
Goal-Directed Elaboration of Requirements for a Meeting Scheduler: 
Problems and Lessons Learnt 

Axel van Lamsweerde, Robert Darimont and Philippe Massonet 

Universite Catholique de Louvain, Departement d'Ingenierie Informatique 

B-1348 Louvain-la-Neuve (Belgium) 
{avl, rd, phm}@info.ucl.ac.be 

Abstract - Recently a number of requirements engineer
ing languages and methods have flourished that do not 
only address what questions but also why, who and when 
questions. The objective of this paper is twofold: (i) to 
assess the strengths and weaknesses of one of these meth
odologies on a non-trivial benchmark, and (ii) to illustrate 
and discuss a number of challenging issues that need to be 
addressed for such methodologies to become effective in 
supporting real, complex requirements engineering tasks. 
The problem considered here is that of a distributed meet
ing scheduler system; the methodology considered is the 
KAOS goal-directed language and method. The issues 
raised from this case study include goal identification, 
the "deidelization" of unachievable goals, the handling 
of interfering goals, the impact of early formal reasoning, 
the merits of early reuse of abstract descriptions and cate
gories, requirements traceability and the need to link 
requirements to retractable assumptions. and the potential 
benefits of hybrid acquisition strategies. 

1. Introduction 

Requirements engineering encompass three concurrent 
activities: requirements acquisition, where alternative 
models for the target composite system are elaborated, 
requirements specification, where the various components 
of such models are made fully precise and possibly formal
ized, and requirements evaluation, where the specifications 
are analyzed against correctness properties (such as consis
tency, completeness and adequacy with respect to the 
actual needs) and feasibility properties (such as costs and 
resources required). At the end one of those alternative 
models for the target system is selected for subsequent 
implementation. 

The term "composite system" refers to the automated 
system together with the environment with which it inter
acts. Modeling composite systems allows the interaction 
between human and automated agents to be made explicit. 
Formal reasoning on such interactions can be supported 
thereby [Fea87], [Fic92]. Henceforth a model for the target 
composite system will be called requirements model. 

Most research efforts so far have been devoted to the 
requirements specification facet of requirements engineer
ing. Myriads of languages have been proposed, some of 
which are becoming increasingly popular -e.g., Z [Spi92], 

0-8186-7017-7/95 $04.00 © 1995 IEEE 
194 

VDM [Jon90] or LARCH [Gut93]. The latter languages, 
however, are not well suited for capturing requirements 
models because they are too restricted in scope; they 
address what questions only. Typically, the data and opera
tions of the system envisioned are specified through first
order assertions like conditional equations or pre-, postcon
ditions and invariants. Another limitation is that such lan
guages have no built-in constructs for making a clear 
separation between domain descriptions and actual require
ments [Jac93]. 

Recent attempts have been made to design languages 
and methods that support a much wider range of require
ments. Within such frameworks why, who, and when ques
tions can be addressed in addition to the usual what 
questions. It then becomes possible to reason formally 
about goal satisfaction [Rob89], [Dar9l], [Myl92], 
[Dar93] , [Fea93], agent responsibilities [Fea87], [Fin87], 
[Dar91] , [Fic92] , [Dar93], [Ken93], [Dub93 ] or triggering 
events and causalities [Fin87], [Dar93] to support the 
requirements acquisition and evaluation process. 

The purpose of this paper is to assess the current 
strengths and weaknesses of one typical such approach to 
requirements acquisition, specification and evaluation. Our 
assessment is based on a rich, non-trivial benchmark. The 
approach selected is the one we are most familiar with -that 
is, the KAOS conceptual modelling language and require
ments elaboration strategy [Dar9l], [Dar93]. The bench
mark proposed is a distributed meeting scheduler system; it 
was selected for two main reasons. First, the same persons 
could play the three different roles usually involved in the 
requirements engineering process -the client role, the 
domain expert role, and the specifier role. Second, this sys
tem provides a rich combination of challenging fcaturcs -
e.g., interfering goals, real-time and distribution aspects, 
multi-agent cooperation and communication, privacy con
cerns, optimization requirements. heuristics for defining 
near solutions, etc. Also the space of altcrnative decisions 
and compromises to be made throughout the process is 
fairly large. (Others have started working with the meeting 
scheduler exemplar. see, e.g., [Pot94]. The initial 4-page 
problem statement [Vla93] can be obtained from the 
authors on request.) 

The focus here will be on the actual process followed by 
the authors working in parallel to acquire a significant por
tion of the requirements model. For each step of the strat-



egy we will illustrate the problems that we could handle 
more or less satisfactorily and the problems that we could 
not. The most interesting and challenging aspects are obvi
ously in the latter category. We strongly believe that many 
of these problems arc not specific to the KAOS approach 
and need to be addressed seriously in the future. 

The KAOS approach to requirements elaboration is first 
summarized briefly in Section 2. Section 3 then follows the 
goal-directed strategy step by step and discusses the vari
ous issues of interest from representative excerpts of our 
meeting scheduler specification. These issues arc put 
together into perspective in the general discussion that fol
lows in Section 4. 

2. Requirements Elaboration in KAOS 

The KAOS approach draws on a number of concepts and 
techniques from Artificial Intelligence work on knowledge 
representation and acquisition [Vla91 b), [Dar93]. Require
ments models are acquired as instances of a conceptual 
meta-model. The latter can be represented as a graph where 
each node captures an abstraction such as, e.g., goal, action, 
agent, entity, or event, and where the edges capture seman
tic links between such abstractions. Well-formedness prop
erties on nodes and links constrain instances of such 
abstractions -that is, elements of requirements models. 

Requirements acquisition processes then correspond to 
particular ways of travcrsing the meta-model graph to 
acquire appropriate instances of the various nodes and links 
according to such constraints. Acquisition processes are 
governed by strategies telling which way to follow system
atically in that graph; at each node specific tactics can be 
used to acquire the corresponding instances. 

2.1. Capturing requirements models 

A distinction is thus made between the following three 
levels. The meta level defines meta-concepts, that is, 
abstractions supported by the specification language (such 
as "goal", "object", "agent", "action", etc.), meta-rela
tionships that link such abstractions (such as goal "reduc
tion" into subgoals, goal "operationalization" into 
constraints, agent "assignment" to constraints, etc.), meta
attributes that characterize meta-concepts/relationships 
(such as agent "load", "reliability" of assignment, etc.) and 
meta-constraints that constrain such abstractions and links 
(e.g., "a weak constraint must have a restoration action 
associated with it"). The domain level defines domain-spe
cific instances of meta-concepts and meta-relationships, 
such as the "meeting" concept which is an instance of the 
"entity" meta-concept, the "scheduler" concept which is 
an instance of the "agent" meta-concept, the "MeetingRe
questSatisfied" concept which is an instance of the "goal" 
meta-concept, the "agenda" concept which is an instance 
of the "relationship" meta-concept, etc. The instance level 
is made of specific instances of domain-level concepts, 
such as ''the ICSE-16 Program Committee meeting" which 
is an instance of the "meeting" concept. 

