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Representing and Using Nonfunctional 
Requirements: A Process-Oriented Approach 

John Mylopoulos, Lawrence Chung, and Brian Nixon 

Abstract-The paper proposes a comprehensive framework for 
representing and using nonfunctional requirements during the 
development process. The framework consists of five basic com- 
ponents which provide for the representation of nonfunctional 
requirements in terms of interrelated goals. Such goals can be 
refined through refinement methods and can be evaluated in 
order to determine the degree to which a set of nonfunctional 
requirements is supported by a particular design. Evidence for 
the power of the framework is provided through the study of 
accuracy and performance requirements for information systems. 

I. INTRODUCTION 

HE complexity of an information system is determined T partly by its functionality-i.e., what the system 
does-and partly by global requirements on its development 
or operational cost, performance, reliability, maintainability, 
portability, robustness, and the like. These nonfunctional 
requirements‘ play a crucial role during system development, 
serving as selection criteria for choosing among myriads 
of decisions. Errors of omission or commission in laying 
down and taking properly into account such requirements 
are generally acknowledged to be among the most expensive 
and difficult to correct once the information system has been 
completed. Surprisingly, nonfunctional requirements have 
received little attention by researchers and are definitely less 
well understood than other, less critical factors in software 
development. As far as software engineering practice is 
concerned, they are generally stated only informally during 
requirements analysis, are often contradictory, difficult to 
enforce during software development and to validate for the 
user once the final system has been built. The only glimmer 
of technical light in an otherwise bleak landscape originates 
in technical work on software quality metrics that allow the 
quantification of the degree to which a software system meets 
nonfunctional requirements [3], [5] ,  [26]. 

There is not a formal definition or a complete list of 
nonfunctional requirements. In a report published by the 
Rome Air Development Center (RADC) [7], nonfunctional 
requirements (“software quality attributes” in their terminol- 
ogy) are classified into consumer-oriented (or software quality 
factors) and technically-oriented attributes (or software quulity 
criteria). The former refers to nonfunctional requirements 
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in the literature. 

observable by the consumer, such as efficiency, correctness, 
and interoperability. The latter addresses system-oriented re- 
quirements such as anomaly management, completeness, and 
functional scope. Table I shows the RADC consumer-oriented 
attributes. The nonfunctional requirements listed in the table 
apply to all software systems. However, additional require- 
ments may apply for special classes of software. For instance, 
precision would be an important nonfunctional requirement 
for a numerical analysis software package, while accuracy (of 
maintained information) might feature prominently during the 
development of an information system. 

Two basic approaches characterize the formal treatment of 
nonfunctional requirements and we shall refer to them as 
product-oriented and process-orientd. The first attempts to 
develop formal definitions of nonfunctional requirements so 
that a software system can be evaluated as to the degree 
to which it meets its requirements. For example, measuring 
software visibility may include, among other things, measuring 
the amount of branching in a software system. This might be 
achieved globally with a criterion such as: “There shall be no 
more than X branches per 1,000 lines of code” or locally with 
a criterion such as “There shall be no more than Y% of system 
modules that violate the above criterion.” 

The product-oriented approach has received almost exclu- 
sive attention in the literature and is nicely overviewed in 
[26]. Earlier work by Boehm et al. [5]  considered quality 
characteristics of software, noting that designer-awareness 
alone improved the quality of the final product. Also sup- 
porting a quantitative approach to software quality, Basili 
and Musa [3] advocate models and metrics of the software 
engineering process from a managment perspective. It is 
interesting that Hauser et al. [21] provide a methodology for 
reflecting customer attributes in different phases of automobile 
design. 

An alternative approach, explored in this paper, is to de- 
velop techniques for justifying design decisions during the 
software development process. Instead of evaluating the final 
product, the emphasis here is on trying to rationalize the 
development process in terms of nonfunctional requirements. 
Design decisions may affect positively or negatively particu- 
lar nonfunctional requirements. Design decisions may affect 
positively or negatively particular nonfunctional requirements. 
These positive and negative dependencies can serve as basis 
for arguing that a software system indeed meets a certain 
nonfunctional requirement or explaining why it does not. 

Orthogonally, treatments of nonfunctional requirements can 
be classified into quantitative and qualitative ones. Most of the 
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Acquisition 

Performance-How well does it function? 

Design-How valid is the design? 

Adaptation-How adaptable is it? 
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User Concern 
How well does it utilize a resource? 
How secure is it? 
What confidence can be placed in what it does? 
How well will it perform under adverse conditions? 
How easy is it to use it? 
How well does it conform to requirements? 
How easy is it to repair? 
How easy is it to verify its performance? 
How easy is it to expand or upgrade its capability or performance? 
How easy is it to change? 
How easy is it to interfere with another system? 
How easy is it to transport? 
How easy is it to convert for use with another application? 

TABLE I 
THE RADC SOFTWARE QUALITY CONSUMER-ORIENTED ATTRIBUTES [7 ]  

product-oriented approaches alluded to earlier are quantitative 
in the sense that they study quantitative metrics for measuring 
the degree to which a software system satisfies a nonfunctional 
requirement. The process-oriented treatment proposed here, on 
the other hand, is definitely qualitative, adopting ideas from 
qualitative reasoning [l]. It should be acknowledged that a 
process-oriented treatment of nonfunctional requirements need 
not be qualitative. Indeed, one could imagine quantitative 
measures for, say, software visibility that can be used as 
the system is being developed to offer advance warning that 
nonfunctional requirements are not being met. Qualitative 
techniques were chosen here primarily because it was felt 
that the problem of quantitatively measuring an incomplete 
software system is even harder than that of measuring the 
final product. 

Of course, neither product-oriented quantitative metrics nor 
process-oriented qualitative measures have a monopoly on 
properly treating nonfunctional requirements. They are best 
seen as complementary, both contributing to an evolving 
comprehensive framework for dealing with nonfunctional re- 
quirements. 

Two sources of ideas were particularly influential on our 
work. The first involves recent work on decision support 
systems, such as that described in [19], [28] and [29]. Lee’s 
work, for example, adopts an earlier model for representing 
design rationale [38] and extends in by making explicit the 
goals presupposed by arguments. The work reported here can 
be seen as an attempt to adopt this model to the representation 
and use of nonfunctional requirements. The second source 
of ideas is the DAIDA environment for information system 
development [23] which has provided us with a comprehensive 
software development framework covering both notations for 
requirements modeling, design, implementation and decision 
support, as well as a starting point on how the treatment 
of nonfunctional requirements might be integrated into that 
framework. Users of the DAIDA environment are offered three 
languages through which they can elaborate requirements, 
design, and implementation specifications. In developing a 
design specification, the user consults and is constrained 
by corresponding requriements specifications. Likewise, the 
generation of an implementation is guided by a correspond- 
ing design specification. Dependency links represent design 
decision and relate implementation objects to their design 

Quality Attribute 

Integrity 
Reliability 
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Correctness 
Maintainability 
Verifiabilitv 
Expandability 
Flexibility 
Interoperability 
Portability 
Reusabilitv 

Fig. 1. Employee and report hierarchy. 

counterparts and design objects to their requirements coun- 
terparts. The framework proposed in this paper focuses on 
these dependency links and how they can be justified in terms 
of nonfunctional requirements. An early description of the 
framework and an account of how it relates to DAIDA can 
be found in [12]. 

