic, as a 
comparison of Tables 1 and 2 reveals. 
Every analysis model component sup- 
ported by at least one O O A  methodol- 
ogy can be mapped to a similar (albeit 
usually more detailed) component sup- 
ported by at least one design methodol- 
ogy. Rows 1-3, 4, 5, 6, 7, 10, and 11 in  

Table 1 correspond to rows 6-7,2, 1,5, 
9, 8 and 10 in Table 2. respectively. 

Only two object-oriented methodol- 
ogists provided detailed procedures 
encompassing both analysis and design 
(Coad and Yourdon’“ and Rumbaugh 
et al.z1). Shlaer and Mellor also briefly 
describe a procedure for translating 
OOA into OOD. Development groups 
that do not elect to  adopt a single meth- 
odology spanning analysis and design 
will face the problem of matching up 
incompatible terminology and notations 
from different methodologists. The blur- 
ring between analysis and design is a 
particularly acute issue because the 
somewhat arbitrary line between analy- 
sis and design is drawn in different plac- 
es by different methodologists. Of the 
O O A  methodologies, Coad and Your- 
don’s and Shlaer and Mellor’s seem to 
encroach the most on design. Coad and 
Yourdon explicitly identify inheritance 
relationships (usually considered a de- 
sign activity) and provide for a formal 
and detailed specification of the logic 
within services. Shlaer and Mellor pro- 
vide for complete normalization of at- 
tributes and advocate detailed model- 
ing of entity life cycles. Of the design 
methodologies reviewed here, Wirfs- 
Brock et  al. R D D  appears to encroach 
the most on analysis in that it assumes 
that only an English-language specifi- 
cation (rather than a full-analysis mod- 
el) is the input to the methodology. 

Overall critique 

Object-oriented methodologies are 
less mature than conventional method- 
ologies, and may be expected to under- 
go a period of expansion and refine- 
ment as project experience uncovers 
gaps in modeling capabilities or mis- 
placed assumptions. Three areas cur- 
rently stand out as candidates for fur- 
ther development work. T o  begin with, 
a rigorous mechanism is needed for de- 
composing very large systems into com- 
ponents, such that each component can 
be developed separately and subsequent- 
ly integrated. Second, tools for model- 
ing end-to-end processing sequences that 
involve multiple objects are  either cum- 
bersome or wholly lacking. Third, in the 
area of reuse, much is made of design- 
ing in reuse (“sowing” reuse), but no 
more than passing mention is made of 
techniques or procedures for finding 
and exploiting existing models, domain 

36 COMPUTER 



knowledge, or  components (“harvest- 
ing” reuse). The first two areas are ones 
where object-oriented methodologies 
lack functionality provided by conven- 
tional methodologies, while the third 
area lacks support in both object-ori- 
ented and conventional methodologies. 

Systempartitioninglobject clustering. 
Traditionalmethodologies,such asstruc- 
tured analysis andinformation engineer- 
ing, provide mechanisms for creating a 
natural, coarse-grained decomposition 
of systems (nested processes in the case 
of structured analysis, and subject data- 
bases in the case of information engi- 
neering). This decomposition is essen- 
tial because many projects are too large 
to  be developed by a single team within 
the desired time frame and, hence, must 
be dividedintocomponents and assigned 
to multiple teams working in parallel. 
T o  be most beneficial, the decomposi- 
tion must be performed early in the 
development process, which also sug- 
gests it must be created in top-down 
fashion rather than bottom-up. In  addi- 
tion, the decomposition must create 
natural divisions between components 
and allow for a rigorously defined pro- 
cess of subsequent reintegration of the 
components. 