The KAOS meta-model is a model for the meta-level. It 

195 

captures meta-level knowledge to be used at the domain 
level to guide the acquisition process. For example, knowl
edge of a meta-constraint such as "any weak constraint 
must have a restoration action associated with it" may 
prompt the acquisition system to ask the user what the res
toration action should look like for a constraint like "the 
participants agendas and their automated image should be 
kept consistent", if this constraint has been declared to be a 
weak constraint. The more knowledge at the meta level, the 
more knowledge-based guidance can be provided to 

acquire requirements fragments at the domain level. This 
principle is at the core of several machine learning systems 
[Vla91 a]. 

The following meta-concepts/relationships will be used 
in the sequel; see [Dar93] for their precise characterization. 

Object: an object is a thing of interest in the domain 
whose instances may evolve from state to state. A 
domain object is in general declared in a more special
ized way -as an entity, relationship, or event according as 
the object is an autonomous, subordinate, or instanta
neous object, respectively. Objects are characterized by 
invariant assertions. 

Action: an action is a (mathematical) input-output relation 
over objects; action applications define state transitions. 
Actions may be caused/stopped by events. They are 
characterized by pre-, post- and trigger conditions. 

Agent: an agent is another kind of object which acts as 
processor for some actions. An agent performs an action 
if it is effectively allocated to it; the agent knows an 
object if the states of the object are made observable to 
it. Agents can be humans, devices, programs, etc. 

Goal: a goal is a nonoperational objective that the com
posite systcm must meet. (An objective is said to be non
operational if it cannot be formulated in terms of states 
that are controllable by some agent.) Goals can be AND/ 
OR reduced into sub-goals, e.g., a goal G may be 
achieved through subgoals Gl and G2 or through sub
goals G3 and G4. The goal structure for a given system 
is thus in general an AND/OR directed acyclic graph. 
Goals often conflict with others so that conflict resolution 
tactics must be applied at some stage or another of the 
requirements acquisition process. (The distinction 
between System Goals, that must bc achieved, and Pri
vateGoals associated with specific agents is introduced 
for that purpose.) Goals concern objects. They are clas
sified by pattern of temporal behaviour they require 
(e.g., Achieve, Cease, Maintain, Avoid, Optimize) and by 
type of requirement they express with respect to the 
agents concerned (e.g., Satisfaction Goal, Information
Goal, ConsistencyGoal, SafetyGoal, PrivacyGoal, etc.). 
Such categories are used, among others, when reuse tac 
tics are applied to retrieve generic or similar goal 
descriptions from the domain knowledge base. 

Constraint (or policy): a constraint is an operational 
objective, that is, an objective that can be formulated in 
terms of states controllable by some agent. Goals must 
be AND/OR operationalized into constraints. Con
straints in turn are AND/OR ensured by actions and 



objects through restricted conditions that strengthen 
their pre-, post-, trigger conditions and invariants, 
respectively. Alternative ways of assigning responsible 
agents to a constraint are captured through AND/OR 
responsibility links; the actual assignment of agents to 
the actions that ensure the constraint is captured in the 
corresponding performance links. Two classes of con
straints are distinguished in the meta-model. Strong Con
straints may never be violated (e.g., SafetyGoals are 
Avoid goals that must be operationalized into StrongCon
straints.) WeakConstraints are likely to be temporarily 
violated; they need specific restoration actions to be 
associated with them. 

• Scenario: a scenario expresses a typical combination of 
actions expected to take place in the composite system. 
It is composed from actions using parallel, sequential, 
repetitive and alternative combination modes. 
The specification language in which requirements mod

els are elaborated is traced from the meta-model. The lan
guage has a two-level structure: an outer level for declaring 
domain-level concepts in tcrms of meta-level concepts! 
links, and an inner level for expressing assertions that fur
ther characterize those concepts. The outer declaration 
level has an entity-relationship structure; the inner assertion 
level amounts to a typed first-order temporal logic 
equipped with real-time constructs [Koy92]. The use of this 
language will be illustrated extensively in Section 3. 

2.2. A goal-directed acquisition strategy 

Requirements about the composite system are acquired 
as domain-specific instances of elements of the conceptual 
meta-model. Such instances must satisfy the meta-con
straints specified once for all -like cardinality constraints on 
meta-relationships or various other meta-level "axioms". 

Acquisition processes are guided by strategies and 
domain models. Strategies define specific ways of travers
ing the meta-model graph to acquire instanccs of its various 
nodes and links. Each step in a strategy is itself composed 
from finer steps like question-answering, input validation 
against meta-constraints, application of tactics to select 
preferred alternatives for the various AND/OR meta-rela
tionship instances that arise during acquisition, deductive 
inferencing based on property inheritance through special
ization links, or analogical reuse of domain models. 
Domain models are described in the same specification lan
guage as requirements are. They are organized as IsA inher
itance hierarchies in the domain knowledge base [Reu91]. 
In the KAOS context. the latter contains various levels of 
specialization of goals, constraints. objects, actions and 
agents involved in resource management systems, transpor
tation systems, communication systems, etc. [Dam93]. 
Ultimately the acquisition assistant's knowledge base 
should include a rich variety of domain models, strategies 
and tactics. 

The strategy that has been considered mainly so far is a 
goal-directed one. It is made of the following steps. 
(1) Acquisition of the goal structure and identification of 

196 

the objects concerned by the goals; 
(2) Preliminary identification of potential agents together 

with the actions such agents are capable of; 
(3) Operationalization of goals into constraints; 
(4) Refinement of objects and actions; 
(5) Derivation of strengthened conditions on the actions 

and objects in ordcr to ensure constraints; 
(6) Identification of alternative agent responsibilities; 
(7) Actual assignment of actions to responsible agents. 

In this strategy, the steps are ordered but some of them 
may be running concurrently (notably, steps I, 2 and 3). 
Moreover, backtracking is possible at every step. For 
example, information acquired during the responsibility 
identification step (step 6) may entail changes to the results 
of the operationalization step (step 3). The changes made to 
the latter step must then be propagated through the suc
ceeding steps. 

Tactics are proposed in [Dar93] for each step of this 
strategy. For example, "Reduce goals into subgoals so that 
the latter require co-operation of fewer potential agents to 
achieve them" is a tactics for step (1) above. 

3. The Meeting Scheduler Case Study 

We illustrate on a few examples how the actual elabora
tion proceeded according to the above strategy (and, in par
ticular, where backtracking and "coroutining" were 
needed). For each step of the strategy, specific issues that 
arose during that step will be pointed out with an attempt to 
make them as much independent of KAOS as possible. 
Those issues are then put into perspective in the general 
discussion that follows in Section 4. 

3.1. Goal acquisition and object identification 

The following substeps were repeatedly applied to pro
duce the AND/OR goal structure: (1) identify goals; (2) 
reduce goals and identify conflicts; (3) refine informal defi
nition of goals; (4) formalize goals and identify the objects 
referred to. These substeps were proceeding in parallel; 
synchronization between them was governed by depen
dency links. 