The example used throughout this paper is an expense 
management system for a hypothetical research project, similar 
to the one used in [6]. According to the example, project 
members from organizations based in different countries reg- 
ister for and attend various meetings. They then submit their 
expense summaries to an expense management system, which 
maintains all such information and generates expense reports 
for each member, meeting, and project. As shown in Fig. 1, 
there are several kinds of employees, including secretaries, 
engineers, and researchers, who are in turn classified into 
computer researchers, math researchers, and so on. 

Establishment of the framework is achieved in two steps. 
First, the framework is presented in Section 11. The presenta- 
tion includes motivation, the framework’s structure and short 
suggestive examples. This framework is then elaborated and 
illustrated in the following two sections by examining its appli- 
cation respectively to accuracy and performance requirements 
for information systems. The final section summarizes the 
contributions of this research and presents a number of open 
questions and directions for further research. 

11. REPRESENTING NON-FUNCTIONAL 
REQUIREMENTS: A PROCESS-ORIENTED FRAMEWORK 

Formally, the proposed framwork consists of five major 
components2 a set of goals for representing nonfunctional 
requirements, design decisions, and arguments in support of 
or against other goals; a set of link types for relating goals 
or goal relationships (hereafter links) to other goals; a set of 
generic methods for refining goals into other goals; a collection 

2 A n  earlier version of portions of this and the next section have appeared 
in [13]. 
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of correlation rules for inferring potential interactions among 
goals; and finally, a labelling procedure which determines 
the degree to which any given nonfunctional requirement is 
being addressed by a set of design decisions. The examples 
throughout this section concentrate on accuracy and to a lesser 
extent operating cost requirements for information systems. 

During the design process, goals are organized into a goal 
graph structure, very much in the spirit of AND/OR trees 
used in problem solving [34]. Unlike traditional problem 
solving and planning frameworks, however, goals representing 
nonfunctional requirements can rarely be said to be “accom- 
plished” or “satisfied” in a clearcut sense. Instead, different 
design decisions contribute positively or negatively towards a 
particular goal. Accordingly, for the rest of the discussion we 
will speak of goal satisficing [4213 to suggest that generated 
software is expected to satisfy within acceptable limits, rather 
than absolutely, nonfunctional requirements. 

A. Goals 

The space of goals includes three mutually exclusive classes, 
namely, nonfunctional requirements goals (NFR goals), satis- 
ficing goals, and argumentation goals. In general, each goal 
will have an associated sort and zero or more parameters 
whose nature depends on the goal sort. For example, an 
operating cost requirement might have as parameter a desired 
upper bound on the annual operating costs of the system under 
development. Sorts may be further subdivided into subsorts, 
representing special cases for each goal class. For instance, 
the performance sort may have subsorts Time Performance 
(or simply Time) and SpacePerformance (or simply Space), 
representing respective time and space performance require- 
ments on a particular system. Goals, NFRGoals, SatGoals and 
ArgGoals will refer respectively to the set of all possible goals, 
NFR goals, satsificing goals, and argumentation goals. 

I )  Nonfunctional Requirements Goals: The sorts for such 
goals range over the different categories of such requirements, 
including accuracy, security, development, operating or hard- 
ware costs, and performance. For our expense management 
system, suppose that it is expected of the system under 

maintenance, etc.), this requirement might be represented as 
OperatingCost [ manpower 1 . 
2) Satisficing Goals: These are also sorted and parameter- 

ized. In this case, however, the sorts range over different 
categories of design decisions that might be adopted in order 
to satisfice one or more nonfunctional requirements goals. The 
parameters associated with each sort, again, depend on the 
nature of the corresponding satisficing goal. For instance, one 
way to satisfice the accuracy goal mentioned earlier might be 
to validate all employee data entered into the system. This can 
be represented as a satisficing goal: 

Validation [attributes (Employee) 1 ,  

where Validation is the goal sort and attributes(Emp1oyee) 
is as before. This goal, in turn, might be refined into another 
satisficing goal, 

Validated By[ JohnWong,attributes (Employee) 1 ,  

representing the situation that JohnWong will be doing the 
validation. 

the sort Claim, with subsorts FormalClaim, and Informal- 
Claim, representing formally or informally stated evidence or 
counter-evidence for other goals or goal refinements. Consider: 

Formal Claim[3e: ValidatedBy[e,attributes (Employee) ] 

3) Argumentation Goals (or Arguments): These always have 

AEmpStatus(e,sec I) 1 

This argumentation goal suports the refinement from the 
goal of validating employee data to the one assigning JohnWong 
to the task, by claiming that class I secretaries will perform 
the validation. In contrast, 

InformationClaim[“Rigorous examination is recommended 
for publications by employees.”] 

is an informally-stated argumentation goal supporting the 
previous argumentation goal by pointing out why class I 
secretaries should validate employee data. 

B. Link Types .- 

development to maintain accurately employee data. Such a 
goal might be represented by: As indicated earlier, design proceeds by refining one or 

more times each goal, the parent, into a set of other goals, 
Accuracy [ attributes (Employee) ] 

where Accuracy is the goal sort and the parameter of at- 
tributes (Employee) evaluates to the set of all atributes 
associated with the data class Employee. The interpretation 
of this goal is that instances of the attributes of the data 
class Employee, i.e., all attributes of employees, ought to be 
maintained accurately in the system’s database. As another 
example, it may also be expected that the system under 
development make minimal demands on manpower. This can 
be treated as an operating cost requirement, and since there 
are several contributing factors to operating costs (manpower, 

the offspring. Unlike AND/OR goal trees, where the relationship 
between a collection of offspring and their parent can only be 
AND or OR, in our proposed framework there can be several 
different types of relationships or link types describing how 
the satisficing of the offspring (or failure thereoq relates to 
the satisficing of the parent goal. The need for at least some 
link types is evidenced in [ 5 ] ,  which states that some quality 
characteritics are necessary, but not sufficient, for achieving 
others. Boehm et al. then use a four-grade scale to correlate 
each quality metric with quality attributes in the final product. 