The most coarse-grained, formally 
defined entities in object orientation 
are objects and classes. While objects 
and classes certainlyprovide apowerful 
mechanism for aggregating system func- 
tionality, they are usually defined in a 
bottom-up fashion as common charac- 
teristics get factored to ever higher lev- 
els in an inheritance structure. In addi- 
tion, very large systems, even after this 
factoring process has been completed, 
may still consist of hundreds of top- 
level classes. D e  Champeaux’’ notes 

cas,? domains,Ih systems,IhJxand ensem- 
blesz2 

Two of these constructs - Coad and 
Yourdon’s subject areas and the Wirfs- 
Brock e t  al. subsystems - appear to be 
very similar conceptually and provide a 
starting point for partitioning object- 
oriented models. Yet they are quite in- 
formally defined, and they provide lit- 
t le indication of how individually 
developed system components might 
interact. Shlaer and Mellor’s concepts 
of domains and subsystems are better 
developed, and four of the methodolo- 
gy’s diagrams are devoted to modeling 
the interactions between domains and 
between application domain subsystems 
(domain chart, subsystem relationship 
model, subsystem communication mod- 
el, and subsystem access model). 

D e  Champeaux’s ensembles and en- 
semble classesz2 are the most rigorously 
defined of the clustering mechanisms. 
Ensembles are analogous to conven- 
tional objects, while ensemble classes 
are analogous to conventional classes. 
An ensemble is a flat grouping of ob- 
jects (or other ensembles) that natural- 
ly go together - usually because they 
participate in whole-to-part relation- 
ships. An automobile. for example, is 
an ensemble consisting of an engine, 
doors, wheels, etc. Ensembles have many 
of the same characteristics as conven- End-to-end process modeling. Many 
tional objects, including attributes, states problem domains contain global pro- 
and transitions, and the capability of cesses that impact many objects and 
interacting with other objects and en- involve the serial or parallel execution 
sembles. of numerous intermediary steps between 

D e  Champeaux distinguishes ensem- initiation and conclusion. Examples of 
bles from objects on this basis: Ensem- such processesinclude the orderingpro- 
bles can have internalparallelism while cess for a manufacturer, daily account 
objects cannot. That is, ensembles may reconciliation in a bank, and monthly 
consist of subordinate objects or en- invoice processing by a long-distance 
sembles that each exhibit behaviors in telecommunications carrier. Conven- 
parallel during system execution. Ob- tional methodologies provide well- 
jects, by contrast, are assumed to exhib- established tools such as dataflow dia- 

While the analysis of a toy example like it only sequential behaviors (for exam- grams (see the “Tools for structured 
thepopu’arcarcruisecontrolsystemyie’ds ple.asmodeledin afinite-state machine.) methodology” sidebar) and process- 
only a “flat” set of objects [classes], the 
analysis o f .  . , an airline system or a bank De Champeaux distinguishes ensem- dependency diagrams (see the sidebar, 
will yield ‘‘objects” [classes] at  different bles from other clustering mechanisms “Tools for Martin information engineer- 
abstraction levels. (such as, the Wirfs-Brock et  al. sub- ing”) for modeling these sorts of pro- 

narily be viewed as a composite object 
in the real world. 

Yet, in terms of how they behave, 
ensembles and composite objects ap- 
pear to be quite similar. De Champeaux 
notes that the constituents of an ensem- 
ble only interact directly with each oth- 
er  or  with the encompassing ensemble. 
An ensemble hides the details of con- 
stituents that are irrelevant outside of 
the ensemble, and acts as a gateway that 
forwards messages or  triggers t o  exter- 
nal objects and ensembles. Likewise, 
Booch recommends that when using 
composite objects, the encapsulating 
object should hide the details of the 
constituent objects and mediate between 
constituent objects andexternal objects.2 

Although De Champeaux’s use of en- 
sembles seems promising on a concep- 
tual level, actual project experiences 
will tell whether or  not ensembles pro- 
vide a practical basis for partitioning 
large projects. An interesting question 
for language designers is whether en- 
sembles, o r  some similar construct, 
should be explicitly supported, for ex- 
ample, through mechanisms that limit 
the allowable patterns of interaction 
between ensembles, their constituents, 
and external objects to just those envi- 
sioned by de Champeaux. 