3.1.1. Identifying goals 
This substep initiated the elaboration process. It consists 

of eliciting a number of goals from the various sources 
available (preliminary documents, interviews, domain 
knowledge, etc.), giving them a tentative name and a pre
liminary rough informal definition, and classifying them in 
terms of the goal taxonomies defined at the meta level. 
Generic or analogical goals found in similar systems may 
be reused to assist in the elicitation process. 

For example, consider the fonowing fragment of the ini-
tial problem statement. 

"The purpose of the meeting scheduler system is to support the 
organization ojmeetings ' that is, to determine,for each meet
ing request, a meeting date and location so that most oj the 
intended participants will effectively participate." 

This suggests two (interfering) goals: get every meeting 



request satisfied and maxImIze participant attendance. 
Hence the preliminary declarations: 

SystemGoal Achieve [MeetingRequestSatisfied] 
InstanceOf SatisfactionGoal; ... 

SystemGoal Maximize [NumberOfParticipantsl 
InstanceOf SatisfactionGoal; ... 

These goals are quite sketchy and imprecise at this point. 
Their names cover a lot of possible interpretations. The 
exact meaning of each goal will get clearer and clearer as 
reduction links are developed and formalization attempts 
are made. At this stage, however, the first goal declaration 
already expresses that under some initial condition some
thing must eventually happen; the goal definition has the 
formal pattern P =:} <> Q. 

This initial formulation might suggest treating a meeting 
as a resource instance; accordingly some relevant generic 
description fragments may be retrieved from the Resource
Management knowledge base to help in the reduction/for
malization process [Dar93], [Dam93], see below. 

3.1.2. Reducing goals and identifying conflicts 

Goals that appear gradually are analyzed to determine 
whether they contribute positively or negatively to others; 
reduction and conflict links are captured accordingly. Bot
tom-up or top-down processes can be followed here. In a 
bottom-up process, why questions allow higher-level goals 
to be acquired from goals that contribute positively to 
them. In a top-down process, how questions allow lower
level goals to be acquired as sub-goals that contribute posi
tively to the goal considered. Both top-down and bottom
up processes were applied in the meeting scheduler case 
study; the rationale for following one tactic or the other has 
not been made explicit. 

During the reduction/conflict identification substep, 
meta-level knowledge about taxonomies of reduction pat
terns and categories may be used again to guide the acqui
sition process. Various types of goal reduction emerged 
from our case study: agent-driven decomposition, where a 
goal is reduced into sub-goals that involve less agents; 
case-driven decomposition, where a goal is reduced by 
case analysis -e.g., normal cases and exceptional ones; and 
time-driven decomposition, where a goal is decomposed 
into subgoals that need to be achieved successively over 
time. A simple but frequent type of time-driven decomposi
tion corresponds to the reduction of P=:}O Q into 

P � 0 R, R =:} <> Q 
This reduction pattern was used to produce 

SystemGoal Achieve [MeetingRequestSatisfiedl 
ReducedTo ParticipantsConstraintsKnown, 

MeetingPlanned, Participants Notified; .. , 

together with the following new declarations: 

SystemGoal Achieve [ParticipantsConstraintsKnown] 
InstanceOf InformationGoal; .. . 

SystemGoal Achieve [Meeting Planned] 
InstanceOf SatisfactionGoal; ... 

System Goal Achieve [ParticipantsNotified] 
InstanceOf InformationGoal; ... 

An extensive library of non-trivial reduction templates 

197 

was used to support the reduction process [Dam94]. These 
generic reductions are proved correct using the proof the
ory of temporal logic [Man92]. The benefit here is that 
each time one such generic reduction is reused and instan
tiated one gets a formal correctness proof for free. Such 
proofs are important since they provide formal guarantee 
that a goal will be achieved if its sub goals are achieved. 

3.1.3. Refining informal goal definitions 

As a goal gets reduced further and further it becomes 
possible to make its preliminary informal definition more 
and more accurate. For example. it was only after we 
reached consensus on the goal tree of the Achieve [Meet
ingRequestSatisfiedj goal that we were able to write the 
following expanded version of the original fragment: 

SystemGoal Achieve [MeetingRequestSatisfied] 
InstanceOf SatisfactionGoal 
ReducedTo ParticipantsConstraintsKnown, 

MeelingPlanned, ParticipantsNotified 
InformalDef Every meeting request should be satisfied within 

some deadline associafed with the request. Satisfying a 
request means proposing some "best" meeting date/location 
to the intended participants that fit their constraints, or 
notifying them that no solution can be found with those 
constramts. 

Goal reduction and specification refinement are thus 
much intertwinned, as already pointed out at a lower level 
of development [Swa82]; the way a goal is reduced often 
impacts on its informal definition and vice versa. 

Our experience revealed that the diversity of conceivable 
decompositions for some goals can be a problem. Some
times we felt uncomfortable in deciding which goal decom
position would be the most adequate. It is only later on in 
the specification elaboration process that the consequence 
of such or such decomposition became manifest; back
tracking to consider an alternative decomposition or to 
complete an incomplete one was then required. The latter 
situation arose several times during attempts to formally 
prove the correctness of reductions (see Section 3.1.4). 

The goal reduction graph evolved thus iteratively; it was 
also rearranged for explanatory and work parallelization 
purpose. All Satisfaction goals were regrouped into one 
functional part whereas all Information, Robustness, Pri
vacy and Consistency goals were regrouped into one non
functional part. The evaluation and transformation of goal 
structures appears to be an important issue here. 

3.1.4. Formailizing goals and identifying objects 

Formalization started really when the goal reduction 
graph became sufficiently developed and stable. Goal for
malization and object identification proceeded in parallel; 
the formalization of a goal leads to introducing new objects 
each time the current vocabulary is insufficient to define the 
goal formally. In the early elaboration phases, the introduc
tion of an object consisted in defining it informally; in later 
stages when the vocabulary was sufficiently rich it became 
possible to transform informal definitions into formal 
invariants attached to the objects. 

Goal formalization was guided by two sources of know 1-
edge: (1) the formal pattern corresponding to the classifica-



tion done during goal identification (Achieve, Avoid, 
Maintain, etc.), and (2) generic fonnalizations of abstract 
goals in the domain knowledge base. The latter were 
retrieved using as indexing "keys" the goal pattern, goal 
category, and the meta-type of the objects concerned 
[Dar93]; the retrieved descriptions were then customized 
by instantiation of meta-variables and appropriate adapta
tions of the resulting predicates. 