Links may relate a parent goal to one or several of its 
offspring. In fact, links may also be used to relate other links .~ 

to argumentation goals, to indicate that an argument offers 
‘[42] actually uses the term to refer to decision methods that look for 

satisfactory solutions rather than optimal ones. The term is adopted here in a 
broadened sense since in the context of nonfunctional requirements, even the 

positive or negative support for a particular refinement of a 
goal. Thus, links too need to be satisficed either through a 

notions of a solution or optimality of a solution may be unclear. formal refinement process or through arguments provided by 
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the designer. 
Let Links denote the set of all links and satisficed be a 

predicate which is true of satisficed goals or links and false of 
others. Also, let denied be a predicate which is true of goals 
and links that have been shown unsatisficeable (“unsolvable” 
in problem solving terminology (341). If 

Propositions = Goals U Links 

then satisficed and denied are predicates taking a proposition 
as argument. 

Sometimes a proposition will be found to be satisfice- 
able-thanks to one refinement-and deniable-thanks to an- 
other. For instance, the accuracy goal for employee data might 
be satisficeable thanks to a validation procedure adopted for 
all such data, but deniable because of a user interface that 
permits general access to this information. To deal with such 
conflicting cases, we need to distinguish between a proposition 
being satisficed or denied, on one hand, and a proposition 
being potentially satsificeable or deniable thanks to some 
refinement on the other. Accordingly, two more predicates, 
satisficeable and deniable are introduced to deal with the latter 
case. 

The set of logical types to be used for links is presented 
below. For each type, axioms are provided which formalize 
its semantics in terms of the predicates just introduced (see 
Axiom 1 below). 

The link type sub is also intended to convey the sense that 
G1 contributes partially to the satisficing of Go. This can 
be expressed as follows: If satisficed(sub( Go, G I ) )  then there 
exist propositions G2,.  . . , G ,  such that 

- (satisficed(G2)A. . . Asatisficed(G,) -satisficeable( Go)) 

but 
satisficed(G1)Asatisfced(G~) A . . . Asatisficed(G,) 

Asatisficed(sub( Go, G1))+satisficeable( Go) 
In words, if G1 is a sub(proposition) of Go then there exist 

propositions G 2 ,  ‘ . . , G ,  which cannot achieve the satisficing 
of Go without the contribution of G I .  

Two additional link types are introduced to represent nega- 
tive influences of one goal on another (see Axiom 2 below). 

In words, if G1 is a negative sub(proposition) of Go then 
denial of G 1  leads to the satisficing of Go and satisficing of 
G I  contributes to the denial of Go. 

Finally, it is useful to define the eql (equivalent) link type 
in terms of the link types introduced here: 

eql : Propositions x Propositions. 
eql(G0, G I )  =sup(Go, G l ) A s ~ p ( G o ,  G I )  

Asup(Go, Gi)Asup(Go, G I )  

At times, it may be hard to determine apriori the logical 
relationship between a set of offspring and their parent goal 
without further expansion of the goal graph. For example, the 
designer may see that a certain hiring policy for technical staff 
is relevant, without being sure of its impact on a particular 
goal, say, in justifying the assignment of a class I secretary 
to the task of validating emplyee data. This situation is 
accommodated through three variations of an undetermined 
link type: 

und : Propositions x Propositions. 
und( Go, G I )  indicates the possible presence of 

Axiom 1 

AND : 

OR : 

sup : 

sub : 

Propositions x 2Prupusitrons. 
satisficed(G1)Asatisficed(G~) A . . . Asatisficed(G,)AsatisJiced(AND(Go, { G I ,  G2, .  . . , G,}))--tsaticeficeable(Go) 
satisficed(AND(G0, { G I ,  G2, .  . . , G,))A(denied(Gl)Vdenied(Gn) V . . . Vdenied(G,))-deniable(G0) 

denied(Gl)Adenied(Gz) A . . . Adenied(G,)Asatisficed(OR(Go, { G I ,  G2,.  . . , G,)))-deniable(Go) 
satisficed(OR(Go, { G I ,  G 2 ,  . . . , G,})A(satisficed(G1)Vsatisficed(G~) V . . . VsatisJiced(G,))-satisficeable(Go) 

satisficed( G1)Asatisficed(sup( Go, G1))-satisficeable( Go) 

denied(Gl)Asatisficed(sub( Go, Gl))+deniable( Go) 

Propositions x 2Pr0~uSrfr0nS. 

Propositions x Propositions. 

Propositions x Propositions. 

Axiom 2 

-sup : Propositions x Propositions. 
satisficed( G1)Asatisficed(-sup(Go, G1))+deniable(Go) 

denied( G 1 ) Asatisficed(-sub( Go, G I ) )  -satisficeable (Go) 
If -sub(Go, G I )  then there exists G2, .  . . , G ,  such that - (satisficed( G2) A . . . Asatisficed( G,) Asatisficed(-sub( Go, Gl))-deniable( Go) )  
but 
satisficed(G1)Asatisficed(G2) A . . . Asatisficed(G,)Asatisficed(-sub(G0, G1))---tdeniable(Go) 

-sub : Propositions x Propositions. 
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positive or negative influence between Go and GI. 

Likewise, +und and -und indicate, respectively, possible 

these goals needs to be satisficed in turn. Likewise, satisfic- 
ing the goal of A[attributes(Researcher)] requires that 
all attributes of Researcher be maintained accurately. This 
decomposition can be accomplished by a method of the form: positive or negative influence between two propositions. 

C. Methods 

Goals may be refined by the designer, who is then re- 
sponsible for satisficing not only the goal’s offspring but also 
the refinement itself represented as a link. Alternatively, the 
framework provides goal refinement methods (methods for 
short) which represent generic procedures for refining a goal 
into one or more offspring, such as: 

“To maintain accurately data about class x, you need to 
maintain accurately data about all relevant subclasses 
of x.” 

Every such refinement is represented in terms of a link 
having one of the types of the previous section and which 
is considered satisficed. 

Generally, a method has the form 

X ~ / C ~ , X Z / C ~ ~ . . . , X ~ / C ~  : Self‘(~lrx~,...>~n)I 

GO (XI 1 . . . ,  xn) 4 { G’ (xi , . . . , xn) I L 

For all G’ such that Pred(G’, XI,. . . , x,)} 

4 N D  
x/Class : A[attributes(x)] + 

{ A[attr(x)] lattr E attributes( x) } . 

This method leads to the following further decomposition 
of A[attributes(Researcher)]. Assuming that research 
employees have attributes degree and pub1 (publications), in 
addition to those of Employee, 

A Z D  A[attributes(Researcher)] 

{A[Researcher.name], . . . 
A[Resear cher .degree], 

A [Re searcher .pub11 } . 