The objects and classes, even at  the 
highest level, are too fine-grained and 
defined too late in the development pro- 
cess to  provide a basis for partitioning 
large development projects. This limi- 
tation has apparently been recognized 
by several methodologists; they have 
responded by inventing high-level con- 
structs for clustering related object class- 
es. These constructs include subject ar- 

systems) in that they are more than just 
conceptual entities; they exist during 
system execution and may have persis- 
tent attributes. It is less clear how en- 
sembles differ from the conventional 
notion of a compound or  composite 
object,’ except that ensembles seem to 
be a more general concept than com- 
posite objects. That is, an ensemble might 
refer to a cluster of related entities, such 
as a fleet of ships that would not ordi- 

cesses. 
None of the object-oriented method- 

ologies reviewed here provide a specific 
model for describing global processes 
end to end, although individual parts of 
the process are modeled piecemeal us- 
ing such concepts as operations,’4 ser- 
v i c e ~ , ~  actions and processes,’h and re- 
sponsibilities.lx (Shlaer and Mellor 
describe a procedure for  following 
threads of control. but this procedure 
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spans several different diagrams and 
seems rather cumbersome. In any case, 
no distinct view of end-to-end process- 
ing - devoid of extraneous informa- 
tion - is provided.) 

Bailin supports the idea of using data- 
flow diagrams (and presumably, global 
process modeling as well) during analy- 
sis, but only to  help achieve a better 
understanding of objects. The resulting 
diagrams serve only as an intermediate 
representation and are not part of the 
object-oriented specification.I4 

Booch’s timing diagram (see the side- 
bar, “Tools for Booch object-oriented 
design”) is the closest that any of the 
methodologies come to supporting a 
distinct view of end-to-end process 
modeling. Yet this diagram containsvery 
little expressive power compared with, 
for example, information engineering’s 
process-dependency diagram. A timing 
diagram only shows flow of control in- 
formation, whereas a process-dependen- 
cy diagram shows flow of control, flow 
of data, and conditional execution. Bailin 
also recognizes the need for end-to-end 
process modeling and has listed compo- 
sition graphs (similar to timing diagrams 
in terms of expressive power) as a pos- 
sible extension of his methodology. 
(Note that the most recent Bailin meth- 
odology refers to compositions graphs 
as “stimulus-response diagrams.”) 

This lack of support for global pro- 
cesses is not surprising since the con- 
cept of a global process, not subordinat- 
ed to any individual object, seems to be 
at  odds with the spirit of object orienta- 
tion. In fact,BoochZ and de Champeaux2: 
both warn against the use of even throw- 
away dataflow models, for fear that it 
will irrevocably bias subsequent object 
modeling towards a “function” orienta- 
tion. 

Still, there is no reason to believe that 
complicated business processes and the 
system components that automate them 
will no longer exist simply because one 
adopts object orientation. Nor is elimi- 
nation of end-to-end processes listed by 
any methodologist as a precondition for 
adopting object orientation. Thus, it 
would seem that a separate tool is need- 
ed to  arrange the mosaic of encapsulat- 
ed services into a model that illustrates 
sequencing, conditional execution, and 
related ideas for certain key global pro- 
cesses. 

Harvesting reuse. One of the most 
persistently claimed advantages of ob- 

ject orientation is that it enables perva- 
sive levels of software reuse. If  properly 
applied, object-oriented mechanisms 
such as encapsulation, inheritance, poly- 
morphism, and dynamic binding cer- 
tainly obviate many technical barriers 
to reuse of program code. In addition, it 
has been claimed that object orienta- 
tion opens the way to reuse of design 
models, or  frameworks,’ and even anal- 
ysis models from relevant problem do- 
mains.h At  the level of analysis and de- 
sign, reuse can take two basic forms: 
reuse of components from previously 
developed analysis and design models, 
and reuse of abstractions of previously 
implemented program components. 

Even within an object-oriented im- 
plementation environment. achieving 
high levels of reuse is by n o  means auto- 
matic; virtually all object-oriented meth- 
odologists emphasize that reuse must 
be designed into an application from 
the start. This emphasis on sowing re- 
use is not surprising; however, it is curi- 
ous how little attention object-oriented 
methodologists pay to harvesting reuse 
during analysis and design. Analysis and 
design consume more resources than 
programming, and perhaps more im- 
portantly, development budgets and 
management decisions- both of which 
should be strongly influenced by antic- 
ipated levels of reuse - are set early in 
the development process. 