For example, 100JGng at a meeting as a "one-copy" 
resource may prompt, from the goal description fragment 

SystemGoal Achieve [MeetingRequestSatisfiedj 
InstanceOf SatisfactionGoal: Concerns Meeting. Initiator, ... 

a search in the ResourceManagement knowledge base for a 
goal description that concerns the Resource entity. in the 
Satisfaction category and with the Achieve pattern. One of 
the descriptions found is 

SystemGoal Achieve [ResourceRequestSatisfied] 

InstanceOf SatisfactionGoal; Concerns Resource, User ... 
FormalDef (It u: User. res: Resource. rep: Repository) 

Requesting (u, res) 1\ InScope (res, rep) 

=} 0 Using (u, res) 

The obvious meta-variable instantiations here are 
ResQurce'Meeting, Used lnitiator, Using/Scheduled. The 
InScope meta-variable captures an abstraction that here 
corresponds to the feasibility of the various participant's 
constraints put altogether. The Repository abstraction does 
not seem to have much sense here. Hence we get: 

SystemGoal Achieve [MeetingRequestSatisfied] 
InstanceOf SatisfactionGoal; Concerns Meeting, Initiator, ... 
FormalDef (";I r: Initiator, m: Meeting) 

Requesting (r, m) 1\ Feasible (m) =} 0 Scheduled (r, m) 

The fonnal definition above is to be seen as a first approxi
mation to start with. In general the approximation needs to 
be refined in accordance with the infonnal definition, e.g., 
by weakening or strengthening some of the predicates, add
ing or deleting variables, etc. For the goal above the refined 
fonnalization was 

SystemGoal Achieve [MeetingRequestSatisfied] 

InstanceOf ... : Concerns ... ; ReducedTo ... : InformalDef . 
FormalDef (";I r: Initiator, m: Meeting, p: Participant) 

Requesting (r, m) I'. Feasible (m) =} O"R(r.m)d Scheduled (m) 
/\ Invited (p, m) =} O�p(p,m)d Knows (p, m) 

where R(r,m) denotes the deadline (in number of days) 
within which the meeting request should be satisfied and 
P(p,m) denotes the deadline within which the meeting date/ 
location should be known to the corresponding participant, 
with R(r,m) <; P(p.m). Checking the approximation against 
the infonnal definition led thus to strengthen "eventually" 
conditions and to strengthen the predicate by an additional 
requirement of keeping participants infonned. 

In parallel with that fonnalization, a preliminary defini
tion of the Meeting object is elaborated accordingly: 

Entity Meeting 
Has When: Timelnterval, Where: Location. 

FeaSible, Scheduled: Boolean 
Invariant (";I m: Meeting) Feasible (m) � ... 

Scheduled (m) � ... 

198 

Precise invariants to define the Meeting object further seem 
too difficult to write at this point. Their elaboration is 
deferred to a later stage of the process. Similarly the 
Requesting and Invited objects referenced in the fonnal 
definition of the MeetingRequestSatisfied goal can be 
declared as relationships, e.g., 

Relationship Requesting 
Links Initiator {Role Requests, Card O:N} 

Meeting {Role RequestedBy, Card 1 :N} 
Has DateRange: Timelnterval 

Participants List: SetOf[Participan� 

The fonnalization of goals raised five issues which we 
believe are of general interest beyond the KAOS approach, 
namely, goal deidealization, reduction debugging, conflict 
resolution, change propagation, and the stage at which for
malization should start. We discuss them successively, 

(i) Deidealizing goals. Initial fonnulations tend to be too 
ideal, in the sense that they could never be guaranteed by 
the composite system -because they make overoptimistic 
assumptions about agent behaviour, because they are too 
costly to achieve, etc. For example, the subgoal Partici
pantsConstraintsKnown introduced above was first defined 
as follows: 

SystemGoal Achieve [ParticipantsConstraintsKnown] 
InstanceOf InformationGoal 
Concerns Meeting. PartiCipant, Scheduler .... , 
FormalDef (";I m: Meeting, p: Participant, s: Scheduler) 

Invited (p, m) A Scheduling (s, m) 
=} O';C(P.m)d Knows (s, p.Constraints) 

This goal is too ideal because it cannot be operational
ized; there is no way to guarantee that every intended par
ticipant will actually communicate her date constraints in 
due time (e.g., some participants can be unreachable or 
they may not react promptly enough). 

Goals must be achievable; one should not specify 
requirements that cannot be met. For our example one pos
sibility is to weaken the goal fonnulation as follows: 

(It m: Meeting, p: Participant, s: Scheduler) 

Invited (p, m) 1\ Scheduling (s, m) 
=} 0SC(p,m)d [ Knows (s, p.Constraints) v � Expected (p, m) 1 , 

that is, invited participants who did not react within the pre
scribed deadline are removed from the list of expected par
ticipants. Alternative deidealization decisions could of 
course be made; they would correspond to alternative 
reduction nodes in the AND/OR graph. In our case the 
companion goal Maximize [NumberOfParticipantsj should 
guarantee that as few participants as possible will eventu
ally be ruled out because of their constraints missing. 

At a higher level, it would have been wishful thinking to 
require the system to ensure that all the intended partici
pants do effectively participate. Even the Achieve [Meet
ingRequestSatisfiedj goal as formalized above is still 
unrealistic, because it assumes that the feasibility of the 
meeting requested can be assessed in the state where the 
request is made. The deidealized version was obtained 
again by weakening the fonnal definition obtained above 
for that goal into 



System Goal Achieve [MeetingRequestSatisfied] 
InstanceOf ... ; Concerns ... ; ReducedTo ..• ; InformalOef ... ; 
FormalDef ('<I r: Initiator, m: Meeting, p: Participant) 

Requesting (r, m) ==) 0SR(r,m)d [Scheduled (m) v...., Feasible (m)l 
/\ Invited (p, m) ==) O"P(p,m)d Knows (p, m) 

(ii) Debugging goal reductions formally. It was fre
quently the case that intuitive goal reductions were found 
to be incorrect in the later stage of trying to prove the cor
rectness of reductions formally. Incomplete reduction was 
the most frequent error. For example, the goal Achieve 
[MeetingRequestSatisfied) was seen in step 3.l.2 above to 
be initially refined into three subgoals that were formalized 
as follows: 

SystemGoal Achieve [ParticipantsConstraintsKnown) 
FormalDef ('<I m: Meeting, p: Participant, s: Scheduler) 

Invited (p, m) /\ Scheduling (s, m) 
==) O$C(p,m)d Knows (s, p.Constraints) 

SystemGoal Achieve [MeetingPlanned] 
FormalDef ('<I r: Initiator, m: Meeting, s: Scheduler) 

Requesting (r, m) /\ Scheduling (s, m) 
==) O"R(r,m)d [Scheduled (m) v DeadEnd (m») 

SystemGoal Achieve [ParticipantsNotified) 
FormalDef ('<I m: Meeting, p: Participant) 

Invited (p, m) ==) O,;p(p,m)d Knows (p, m) 

It was only when trying to prove formally that those three 
assertions imply the formal definition of the goal Achieve 
[MeetingRequestSatisiied] hereabove that we found a sub
goal missing for the proof to be carried out. This led to the 
revised reduction 

SystemGoal Achieve [Meeting RequestSatisfied) 
ReducedTo SchedulerAvailable, 

ParticipantsConstraintsKnown, 
MeetingPlanned, ParticipantsNotified 

where the missing sub-goal to allow the proof is defined as 
follows: 

SystemGoal Achieve [SchedulerAvaiiable) 
InstanceOf SatisfactionGoal 
Concerns Meeting, Initiator, Scheduler 
FormalDef ('</ r: Initiator, m: Meeting) 