2) Goal Satisficing Methods: Such methods refine a goal 
into a set of satisficing goals, thereby committing the design 
that is being generated to particular design decisions. Return- 
ing to our example, there may be two satisficing methods 
offered for the goal A[Researcher.publ]. If the publication 
record of each researcher is obtained from existing databases, 
the accuracy of this information might be ensured through 
periodic auditing of those databases. If, on the other hand, 
these data are fed directly by the employee in question, 
a method may call for the validation of the data by the 
employee’s manager: 

Here Go represents the parent goal, predicate Pred deter- 
mines the set of offspring while L is the link type relating 
Go to its offspring. The refinement of Go through a method is 
subject to the method’s selection criterion, SelP, consisting of 
a Boolean expression with free variables xl, x2 . . . , xn. These 
are bound to objects of type cl, % ‘ . , c2, respectively, when 
the method is applied. 

There are three types of goal refinement methods, corre- 
sponding to the three types of goals introduced earlier. 

1) Goal Decomposition Methods: These are usually AND 

decomposition methods of the form SelP : G 
{GI, (22,. . . , G,} used to decompose a goal G into an AND 
set of offspring GI, G2, . . . , G,. For instance, the following 
method decomposes a goal having a class as argument into 
goals having as arguments its immediate specializations: 

x/Class : G[x] { G[xijl(xi ZsA x)A 
t/xj I( (xi ZsA xj) A (xj ZsA X)) 

l \  

Since there are three specializations of Employee in our ex- 
ample, the accuracy goal Accuracy [attributes (Employee)] 
(abbreviated as A[attributes (Employee)] can be refined us- 
ing the subclass goal decomposition method: 

A Z D  A[attribut es( Employee)] 

{A[attributes(Researcher)], . . . , 
A [  attributes (Secretary)] } . 

In Fig. 2, offspring are shown underneath the parent goal. 
Link types are sometimes omitted from figures. Now each of 

i/InformationItem : A[i] +zd Audit[i] 

i/Inf ormationItem:A[i] “5’ ValZdatZon[i] 

Using these methods, A[Researcher .pub11 can be refined 
to Audit[Researcher .pub11 or validation[Researcher .pub11 
through +und and sup links, respectively. Note that the de- 
signer may later change the type of the +und link once the 
design has proceeded further and it can be determined that au- 
diting indeed leads to more accurate publication data. Clearly, 
selection of one of the two alternatives leads to very different 
types of user interfaces for the system under development. In 
particular, if validation is selected, all publication information 
will have to be confirmed by another person, while auditing 
calls for the inclusion of an audit requirement on the database 
from which publication data are imported. 

3) Argumentations Methods: These methods refine a goal 
or a link into an argumentation goal, thereby indicating 
evidence/counter-evidence, in terms of arguments, for the 
satisficing of a goal. For instance, a formal claim consisting 
of a conjunction could be refined into claims of each conjunct 
related to the parent through an AND link. 

Fig. 2 illustrates the goal structure that might be generated 
by the simple example we have been introducing piecemeal. 
In the bigger picture of information system development, a 
source object, say a component of a requirements specification, 
is mapped into one (or possibly several) target object(s), say 
components of a design specification [ 131. The dependencies 
among these objects are shown through dependency links 
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(-1 n Afattributea (Employee) I 

A[attributeslProgra”er)l &attributes(Researcher)l 

A[Reaearcher.namel ~[Researcher.degreel 

A IReeearcher.~ubll 
Audrlmg[Reeearcher .pub11 

I -_  -_  
I / A  

i .  lnformolClorm [po,lc;a; ...e 

rigorous eXam for pub,l lnformulClnrm[Hmng policy for technical staff] 

Legend 

4 sori@cig link mapping source 

+ dependeql ink 

. - ., ,usrificolion-for-selecrion 
mapping rarger AND node OR node 

Fig. 2. Goal graph structure for accurate employee attributes. 

on the left- and right-hand sides of Fig. 2. The use of the 
goal structure generated by the designer from nonfunctional 
requirements, possibly with the help of methods, is intended 
to help her select among alternatives and justify her design 
decisions. She can selectively focus attention, thus controlling 
goal structure expansion. 

D. Correlation Rules 

As indicated earlier, the nonfunctional requirements set 
down for a particular system may be contradictory. For in- 
stance, having built-in procedures for validating or audit- 
ing the data managed by the information system in general 
requires additional manpower thereby interfering with the 
operating cost requirement, Operating Cost[manpower]. Guid- 
ance is needed by the designer in discovering such implicit 
relationships and in selecting the satisficing goals that best 
meet a set of given NFR goals. This is achieved either 
through external input by the designer herself or through the 
representation of generic interactions between goals through 
correlation rules. 

Consider a satisficing goal whereby the system under design 
will offer an interface for “casual” users, say, all company em- 
ployees, who wish to query or update the system’s database. 

~pera t ing~os t [manpower l  ~ b C a s u a l U s e r I n t e r f a c e  
[Employee, Database]. 

Unfortunately, making the database readily available to 
all employees is likely to lead to data inaccuracy, thereby 
interfering with accuracy goals. This can be expressed, for 
example, by a rule such as: 

CasualUserInterface[e ,  i] A cardinality(e) > 5 A A[i’] 

A i’ C i ---f -sub(A[i], CusualUserlizterface[e, i ] ) .  

This rule can be used to infer a -sub link between 
the goals Casual User Interface[Employee, Database] and 
A[a t t r ibu tes  (Employee)], assuming that a t t r i b u t e s  (Em- 

p l o y e e ) ~  Database and that there are more than five em- 
ployees. 

Likewise, consider a security goal (with sort S )  discouraging 
secretaries from accessing research publication data. Now a 

validation goal which is positive for 4[Researcher. publ], 
with a class I secretary as validator, would also contribute 
negatively to such a security goal, and vice versa:4 

(s[i, e ,  accessCond] A ValidatedBy[e’, i’] A (i 

A isA(e, e’) A HigherClassif icat ior(e ,  e’) 
A accescond) 

A -sup(Validation[i’], S[i, e ,  accessCond])) 

1’) 

+ ( - sup(s [ i ,  e ,  accessCond], Valzdatzon[i’]) 

Finally, consider the case where two satisficing goals in- 
terfere with each other because of dependence on a critical 
resource. This competition may be synergistic or antagonistic, 
leading, respectively, to positive or negative argumentation. 
For instance, two unrelated goals calling for auditing and 
validation of information may influence each other positively 
(through sub  links) if there is no one on staff assigned to 
either task, because they jointly suggest the hiring of personnel 
data but may not individually justify hiring additional staff. If, 
however, the argumentative structure indicates that they can 
share an agent, one new staff member may be hired for the 
two tasks. 

Validation[i] A Audit[i’]A 

A AuditedBy[e’, i’] 

A sub(Audit[i’], Validation[i]). 