Of the methodologies described here, 
only two address the issue of harvesting 
reuse from beyond the confines of the 
project at  hand. Coad and Yourdon re- 
fer to the need to examine previous 
analysis models for reusable components 
and also provide a procedure for merg- 
ing existing design or  program compo- 
nents with new applications.”’Like Coad 
and Yourdon, Booch emphasizes the 
importance of seeking reusable soft- 
ware components from existing class 
libraries during design. Yet, neither 
author provides specific guidance on 
how to find or evaluate existing compo- 
nents. 

D e  Champeaux and Faure6 and 
Caldiera and Basili’” discuss the issue of 
harvesting reuse at  the level of analysis 
and design. D e  Champeaux and Faure 
recommend a repository-based ap- 
proach to managing reuse. They sug- 
gest that the software development pro- 
cess can be seen as a process of creating 
and modifying three cross-referenced 
repositories with analysis. design, and 
implementation components. In this 

view, the analysis components serve as 
annotations to the design and imple- 
mentation components and may point 
to alternative realizations of the same 
requirements (for example, with differ- 
ent performance parameters). They fur- 
ther suggest that these annotations could 
be the basis for a smart library transver- 
sal mechanism. This mechanism could 
assist in identifying candidate reusable 
components. 

Caldiera and Basili provide a much 
more thorough examination of the issue 
of harvesting reuse, especially in the 
areas of identifying and qualifying soft- 
ware components. They suggest a mod- 
el for project organization where appli- 
cation developers are segregated from 
“reuse specialists.” Reuse specialists 
work in a “component factory” and are 
responsible for the development and 
maintenance of a repository of reusable 
components. The component factory is 
responsible for identifying, qualifying, 
and tailoring reusable components for 
subsequent integration - by applica- 
tion developers - into ongoing appli- 
cations development projects. 

bject-oriented analysis and de- 
sign methodologies are rapidly 
evolving, but the field is by no 

means fully mature. None of the meth- 
odologies reviewed here (with the pos- 
sible exception of Booch O O D )  has - 
as of this writing - achieved the status 
of a widely recognized standard on the 
order of the conventional methodolo- 
gies of Yourdon and Constantine or 
DeMarco. Object-oriented methodolo- 
gies will continue to evolve, as did con- 
ventional methodologies before them, 
as subtler issues emerge from their use 
in a wide array of problem domains and 
project environments. A s  discussed 
above, three areas - system partition- 
ing, end-to-end process modeling, and 
harvesting reuse - appear to be espe- 
cially strong candidates for further de- 
velopment work. In the meantime, 
adopters of current object-oriented 
methodologies may need to develop their 
own extensions to contend with these 
issues, or  alternatively, limit applica- 
tion of the methodologies to problem 
domains where these issues are of lesser 
importance. 

Compared with object-oriented meth- 
odologies, conventional methodologies 
fall at  different places along the incre- 
mental-radical continuum. Developers 
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schooled only in structured analysis cir- 
ca 1978 can be expected to have great 
difficulty making the transition to OOA,  
while those with an information model- 
ing background will find much of OOA 
t o  be based on familiar concepts. 

Duringdesign, all conventional meth- 
odologies revert to a process-oriented 
view in establishing the architecture of 
program modules, and as a result, ob- 
ject orientation will likely be viewed as 
radical change by developers schooled 
in any of the conventional design meth- 
ods reviewed here. Since organizations 
will have to adopt object-oriented de- 
sign methodologies to end up with ob- 
ject-oriented implementations. a move 
to an object-oriented environment in 
general may be seen predominantly as a 
radical change. 

Object orientation is founded on a 
collection of powerful ideas - modu- 
larity, abstraction, encapsulation, reuse 
- that have firm theoretical founda- 
tions. In addition, trends in computing 
towards complex data types and com- 
plex new forms of integrated systems 
seem to favor the object model over 
conventional approaches. 

Although little empirical evidence 
exists to support many of the specific 
claims made in favor of object orienta- 
tion, the weight of informed opinion 
among many leading-edge practitioners 
and academics favors object orienta- 
tion as a “better idea” for software de- 
velopment than conventional approach- 
es. Organizations that are able to absorb 
this radical change may well find them- 
selves in a significantly stronger com- 
petitive position vis-a-vis those incapa- 
ble of making the transition. 
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