Requesting (r, m) 
==) O';Sd (3 s: Scheduler) Scheduling (s, m) 

(iii) Handling conflicting goals. Finding clever, smooth 
ways of resolving conflicts is among the essential tasks of 
any meeting scheduler, For example, goals like Achieve 
[MeetingRequestSatisfied) and Achieve [MeetingReplanne
dOnRequest) can be seen to be conflicting as dynamic 
replanning can interfere with the normal planning of other 
meetings; even multiple normal planning instances can be 
conflicting with each other. As another typical example of 
interfering goals, the InformationGoal Maintain [Participan
tAgendaKnown) contributes positively to the goal Achieve 
[ParticipantsConstraintsKnown); at the same time it may 
contribute negatively to the PrivacyGoal Maintain [Partici
pantPrivacy). We experienced that the elaboration of ade
quate conflict resolution policies may in itsel

,
f �'ep!esent a 

non-trivial, problem-dependent task m the ehcItatlOn p�o
cess [Vla93]. Some preliminary work on goal conflIct 
detection and resolution suggests that temporal logic for-

199 

malization again is much helpful in identifying various pat
terns of conflicts, determining their weakest cause and 
defining corresponding families of resolution tactics. 

(iv) Propagating changes. Every change in a goal defini
tion has to be propagated downwards and upwards along 
Reduction links and also along Operationalization, Conflict 
and Concerns links. As in any complex document this turns 
out to be rather awkward in some cases. The KAOS lan
guage still lacks modular constructs to support �onceptual 
packages with low interaction and well-defined mterfaces. 
During our case study it was decided to split the goal graph 
into two parts: satisfaction goals in one part and and all 
other goals in the other. This allowed us to work in parallel 
without too much interaction, under the constraint that 
common "interface" objects could only be changed if 
everyone agreed on the necessity of the change. Language 
constructs to support such natural ways of proceeding are 
definitely needed. 

(v) When should goal formalization start? Top-level or 
qualitative goals were in general non-formalizable because 
they were interpretable in many different ways. I� is �nly 
when their reduction (and sometimes their operatlOna1!za
tion) was made sufficiently clear and precise that formal
ization could start. A typical example of this is the very 
high-level goal Maintain[UsabilityByNonExperts). There 
were other situations where a goal formulation could not be 
made formal because it was deliberately intended to cap
ture some degree of freedom left to the appreciation of one 
agent or another. For example, the following goal could not 
be formalized whereas one alternative set of operationaliza
tions could: 

SystemGoal Maximize [ScheduleConvenience) 
InstanceOf SatisfaclionGoal 
Concerns Meeting, Initiator, PartiCipant ... 

InformalOef When the scheduler finds multiple solutions to a 
meeting request, she/it should select some "best" one 
according to contextual and situation-dependent criteria 
which are left at the initiator's appreciation. 

OperationalizedTo NoParticipantOverload, OneScheduleKept 
or OperationalizedTo ... 

Satisfaction, information and consistency goals often were 
fOlwalizable rather early in the process. 

To end up this Section, it should be stressed that th� goal 
structure elaborated in this first step of the strategy dId not 
cover all the goals found in the final document. Discover
ing implicit goals is a non-trivial reverse engineering task. 
In our case we departed from a strict application of the 
strategy from time to time and used scenarios to validate 
the goal structure and find out new goals and constraints 
(see Section 35). 

3.2. Identifying agents/actions from goals and 
operationalizing goals 

During our meeting scheduler case study, the last stages 
of goal elaboration were performed in parallel with the pre
liminary stages of agent/action identificatio� and goal oper
ationalization. Goals need to be converted mto constramts, 
that is, operational versions that could be enforced by 



agents available in the composite system. Operationaliza
tion thus requires some knowledge about which human or 
automated agents might be at hand and what their capabili
ties are. Given a goal and a set of possible agents the ana
lyst must then determine whether the goal could be 
enforced by one of them through appropriate control over 
state transitions. If this is the case the goal becomes an 

assignable constraint; otherwise it must be reduced further. 
To illustrate how goal reduction, agent identification and 

goal operationalization may be intertwinned, consider 
again t he MeetingRequestSatisfied goal and its four sub
goals formalized in Section 3 J.4. 

Agent/action identification. Among all the objects refer
enced in those formal definitions, the following ones can be 
classified as being instances of the Agent meta-type: 

- Initiator objects could control state transitions of the 
Requesting, Invited, and Knows[p,mJ relationships (refer
enced in the MeetingRequestSatisfied goal) through 
applications of some actions; one may thus write prelimi
nary definition fragments such as 

Agent Initiator 
CapableOf Request, Invite, Notify, ... ; ... 

Action Request 
Input Initiator {Arg: r}, Meeting {Arg: m}; Output Requesting 
Pre � Requesting (r, m); Post Requesting (r, m) 

- Scheduler objects could control state transitions of Meet
ing entities (referenced in the MeetingPlanned goal) and 
of Knows[p,mJ rel ationships through appl ications of some 
actions; hence a preliminary sketch such as 

Agent Scheduler 
CapableOf DetermineSchedule, Notify, ... ; ... 

Action DetermineSchedule 
Input Requesting, Meet ing {Arg: m}; Output Meeting {Res: m} 
Pre Requesting (-,m) A �Scheduled (m) 
Post Feasible (m) =; Scheduled (m) 

A � Feasible (m) => DeadEnd (m) 

- Participant objects could control state transitions of 
Knows meta-relationship instances that link Scheduler 
and Participant objects in the expression of the Partici
pantsConstraintsKnown goal; hence the preliminary defi
nition fragments 

Agent Participant 
CapableOf CommunicateConstraints, ... ; ... 
Has Constraints: Tuple [ExcludedDates: SeqOf [Timelnterva�, 

Preferred Dates: SeqOf [Timelnterva� 1 
Invariant (\;Ip: Participant, m: Meeting) 

Invited (p, m) � p E Requesting[-,m).ParticipantsUst 

Note that the actions preliminarily den ned are given ele
mentary pre- and post-conditions; the latter only capture 
the corresponding state transitions identified. Those condi
tions will be refined and strengthened in the later steps of 
the strategy to make them ensure that the operational con
straints will be met. 

Goal operationalization. The goal Achieve [Participants
ConstraintsKnownj above is operationalizable into two con
straints: Achieve [ParticipantsConstraintsRequestedj and 
Achieve [ParticipantsConstraintsProvidedj. The former is 

200 

assignable either to the Scheduler or to the Initiator agent 
(actual responsibility assignments are made at the last step 
of the strategy); the latter is assignable to the corresponding 
Participant agent. This is just one operationalization alter
native; another alternative would correspond to the use of 
an agenda made directly accessible to the scheduler, see 
below. The goal Achieve [ParticipantsNotifiedj is easily 
operationalized into a NotificationSentconstraint assignable 
to the Scheduler or the Initiator agent. The goal Achieve 
[Meeting Planned] can be OR-operationalized in two alter
native ways: the first alternative yields the Achieve [Meet
ingPlannedWithoutNegotiation] constraint assignable to the 
Scheduler agent. The second alternative yields the Achieve 
[MeetingPlannedWithNegotiationj constraint assignable to 
the Initiator or Scheduler agents. The latter alternative will 
eventually be preferred as it contributes positively to the 
goal Maximize [N umberOfParticipants] whereas the former 
contributes negatively to the goal Minimize [DeadEndsj. 
(Note that Achieve [MeetingPlannedWithNegotiationj 
became a constraint assignable to, e.g., the Scheduler agent 
because we saw no way to split the responsibility for that 
objective among the Scheduler and Participant agents -a 
participant should by no means be made responsible for the 
system 's wrong behaviour in case she fails to respond to 
scheduler requests for weakening her constraints.) 