T I e ,  e’/Emlpoyee : ValidatedBy[e, i] 

+ sub(Validation[i], Audit[i’]) 

It is now possible to describe the expansion procedure that 
starts with a set of NFR goals and iteratively expands them into 
a goal graph structure. Throughout the expansion, the system 
maintains a list of all propositions that are to be refined, called 
Open, while the list Closed includes all propositions that have 
been completely refined. 

Once a proposition has been selected from Open for refine- 
ment, the designer chooses whether she wants to propose a 
refinement or apply one of the available methods. Carrying 
out a chosen refinement involves creating propositions for the 

4The representation of security requirements is adopted from [20] 
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using both the designer's judgement and correlation rules in 
the system. This process is repeated for the chosen proposition 
until there are no more refinements the system or the designer 
can offer. At this time, the proposition is placed on the Closed 

labelsource 

S 

D 

C 

1r 

list and another open proposition is selected. 

E.  The Labelling Procedure 

link type 

sub SUP -sub -sup und 

I'f S 1.- D 1- 

D 17-  S I'f IT 

? ? I' 
1- lr IT I' I .  

9 7 
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sort and InformationItem (abbreviated Info) as the parame- 
ter. They are expressed as Accuracy[i] (abbreviated as A[i]), 
where i is a collection of information items. Information items 
may be categorized into three types of propositions: i) that an 
entity in the system has the property of some class during 
some time interval; ii) that an entity in the system has an 
attribute with a certain value during some time interval; iii) 
that an object in the system, say a record, has one and only 
one corresponding entity in the application domain, say an 
employee. Accuracy requirements can then be expressed on 
collections of such information items, such as the employee 
attributes of Section I1 (see [12] or [13] for this). In general, 
satisficing accuracy goals is understood in terms of the degree 
of confidence in the accuracy of information items maintained 
by the project system. 

B. Goal Refinement Methods 

1) Goal Decomposition Methods: We present below some 
examples of accuracy decomposition methods, to be used in 
the . 

. 

. 

. 

iliustration of Section III~D.  

Subclass method: In order to establish the accuracy of 
a class c of information items, establish the accuracy of 
each immediate specialization, c,, of c. This is a special 
case of the goal decomposition methods mentioned in 
Section 11-C. 
Subset method: To establish the accuracy of a set of 
information items, establish the accuracy of each subset 
of information items. Similarly, a superset method can 
be provided. 
Individuahtttributes method: To establish the accuracy of 
the attributes of a class of information items, establish the 
accuracy of each attribute of the class. 
Derivedlnfo method: To establish the accuracy of a set of 
information items, establish that the function that derives 
them is correctly designed and that all of the function’s 
source parameters, currently in the system, are accurate. 
AttributeSelection method: To establish the accuracy of 
an information item obtained by a sequence of attribute 
selections (e.g., Joe .project. budget), establish the ac- 
curacy of each information item obtained in the sequence 
(e.g., Joe.project, Project.budget). 
Conservation method: To establish the accuracy of a 
collection of information items that can no longer be de- 
composed into information items currently in the system, 
establish i) their accuracy, when received by the system 
from some external agent, and ii) their correct internal 
manipulation by the system. 
CorrectExternalManipulation method: To establish the 
accuracy of information items upon receipt, establish Cor- 
rectInfoFlow, i.e., they were accurate when they were first 
transmitted by the original sender, and have subsequently 
been correctly manipulated until receipt by the system. 
CorrectInfoFlow is a sub-sort of Correctness goals which, 
unlike accuracy goals, are related to actions that induce 
certain results. 

2) Goal Satisficing Methods: Taking the premise that the 

accuracy of information items depends entirely on the process 
in which they are manipulated within the system and its 
environment, accuracy satisficing goals alter that process.‘ 
Accuracy satisficing goals include preventive, curative, and 
precautionary techniques. They affect the level of our confi- 
dence in the accuracy of information items. 

Preventive accuracy satisficing goals detect and disallow 
inaccuracies, when information items are received by the 
system. Most of them require direct interaction between the 
system and agents in the application domain. They can be 
specialized by varying the agent who performs the needed 
task, the volume of information items, evidences attached, the 
time of processing and output, etc. 

. 

Confirmation: The informant, either a machine or a per- 
son, double-checks the previously submitted information 
item. This technique can be specialized: to confirmation- 
via-identical-channel if the confirmation and first trans- 
mission use the channel; otherwise to confirmation-via- 
distinct-channel (e.g., via a daisy-channel). 
Verification: A verifier, who is a co-worker of the sender 
of information item makes a duplicate entry of the item 
onto some medium in the system (e.g., via duplicate IBM 
key-entry operation). As with confirmation, verification 
can be specialized to verification-via-identical-channel or 
verification-via-distinct-channel. 
Validation: A validator performs checking in the ap- 
plication domain, using certain records or procedural 
guidelines to ensure that the information item meets 
predetermined standards. The type and thoroughness of 
the checking can be reflected in specialized methods: 
creation-validation for directly contacting the information 
source, experirrientution for re-testing the information 
item, etc. 
Audit: An accuracy auditor uses procedures to periodi- 
cally go through suspicious sampled information items. 
Consistency-checking: To prevent frequently-occurring er- 
rors, the system enforces certain integrity constraints (e.g., 
check-sums incorporated into ISBN’s). 

Curative satisficing goals trace inaccuracies to their source, 
and provide for recovery from inaccuracies. Precautionary 
satisficing goals make information flow more reliable in terms 
of what is involved, such as senders, receivers, and commu- 
nication channels. 

3) Goal Argumentation Methods: These methods support or 
deny the use of accuracy satisficing goals and various refine- 
ments in terms of arguments. Examples include: 

resource-assignment: In performing a task for a satisficing 
goal, assign resources in the application domain. For 
example, one can support a refinement from a goal of 
validating expense summaries to one assigning a staff 
member to the task, by claiming that class I secretaries 

‘Martin (301, for instance, offers a glossary of techniques for improving 
accuracy. 
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Mutual-ID 
Casualuser 

Verification 
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Accuracy Security 

(I?, , sub) .  (R2. -sub) (&,-sub) 
(R? .$ ub) 

< Tri te  - s u b  > 
< T r u e ,  sub > 

will perform the validation. 

Validation[Su”ary] FormalClairn[3e : 

ValidatedB y 

[e, Summary] A EmpSta tus(e ,  Sec I)] 

policy-manual-consultation: When a question arises about 
the applicability of various types of methods, consult 
policy manuals in the application domain. 
priority-based-selection: Select a method among alterna- 
tives according to their relative priority. For example, for 
a satisficing goal which is good for high-priority accuracy 
goal A but bad for goal B, the priority would be a positive 
argument for A but negative for B. 

C. Correlation Rules 

Accuracy satisficing goals, such as verification, usu- 
ally contribute positively to accuracy goals (such as 
A[attribute (Researcher)]) provided that the (verification) 
process is rapid. Otherwise, information items will become 
less timely. This perturbation is an example of a satisficing 
goal becoming negative. For e ~ a m p l e : ~  

Verif iedBy[e,  i, t]AEzcessiwe(t) A A[i’] A i’ C_ i --f 
- sub(A[i’], Veri f icat ion[i])  

Verification may be negative for a security goal if the verifier 
is not allowed to access the information item to be verified. 

A security satisficing goal (such as Mutual-ID) or a user- 
friendliness satisficing goal (such as Casual User Interface) can 
be positive or negative for an accuracy goal. Consider Mutual- 
ID[a:Agent, i : I n f o ,  p:Procedure, t : T i m e ] .  TO mutually 
ensure the identity of the agent a, attempting to access 
certain information items i, and the identity of the system 
process, both the agent and the system, during time interval 
t, go through a test procedure, p, which requires alternating 
queries and answers by the two (this is similar to the 
challenge response process [37]). This would be positive for 
accuracy goals if a malicious user, in the absence of mutual 
indentification, would penetrate the system and falsify the 
information item. 

Table 111 summarizes some of the correlations. Entries of 
the form: < condition, orientation > mean “if the condition 
holds, then the relationship between the requirements goal and 
satisficing goal is given by the orientation.” 

The table is similar in spirit to the “relationship matrix” 
[21], which indicates, informally and without correlation rules, 
how much each engineering characteristic affects each cus- 
tomer quality requirement in terms of four types of values: 
strong positive, medium positive, medium negative, or strong 
negative. 

An accuracy satisficing goal can be synergistic or antag- 
onistic with respect to another satisifcing goal, for one or 
more types of nonfunctional requirements goals. Suppose a 
single channel can sometimes be shared for confirmation 
and verification. Now confirmation-via-distinct-channel and 
verification-via-distinct-channel are mutually synergistic if a 

’The time parameter (t) is omitted when not needed. 

Ro : 

I?, 
R2 RI  A Erressicse[t]  

R1 . 
I n f o r m a n t  - I D  - cstnbl?shed[c]  

Rd . S [ l . e  AccessCond] A I.Pr?ftrdBy[e’, i‘.t] A 1 I’ 

.A[.‘] A I‘ 2 I 
b r w t  f t rdBy[e .  1, t] A R, 

.lfutisal - ID[e .  i . p . t ]  A & A  

A zs.A(e. e’) A HtyherCZassr f fcation(e.  e’)  A AccessCond 

new channel can be installed for shared use by the two, but 
mutually antagonistic if the channel is unshareable. 

D. Illustration 

Consider the example of research expense management 
system in Section I. Now assume that A[attributes (Rpt)] 
is the root node of the goal tree representing an accuracy 
requirement, “all the attributes of expense reports should be 
accurate”. The root goal can be refined with the subclass 
method into three offspring corresponding to the subclasses 
of Rpt, specified as part of functional requirements (See Fig. 
3): 

A [ a t  t r i b u t  e s (Rpt )] dND_ 
{ A[at  t r i b u t  e s  (Pro  j Rpt )], A[at t r i b u t  e s  (MtgRpt )], 

A [ at t r  i b u t  e s  (Mbr Rpt )] } . 

Now each of these offspring needs to be satisficed. Focusing 
on the subgoal of A[attributes (ProjRpt)], the goal of 
A[attributes (ProjRpt)] is decomposed by the individu- 
ahttributes method in terms of the accuracy of the attributes. 

A [ a t t r i b u t e s ( P r o j R p t ) ]  * 
{A[ProjRpt.mon], . . . , A[ProjRpt.budgetLeft]} 

The legend or the symbols are given in Fig. 2. (When omitted, 
assume that the link type for satisficing and argumentation 
methods is sup in the remainder of this paper.) 

Focusing on A[ProjRpt .exp)], the designer indicates that 
ProjRpt.exp is a derived information item, where the deriva- 
tion function, f ,  is shown in Fig. 3. Thus, the derivedlnfo 
decomposition method is instantiated: the function needs to be 
correctly designed and the parameters of the function should 
be accurate. Next the subset method is instantiated for the 
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R A [attributes(Rpt) 1 

U U 
[attributes(ProjRpt)l A[attributes(MbrRpt)I A[attributes(MtsRptll 

A[ProjRpt . budgetlef tl 

AIExp-PrOjl 

A[Exp. summary.when1 
@~[Reim-req.datel 

where f = ComputeAmount ( E m ,  Exp.date, Exp.proj, ProjRpt.mon. ProjRpt.proj) 

Fig. 3. Goal graph structure with decompositions for accurate expense-reports attributes. 

decomposition of AccurateParameters[ f]: 

A[(ProjRpt.exp)] AND, {CorrectDerivFn 

[f ,ProjRpt.exp], 

AccurateParameters[f]} 

Acc.~lrateParameters[f]  AND_ {A[Exp.date], 

. . . , A[Exp.proj]}. 

Two competing alternatives (i.e., disjunctive refinements) 
are foreseen by the designer for the date the expense was 
incurred: it may come from either the expense reimbursement 
requests (by requiring the members to send their reimburse- 
ment request forms to the central management office), or the 
expense summary (by requiring the secretary to submit it 
directly): 

A[Exp.date] 3 
{A[Exp.reim-req.date], A[Exp.summary.when]}. 

To explore the first alternative, the designer applies the at- 
tributeselection method: 

A[Exp.reim-req.date] AND_ 

{ A[Exp.reim-req.date], A[Reim-req.date]}. 

To illustrate manipulation of information items, we introduce 
some method applications which were not shown in Fig. 2. 
The designer indicates that Exp. reim-req should be received 
from an external agent. According to the conservation method, 
Exp.reim-req should be received from an external agent. 
According to the conservation method,  EX^. reim-req should 
be both accurate when received and correct when processed 
by the system: 

A[(Exp.reim-req)] { A[Rec(Exp.reim-req)], 

CorrectProcessing 

[Reim-req.dat e] }. 

When invoked by the designer, the labelling procedure assigns 
U (undetermined) to all goals, since there are no closed leaves. 

Although omitted, all the links in Fig. 3 have S as their labels, 
since they are the results of generic-method applications. 

The designer uses the correct External Manipulation method 
to refine the accuracy of the received information item (Fig. 
4): 

A [Rec (Expzeim-req)] { Correctcreat ion 

[Rec(Exp.reim-req)], 

Correc t ln  f loFlow 

[Rec(Exp.reim-req)]}. 

Unfortunately, ensuring the correct creation and subsequent 
transmissions of the item from the creator to the system is in 
many cases costly and impractical. Accordingly, the designer 
may resign himself to using some satisficing methods for 
A[Rec (Exp.reim-req)]. In selecting a method, the designer 
uses the argumentation method of policy-manual-consultation, 
Designer's Consultation Guidelines (DCG). The designer re- 
gard the validation method to be appropriate: 

CorrectInfoFlow[Rec(Exp.reim-req)] 2 
Validation[Exp.reim-req]. 