Goal operationalization often requires a change in level 
of abstraction. Abstract concepts involved in goal formula
tions need to be mapped to concrete ones to make it possi
ble to formulate constraints/actions assignable to agents. 
This turned out to be hard in some cases. It somewhat cor
responds to the choice of good representation functions to 
map .abstract objects to concrete variables [Roan], in a 
way similar to data reification [Jon90j. To illustrate this, 
consider the qualitative goal 

SystemGoal Minimize [participant-schedulerlnteraction) 
ReducedTo ParticipantAgendaKnown, FinalApprovalAsked; ... 

The reduction introduces an abstract Agenda concept in 
one of the sub goals: 

SystemGoal Maintain [ParticipantAgendaKnown) 
InstanceOf InformationGoal; Concerns Agenda, ... ; 
FormalOef (\;I m: Meeting, p: Participant , s: Scheduler) 

Invited (p, m) A Scheduling (s, m) =; Knows (s, Agenda[p,-J) 
ReducedTo AgendaAccessible, AgendaUpToDate; ... 

The new subobjective Maintain [AgendaUpToDatej is 
clearly assignable as an operational constraint to Participant 
agents. Formalizing that constraint in terms of states con
trollable by Participant agent ... requires the Agenda abstract 
concept to be represented in more concrete terms, e.g., 

Relationship Agenda 
Links Participant {Role KeepsAppointmentln, Card 1 :N} 

Calendar {Role TracksAppointmentFor, Card 1 :N} 
Has BusyPeriods: Seq Of [Timelnterva� 

FreePeriods: SeqOf [Timelnterva� 
CoveredPeriods: SeqOf [Timelnterva� 

Invariant 
BusyPeriods n' FreePeriods = [) 
BusyPeriods u' FreePeriods = Covered Periods 

Thanks to this representation the Maintain [AgendaUpTo-



Date] constraint can now be fonnalized as follows: 

WeakConstraint Maintain [AgendaUpToOate] 
InstanceOf ConsistencyConstraint 
UnderResponsibilityOf Participant 
FormalDef (V' p: Participant, tp: Timelnterval) 

-, Free (p, tp) � tp E BusyPeriods 

3.3. Object/action refinement and strengthening 

The fonnulation of finer sub goals and constraints may 
involve new objects/actions to be defined correspondingly 
(see, e.g., the Agenda object discussed above). Such fonnu
lations may also require specifications of already identified 
objects/actions to be refined and/or revised. For example, 
the following constraint was introduced to "implement" 
the three goals specified in its Operationalizes clause: 

StrongConstraint Achieve [BestSchedule] 
Operatlonalizes Achieve [MeetingPlannedWithNegotiationJ . 

Maximize [ScheduleConvenience], Minimize [OeadEnds] 
FormalDef (V' r: Initiator, m: Meeting, s: Scheduler» 

Requesting (r, m) 1\ Scheduling (s, m) 
=> O"R(r.m)d [Feasible (m)=> Scheduled (m) 1\ Preferred (m) 

1\ NearlyFeasible (m) 
=> ScheduledByNegotiation (m) 

1\ -, Feasible (m) 1\ -, NearlyFeasible (m) 
=> OeadEnd (m) 1 

The fonnulation of that constraint called for a refinement of 
the Meeting object introduced in Section 3.1 .4, such as 

Entity Meeting 
Has When: Timelnterva/, Where: Location, 

Feasible, NearlyFeasible, Scheduled, Preferred: Boolean 
Invariant (V' m: Meeting) 

Feasible (m) � 3 d: Plannable (m, d) 
Plannable (m, d) � d in Requesting[-,mj .DateRange 

1\ V'p E Requesting[-,m).ParticipantsList: 
d � ExcludedDates (p.Constraints) 

Scheduled (m) ¢=> m.when = OneOf {d I Plannable (m, d)} 
Preferred (m)) � . . . , NearlyFeasible (m) � .. .  

B esides it is often the case that some actions and objects 
need to be strengthened in order to ensure that every con
straint will be met in the composite system. This may 
require strengthening the elementary pre- and postcondi
tions, introducing trigger conditions, or introducing new 
specific actions for constraint satisfaction. A number of 
inference rules are proposed in [Dar93] for the fonnal deri
vation of such strengthenings. The general principle for a 
constraint C and action A is to match A's initial/final condi
tions against C to factor out subsidiary conditions on ini
tial/final states for A to ensure C. 

Using such rules the DetermineSchedule action identi
fied in Section 3.2 was strengthened as follows to ensure 
the BestSchedule constraint specified hereabove: 

Action DetermineSchedule 
Input Requesting, Meeting {Arg: m}; Output Meeting {Res: m} 
Ensures BestSchedule 
Pre Requesting (-,m) 1\ -, Scheduled (m) 
Strengthened Post 

Feasible (m) => Scheduled (m) 1\ Preferred (m) 
1\ NearlyFeasible (m) => ScheduledByNegotiation (m) 
1\ -, Feasible (m) A -, NearlyFeasible (m) => OeadEnd (m) 

201 

3.4. Assigning responsibilities to agents 

The identification of possible responsibility links during 
operationalization was in general fairly easy, because thc 
number of potential agents was small and their capabilities 
were obvious and not overlapping too much (see the exam
ples suggested in Section 3.2). For a set of candidate agents 
assignable to a constraint, the decision of actual assignment 
of one of them to the actions ensuring that constraint was 
sometimes less obvious. Among the attributes of responsi
bility links provided by the KAOS meta-model, Reliability 
was the most frequently used criterion to select effective 
assignments. (The Cost attribute was never used due to the 
lack of appropriate cost evaluation models.) Backtracking 
on operationalization choices was sometimes requircd to 
select a more reliable operationalization and agent assign
ment. For example, the operationalization of the Partici
pantsConstraintsKnown goal through the ParticipantsCons
traintsRequested and ParticipantsConstraintsProvided con
straints was eventually selected over thc alternative opera
tionalization through the use of an electronic agenda. The 
reason was that the AgendaUpToOate constraint found in 
the latter alternative could only be assigned to Participant 
agents but with lower reliability than the assignments in the 
fonner alternative where ParticipantsConstraintsRequested 
and ParticipantsConstraintsProvided are assigned to the 
Scheduler and Participant agents, respectively. 

'The KAOS approach was felt to be limited in the assign
ment decision step; like other approaches it provides little 
support for fonnal reasoning about alternative assignments 
-an issue that we feel of upmost importance in the require
ments engineering process, especially in new application 
areas where the decision about what should be automated 
and what should not is less obvious than usual. 

3.5. Using scenarios for validation 

The use of operational scenarios proved to be effective in 
getting an overall picture of the composite system during 
its elaboration and also in identifying missing actions 
together with their underlying (implicit) goals. Usually an 
action was found to be missing from some typical scenario 
being built; the underlying constraints/goals were then 
made explicit by answering why questions about that miss
ing action. Consider, for example, the following scenario. 

Scenario HandleMeetingRequest 
Is (/ssueRequest: SubmitRequest; ValidateRequest); 

AskParticipantsConstraints; 
(GetConstraints:: FormulateConstraints; 

CommunicateConstraints; 
ValidateConstraints )*; 

PlanMeeting; 
(NotifyResults: (NotifyOate&Location I NotifyDeadEnd) ) 

This scenario revealed that the Va/idateRequest and Vali
dateConstraints actions had been overlooked in the elabo
ration process. A why question about the latter action led to 
identify a new constraint AcceptableParticipantsConstraints 
that completes the AND-list of constraints operationalizing 
the ParticipantsConstraintsKnown goal (and positively con
tributes to the goal Avoid [PhysicaILawBrokenJ.) 



4. Discussion 

The Meeting Scheduler was felt to be a rich and chal
lenging exemplar for Requirements Engineering research. 
Compared with the traditional examples used in the litera
ture it offcrs a rather unusual combination of features found 
in real requirements documents. It covers many different 
types of requirements expressed with varying levels of pre
cision -beside functional requirements there are real-time 
performance constraints, privacy concerns, concurrency 
and distribution aspects, optimization requirements (such 
as maximizing mceting convenience or minimizing interac
tion among participants), suggested heuristics for defining 
near solutions, very high-level objectives such as transpar
ency, reliability, flexibility, usability and changeability, etc. 
H also includes many open issues that need to be resolved 
as part of the requirements engineering process -e.g., inter
fering objectives, automation alternatives, alternative pat
terns of communication and cooperation, etc. The 
satisfactory behaviour of the automated part of the compos
ite system heavily relies on the satisfactory behaviour of 
agents in the environment part. The precise functionalities 
the system should provide are not quite clear from the 
beginning. While still being of very small size with respect 
to "real world" documents,  the preliminary problem state
ment is considerably larger than the usual toy problems that 
have been popular in the past. At the same time it lends 
itself to implementations that are potentially useful in real
life situations. 

For this problem the ability to address why, what, who, 
how questions within separate but linked specification units 
was felt to be a major advantage of goal- and agent-ori
ented languages over functional and "conceptually fiat" 
representation languages such as Z or VDM. Moreover in 
KAOS the outer ERA-like declaration level allows for 
traccability between such units; the inner temporal logic 
level allows for formal reasoning during their elaboration. 
Applying a goal-directed strategy allowed us to trace deci
sions regarding the defmition of objects and actions back to 
their underlying goals. 

We found the distinction between domain definitions and 
system requirements [Jac93] very helpful in our case study. 
This important separation of concerns is supported in 
KAOS by the partitioning of assertions -the elementary 
invariants and pre- and postconditions describe objects and 
actions in the domain whereas the requirements themselves 
consist of goals, operationalizing constraints, and strength
enings of the domain assertions to ensure such constraints. 
Sometimes we concluded that some assertion fragment was 
not proper to the domain but rather a specific requirement; 
this led us to to ask why questions and discover new con
straints and goals therefrom. 

The usefulness of meta-level constraints to guide the 
acquisition process at specific points was confirmed. For 
instance, when it was realized that the ParticipantsCon
straintsProvided constraint was in fact a weak constraint the 
question was triggered as to what the associated restoration 
action should be in case of temporary violation; a missing 

202 

action SendReminderForConstraints was thereby identified 
together with its trigger condition derived from the formal 
definition of the ParticipantsConstraintKnown constraint. 
As suggested in Section 3 . 1 .4, the benefits of sometimes 
reusing and adapting abstract descriptions instead of start
ing from scratch became apparent too. 

Our specification did not cover all aspects described in 
the preliminary definition [Vla93]. One reason is that the 
aspects we covered in all details already resulted in a very 
long document. Writing all details was time consuming and 
tedious. (The unavailability of a syntax-directed editor was 
especially harmful in that respect.) Another reason is that 
there are a number of aspects from the initial problem state
ment that we could not capture -notably, usability and 
changeability. Yet another reason is that our initial version 
of the specification turned out to have a significant number 
of bugs -many of them being detected while trying to make 
formal proofs (see the example in Section 3.1 .4). Therefore 
we shifted our focus towards formal techniques for avoid
ing such problems -in partiCUlar, techniques for proving the 
correctness of goal reductions and operationalizations. We 
started some work in that direction by building a rather 
extensive library of reduction templates that are proved 
correct using standard temporal logic techniques. 

In Section 3 we discussed various KAOS-independent 
problems encountered at each step of the elaboration pro
cess, notably, the difficulty of identifying the right goals 
and reductions, the need to sometimes deidealize goals by 
weakening their formulation or finding alternative reduc
tions, the problem of dealing with conflicting goals and 
finding reasonable compromises, and the need to occasion
ally restructure the AND/OR goal graph so as to permit 
parallel elaboration on disjoint types of goals. 

There are other issues we did not discuss there. The 
granularity of conceptual units is one of them. The choice 
of granularity of a "leaf" concept impacts on the granularity 
of the conccpts depending on it. For example, if the 
BestSchedule constraint introduced in Section 3.3 had been 
split into a number of sub-constraints, the agents and 
actions to enforce it would have needed to be decomposed. 
Similarly, if the Scheduler agent had been split into a num
ber of sub-agents, the actions assigned to it would have 
need cd to be decomposed further. Currently we do not have 
precise criteria for deciding which level of granularity 
seems the best. 

Sometimes the need was felt to formulate some asser
tions as assumptions that could be retracted in some spe
cific versions of the system. In particular, it is very often 
the case that goals/constraints are actually achievable only 
under some optimistic assumptions about normal behaviour 
of agents. For example, one might record the fact that par
ticipants are highly reliable in maintaining their electronic 
agenda as an explicit assumption. (Similar assumptions 
were made about the participants willingness to respond to 
scheduler requests for communicating date constraints or 
weakened versions of them.) The formulation of such 
assertions as explicit assumptions attached to the goals/con
straints that depend on them would make it possible to 



retract them in some specific versions of the system; all 
depending specification units could then easily be pointed 
out for appropriate revision. To support this sort of truth 
maintenance the KAOS meta-model would need to be 
extended with an Assumption meta-concept and Depen
dency meta-relationship. We are currently working further 
on this as assumptions/dependencies are frequently 
encountered when trying to use our meta-model as a pro
cess meta-model for modelling software processes. 