Note how the method above (call it validation,) is supported 
by a designer-supplied argument: 

validation, --%In f ormalClaim[ "DCG : Careful examin- 
ation is preferred for those materials that are 
directly related to issuing a check"]. 

To satisfice the goal of validation, the designer again con- 
sults the DCG and discovers that class I secretary is one, 
but not the only, good class of candidate for carrying out 
the validation. Thus, a class I secretary is assigned (call the 
assignment, assign?,) and the assignment is supported by: 

Validation[(Exp.reim-req)] 3 Form,nlClaim, 

[ValidatedBg [Sec I. .  . .] A . . .] 
assign,, 3 In fo rma lc l a im.  

[.'DCG : For . . . ,consider class Isecretary."]. 
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Sec I, alway~Dieallowed1 

s [attributes(Su"ary), Sec I. ... I 
[attributes(Reim-req). Sec I, ... I 

..-. .$ .... 
InformlClaim [DCG: For those general tasks :a? InformalClarm ["DCG: Careful examination IS 

that require moderate experience, 
consider class I secretary.'? 

preferred for those materials that are 
directly related to issuing a cheque.'q 

Fig. 4. Mutual exclusion in satisficing accuracy of received reimbursement information. 

Now suppose, as in Fig. 4, that a security requirement was 
considered earlier: reimbursements should not be revealed to 
secretaries with a job classification below 11. However, this 
is in direct conflict (i.e., mutually exclusive or sufficiently 
negative) with using a secretary of class I as the validator. 
Now the system uses the correlation rules to propose two new 
links with type -sup: 

S [  att r i butes (Reim - Req): 
SecI ,AlwaysDisallowed] 

Val*&tedBy[SecI, Exp. reim - req; . . .] 
- s u p  VdzdatedBy[SecI, Exp. reim - req, . . .] 

S[attributes(Reim - req), SecI, . . .] 

Suppose that the designer assigns FormalClaim[validat- 
edBy[Sec I , .  . . ] A . .  .] the label S (satisficed), and labels all 
the other leaves.8 

The labelling procedure of Section I1 propagates the labels 
upwards. Some of the results are shown in Fig. 4. Since the 
validation by a class I secretary is sufficient counter-evidence, 
the security goal (see left-hand side of figure) is labelled D 
(denied). This value and the U value in the AND link in the 
upper-left corner are further propagated; the minimum value 
of the two is selected, resulting in D. 

Note that the denial of the root security goal is not final. 
Instead of a class I secretary, the designer may see if a higher- 
ranking staff member can do the validation. Other satisficing 
methods may be considered as well. The designer will choose 
one alternative and provide an argument for later use in 
justifying the final design; then the labelling procedure will 
update the labels which reflect the current status of the process. 

The success, or lack thereof, of goal satisficing methods 
relies on the cooperation between the system and agents in 
the environment, which is described in the user's procedure 
manual,9 which is initially drafted during the design process. 
The manual indicates policies that the agents in the environ- 
ment should obey when interacting with the system in order 
to satisfice the methods selected. For instance, if a verification 
method is selected, the manual indicates that a member must 

'To resolve conflicts, a negotiation-based approach may be taken (e.g., [24], 
[40] ). We use argumentation methods to record how conflicts are resolved, 
e.g., by attachment of priorities. 

'In acquiring formal requirements [39] recognizes the need for generating 
documents which are in spirit similar to our manuals. 

transfer his expense information to the system and to the 
project office which will enter the same information into the 
system. 

At the design stage, the choice of method (related to 
requirements for accuracy, security, and the like) results in 
selection among design alternatives." In the next section, 
we consider how performance goals are dealt with in the 
implementation stage. 

Iv. DEALING WITH PERFORMANCE REQUIREMENTS1 

The previous section illustrates the dynamic process aspect 
of design. This section focuses on performance requirements, 
as a second example of how a class of nonfunctional require- 
ments can be treated within our proposed framework. Unlike 
accuracy requirements, which were treated in the context 
of system design, performance requirements will be treated 
during the implementation phase when designs are mapped on 
to implementations. 

A starting point for understanding good system performance 
is the set of standard definitions from computer systems theory 
(e.g., [27]), such as achieving low response time and suitable 
device utilizations. In practice,12 performance goals often focus 
on response time and throughput, and are developed for 
particular applications systems. They are often stated briefly, 
yet users expect the system to somehow meet their (implicit) 
performance concerns. And as we will see, performance goals 
can result in very complex goal-graph structures. 

When implementing an information system using perfor- 
mance as a main criterion, the implementor has to abandon 
generic implementation algorithms and structures. Instead, im- 
plementation techniques have to be selected on a case-by-case 
basis from a number of alternatives. Inputs to this mapping 
process are: 1) a given set of implementation alternatives; 2) 
the source schema (some portion of the design specification); 
3) a workload characterization for the particular system (e.g., 
an estimate of the number of researchers to be handled by the 
expense management system); 4) performance goals, specified 
for a particular system. As examples of performance goals, one 

"See the description of dependency types in Section 1I.C. 
"An earlier version [36] of portions of this section appears in the Proc. 

3rd Int. Workshop on Database Programming Languages, Nafplion, Greece, 
August 1991. 

Many thanks to Michael Brodie for his insight on the use of performance 
goals in industry. 
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could require that a researcher registering for a meeting should 
get from the system under design fast response time, and 
that storage requirements for information on all researchers 
be minimized. The framework detailed in section I1 is then 
applied for the satisficing of these qualitative goals. Outputs 
of the process are the target implementation, goal graphs, 
and a prediction of performance [36] calculated in terms of 
a performance model. 

It is interesting to contrast the treatment offered in this 
section with other research based on the transformational 
approach, such as the TI system [2]. TI, like its transformation- 
based peers, focuses on correctness requirements, i.e. making 
sure that the generated implementation is consistent with the 
original specification. Performance, if treated at all, is treated 
as a selection criterion among alternative transformations. 
Kant’s early work [25], on the other hand, does address 
performance goals. Her framework, however, focuses on con- 
ventional programming-in-the-small rather than information 
system development, relies on quantitative performance mea- 
sures (which are available for her chosen domain but are, 
unfortunately, not available for information systems because of 
their complexity) and assumes an automatic programming set- 
ting rather than the dialectical software development process 
adopted here. 