As mentioned in Section 3.5, we had frequent recourse 
to usage scenarios to validate our specification and try to 
point out aspects of the system that we had overlooked. We 
experienced that typical scenarios are sometimes much eas
ier to identify in the preliminary stages of acquisition than 
some abstract goals that can be made explicit only after 
some deeper understanding of the system has been gained. 
Scenarios may be a source of complementary insights and 
are a popular acquisition vehicle [Jac92], [Pot94]. They can 
also be generated from the specification to exhibit deficien
cies in it [Fic92]. Besides, viewpoints capture and integra
tion [Nus93] may provide another complementary means 
for acquiring goals, objects and actions. Viewpoints seem 
especially meaningful in applications such as meeting 
scheduling where the inderdependency between human and 
automated agents is high. We are thus more and more led to 
the conclusion that a hybrid strategy that would combine 
goal-directed, scenario-directed and viewpoint-directed 
acquisition tactics would contribute to building a more ade
quate, complete and consistent set of requirements. 

Acknowledgement. The Meeting Scheduler problem origi
nated from a number of lively discussions with Steve Fickas' 
group at the University of Oregon. The work reported herein was 
partially funded by the Commission of the European Communi
ties (ESPRIT Project 2537 "Icarus") and the Belgian Ministery of 
Scientific Affairs (SPPS Project IT/IFI 1 0 "Oasis"). 

References 
[Dam93J R. Darimont, ''Rcsourcc Models in KAOS", Rcs. Rep. 

RR-93-23, UCL Unite d'Informatique, 1993. 
[Dam94] R. Darimont, "A Taxonomy of Reduction Patterns", Res. 

Rep. RR·94· 1 ,  UCL Unite d'Informatique, 1994. 
[Dar9 1 J  A. Dardenne, S. Fickas S. and A. van Lamsweerde, 

"Goal-directed Concept Acquisition in Requirements Elicita
tion", Proc. IWSSD-6 . 6th Intl.Worksh. on Software Specifi
cation and Design, IEEE, 1 99 1 ,  1 4-21 .  

[Dar93] A.  Dardenne, A. van Lamsweerde and S. Fickas, "Goal
directed Requirements Acquisition", Science of Computer 
Programming, Vol . 20, 1 993, 3-50. 

[Dub93] E. Dubois, Ph. Du Bois and M. Petit, "Object-Oriented 
Requirements Analysis: An Agent Perspective", Proc. 
ECOOP'93 - 7th European Can! on Object-Oriented Pro
gramming, Springer-Verlag LNCS 707, 1 993, 458-48 1 .  

[Fea87] M. Feather M ,  "Language Support for the Specification 
and Development of Composite Systems", A CM Trans. on 
Programming Languages and Systems 9(2), Apr. 87, 1 98-234. 

[Fea93] M. Feather, "Requirements Reconnoitering at the Junc
ture of Domain and Instance", Proc. RE'93 - 1st Int!. IEEE 
Symp. on Requirements Engineering, Jan. 1993, 73-77. 

[Fic92] S. Fickas and R. Helm, "Knowledge Representation and 
Reasoning in the Design of Composite Systems", IEEE Trans. 

203 

on Software Engineering, June 1992, 470-482. 

[Fin87] A, Finkelstein and C. Potts, "Building Formal Specifica
tions Using "Structured Common Sense", Proc. IWSSD·4 -
4th IntI. Workshop on Software Specification and Design, 
IEEE, 1987, 108- 1 13. 

[Gut93] J.Y. Guttag and J.J. Horning, LARCH: Languages and 
Tools for Formal Specification, Springer-Verlag, 1993. 

[Hoa72] C.A.R. Hoare, "Proof of Correctness of Data Representa
tions", Acta Informatica Vol. 1 ,  1972, 271 -28 1 .  

[Jac92] I ,  Jacobson, Object· Oriented Software Engineering · A 
Use Case Driven Approach, Addison-Wesley, 1 992. 

[Jac93] M. Jackson and P. Zave, "Domain Descriptions", Proc. 
RE'93 . 1st Inti. IEEE Symp. on Requirements Engineering, 
Jan. 1993, 56-64. 

[Jon90] c.B. Jones, Systematic Software Development Using 
VDM, 2nd edition, Prentice Hall, 1990. 

[Ken93] S. Kent, T. Maibaum and W. Quirk, "Formally Specify
ing Temporal Constraints and Error Recovery", Proc. RE'93 . 
J st Intl. /EEE Symp. on Requirements Engineering, Jan. 1993, 
208-215. 

[Koy92] R. Koymans, Specifying Message Passing and TIme
Critical Systems with Temporal Logic, Springer-Verlag LNCS 
651 ,  1 992. 

[Man92] Z. Manna and A. Pnueli, The Temporal Logic of Reactive 
and Concurrent Systems. Springer-Verlag, 1 992. 

[Myl92] J. Mylopoulos. L. Chung and B. Nixon, "Representing 
and Using Non-Functional Requirements: A Process-Oriented 
Approach", IEEE Trans. on Software Engineering, June 1 992, 
483-497. 

[Nus93] B. Nuseibeh, J. Kramer and A. Finkelstein, "Expressing 
the Relationships Between Multiple Views in Requirements 
Specification", Proc. lCSE·15 . 15th IntI. Con! on Software 
Engineering, 1 993, 1 87-197. 

[Pot94] C. Potts, K. Takahashi and A.I. Anton, "Inquiry-Based 
Requiremcnts Analysis", IEEE Software, March 1994, 21 -32. 

[Reu91 ]  H.B. Reubenstein and R.C. Waters, "The Requirements 
Apprentice: Automated Assistance for Requirements Acquisi· 
tion", lEEE Trans. on Software Engineering 17(3), March 
1 99 1 ,  226-240. 

[Rob89] W.N. Robinson, "Integrating Multiple Specifications 
Using Domain Goals", Proc. IWSSD-5 . 5th Inti. Workshop on 
Software Specification and Design, IEEE, 1989, 2 1 9-226. 

[Spi92] I.M. Spivey, The Z Notation - A Reference Manual, 2nd 
edition, Prentice Hall, 1 992. 

[Swa82] W. Swartout and R. Balzer, "On the Inevitable Intertwin· 
ing of Specification and Implementation", Communications of 
the ACM, Vol. 25 No. 7. July 1 982. 438-440. 

[Vla91a] A. van Lamsweerde, "Learning Machine Learning", in: 
Introducing a Logic Based Approach to Arti/icial Intelligence 
. Vol. 3, Wiley, 199 1 , 263-356. 

[Vla91b] A. van Lamsweerde, A. Dardenne, B. Delcourt and F. 
Dubisy, "The KAOS Project: Knowledge Acquisition in 
Automated Specification of Software", Proc. AAAl Spring 
Symp. Series, Track: "Design of Composite Systems", Stan
ford University, March 1 99 1 ,  59-62. 

[Vla93] A. van Lamsweerde, R. Darimont and Ph. Massonet, 
"The Meeting Scheduler System - Preliminary Dcfinition", 
Internal Report, University of Louvain, 1 993. 