A.  Layered Goal Structures 

Since generating efficient implementations is better under- 
stood than some of the other phases of information system 
development, we can impose additional structure in the repre- 
sentation of performance goals. This is accomplished through 
a series of language layers, which account for potentially 
interacting data model features, implementation techniques, 
and performance characteristics of design languages. This 
layered approach is inspired by a framework for prediction of 
performance of relational databases [22]. As design decisions 
are made at highler layers, corresponding to higher levels of 
abstraction, they are reflected in lower layers that describe 
the system in more detail. The layering shows where to 
introduce inputs related to design components, thus providing 
the information needed to make implementation decisions, 
while controlling the number of concepts to consider at a time. 

We apply this layering approach to performance-based se- 
lection among implementation alternatives for conceptual de- 
sign specification 1ang~ages.I~ Our layering organizes some 
recent work on performance and implementation from the 
areas of semantic data models and object oriented sy~ tems . ’~  
For each layer, there are goal graphs whose refinements have 
an impact on graphs at lower layers. Fig.5 shows a series of 
linguistic subsets, where higher-level languages include more 
features supported by semantic data models: 0) The target 
relational data model, such as the database system facilities 
offered by the DBPL language [6]; 1) entities, both persistent 
data entities (such as John, an instance of Researcher), and 
finite entities (e.g., integers), arranged in classes; 2) attributes, 

l3 See [36] for more on-performance prediction for conceptual design 
languages. 

I4This includes results on record layout for entities and attributes 141, (91, 
1351, 1461, enforcement of constraints 181, 1441, and process scheduling 1111. 

Entity Activlty Constraint 

Classification 

Aggregation 

Speciahsation 

6 

Fig. 5.  Layers arranged in a grid. 

Performance 

Time Spare 

Throughput Response Main Secondary 

Time Memory Storage 

Fig. 6. The performance sort. 

defined on entity classes, roughly corresponding to the Entity- 
relationship Model [ 101; 3) transactions, modeled as classes 
with attributes and instance entities; 4) entities and transactions 
with attributes, and classes arranged in IsA hierarchies, roughly 
corresponding to the Taxis subset described in [35]; 5) the 
above Taxis subset, extended with constraints; 6) the source 
conceptual design specification language, including constraints 
and long-term processes (whose nature has aspects of entities 
and activities, as well as constraints), comparable to Taxis 
[ l l ]  or TDL [6]. 

B. Performance Goal Refinement Methods 

Performance goals drive selection of implementation al- 
ternatives, and are stated in terms of concepts applicable 
to information systems, such as response time. Many of 
our methods are based on features specific to information 
systems, and their implementation. All performance goals use 
the Performance sort. There are several sub-sorts, some of 
which are shown in Fig. 6. 

1) Goal Decomposition Methods: One aspect of goal de- 
composition involves the selection of an appropriate sub-sort. 
For example, we can use the time-space goal decomposition 
method to decompose the goal of “good performance for 
the Researcher class at layer &in into the goals of good 
time performance for Researcher at layer 4 and good space 
performance for Researcher at layer 4:” 

P [ R e s e a r c h e r .  41 * 
{ T z m e [ R e s e a r c h e r ,  41 S p a c e [ R e s e a r c h e r ,  41) 

Likewise, a goal involving time can be decomposed by the 
throughput-response time method, and a goal involving space 
can be decomposed by the main memory-secondary storage 
method. 

Another aspect of goal decomposition involves the decom- 
position of goal parameters. The subclass and individuakt- 
tributes performance goal decomposition methods are similar 

Here P stands for the Performance sort. 
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Name Meeting 
{P[o,(i). Layer o (i) is an operation on i 11 J ’ ComputerResearcher 

This method can be specialized. The individual-bulk oper- 
ations method decomposes a goal on the basis of whether Researcher 

OperatingSystems 
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LAYER 4 
time-space 
Tim[attributes(Researcher), 41  

Time[individual operations on 
attributes(Researcher), 41 

individual-bulk 

individual attributes 
Time[individual operations on 
Researcher.Meeting, 41 . -i/nformalClaim["SO% atm. frequently accessed"] 

AccessManyAttributesP erTuple 
[Researcher.Meeting, 41 

LAYER 3 

I I 

UniformTime[individual operations on 
Researcher.Meeting. 31 Time[individual operations on 

Researcher.Meeting, 31 

LAYER 2 Time[find offset, 21 6 Time[retrieve 
from storage, 21 

I sub 

2 brequentSchemaChonges 
[Researcher.Meeting, 211 

LAYER 1 - 4 - -  

Fig. 7. A Performance goal graph. 

The implementor decomposes the Layer 3 Time Goal (see 
middle left of Fig. 7) according to the implementation compo- 
nents of the operation (only some of which are shown). The 
result is a set of Layer 2 (attributes) time goals - for finding 
the offset for the Meeting attribute field within a relational 
tuple, retrieving the value from secondary storage, etc. The 
implementor focuses on finding the offset quickly; earlyFixing 
is positive. The implementor reviews the source schema and 
observes that Meeting is always referenced explicitly in the 
code. ExplicitReferences[Researcher .Meeting, 21 is recorded 
as an argument for the sub link, and static offset determination 
for the Meeting attribute is chosen as an implementation 
technique. Thus the implementor has dealt with a Layer 2 
issue, resulting in a mapping target at Layer 1. 

An alternative implementation is dynamic offset determina- 
tion. The -sub link records its negative impact on the goal 
of minimizing time. However, this would have a positive 
impact on another goal-ffering uniform time performance. 
As shown in the lower right-hand side of Fig. 7, when 
dealing with frequent schema changes, a structure that reduces 
expensive run-time reorganization can offer less variation in 
response time. 

V. CONCLUSIONS 
The main contribution of this research is that it offers a 

concrete framework for integrating nonfunctional requirements 
into the software development process, at least for information 
systems. In tackling this task, our research extends earlier 
work by Lee [14], [28], [29] and [38]. The framework is still 
under refinement and a prototype implementation is underway, 
intended to provide a vehicle for more thorough testing and 
for gaining experience with the framework's strengths and 

weaknesses. 
Much remains to be done with this work. Firstly, the 

framework needs to be applied to other types of nonfunctional 
requirements and life-size examples. Secondly, the framework 
needs a theoretical foundation for representing and reasoning 
with nonfunctional requirements. This foundation needs to 
include a semantics for nonfunctional requirements. For exam- 
ple, what does it really mean to claim that a particular design 
decision enhances system accuracy concerning employee data? 
Moreover, a proof theory based on this semantics is required, 
including efficient algorithms for special classes of inferences 
related to nonfunctional requirements. The whole framework 
we have offered here can then be justified on formal semantic 
grounds rather than informal, intuitive ones. 

Unfortunately, it seems that such a formal semantic treat- 
ment of nonfunctional requirements would need to be done 
individually for different types of requirements and is therefore 
a long-term research project. In the meantime, an experimental 
approach such as the one adopted here can offer solutions that 
may find immediate use in an area of computer practice that 
is in great need of concepts, methodologies, and tools. 
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