
IEEE TRANSACTIONS ON SOFTWARE ENGINEbRING, VOL. 18. NO. 6, JUNE 1YY2 483

Representing and Using Nonfunctional
Requirements: A Process-Oriented Approach

John Mylopoulos, Lawrence Chung, and Brian Nixon

Abstract-The paper proposes a comprehensive framework for
representing and using nonfunctional requirements during the
development process. The framework consists of five basic com-
ponents which provide for the representation of nonfunctional
requirements in terms of interrelated goals. Such goals can be
refined through refinement methods and can be evaluated in
order to determine the degree to which a set of nonfunctional
requirements is supported by a particular design. Evidence for
the power of the framework is provided through the study of
accuracy and performance requirements for information systems.

I. INTRODUCTION

HE complexity of an information system is determined T partly by its functionality-i.e., what the system
does-and partly by global requirements on its development
or operational cost, performance, reliability, maintainability,
portability, robustness, and the like. These nonfunctional
requirements‘ play a crucial role during system development,
serving as selection criteria for choosing among myriads
of decisions. Errors of omission or commission in laying
down and taking properly into account such requirements
are generally acknowledged to be among the most expensive
and difficult to correct once the information system has been
completed. Surprisingly, nonfunctional requirements have
received little attention by researchers and are definitely less
well understood than other, less critical factors in software
development. As far as software engineering practice is
concerned, they are generally stated only informally during
requirements analysis, are often contradictory, difficult to
enforce during software development and to validate for the
user once the final system has been built. The only glimmer
of technical light in an otherwise bleak landscape originates
in technical work on software quality metrics that allow the
quantification of the degree to which a software system meets
nonfunctional requirements [3], [5] , [26].

There is not a formal definition or a complete list of
nonfunctional requirements. In a report published by the
Rome Air Development Center (RADC) [7], nonfunctional
requirements (“software quality attributes” in their terminol-
ogy) are classified into consumer-oriented (or software quality
factors) and technically-oriented attributes (or software quulity
criteria). The former refers to nonfunctional requirements

Manuscript received October 1, 1991; revised February 5 , 1992. Recom-

The authors are with the Department of Computer Science, University of

IEEE Log Number 9200171.
‘Also referred to as consmints (411, goals 1311, and quality attributes 1261

mended by A. Borgida and M. Jarke.

Toronto, Toronto, Ontario, Canada M5S 1A4.

in the literature.

observable by the consumer, such as efficiency, correctness,
and interoperability. The latter addresses system-oriented re-
quirements such as anomaly management, completeness, and
functional scope. Table I shows the RADC consumer-oriented
attributes. The nonfunctional requirements listed in the table
apply to all software systems. However, additional require-
ments may apply for special classes of software. For instance,
precision would be an important nonfunctional requirement
for a numerical analysis software package, while accuracy (of
maintained information) might feature prominently during the
development of an information system.

Two basic approaches characterize the formal treatment of
nonfunctional requirements and we shall refer to them as
product-oriented and process-orientd. The first attempts to
develop formal definitions of nonfunctional requirements so
that a software system can be evaluated as to the degree
to which it meets its requirements. For example, measuring
software visibility may include, among other things, measuring
the amount of branching in a software system. This might be
achieved globally with a criterion such as: “There shall be no
more than X branches per 1,000 lines of code” or locally with
a criterion such as “There shall be no more than Y% of system
modules that violate the above criterion.”

The product-oriented approach has received almost exclu-
sive attention in the literature and is nicely overviewed in
[26]. Earlier work by Boehm et al. [5] considered quality
characteristics of software, noting that designer-awareness
alone improved the quality of the final product. Also sup-
porting a quantitative approach to software quality, Basili
and Musa [3] advocate models and metrics of the software
engineering process from a managment perspective. It is
interesting that Hauser et al. [21] provide a methodology for
reflecting customer attributes in different phases of automobile
design.

An alternative approach, explored in this paper, is to de-
velop techniques for justifying design decisions during the
software development process. Instead of evaluating the final
product, the emphasis here is on trying to rationalize the
development process in terms of nonfunctional requirements.
Design decisions may affect positively or negatively particu-
lar nonfunctional requirements. Design decisions may affect
positively or negatively particular nonfunctional requirements.
These positive and negative dependencies can serve as basis
for arguing that a software system indeed meets a certain
nonfunctional requirement or explaining why it does not.

Orthogonally, treatments of nonfunctional requirements can
be classified into quantitative and qualitative ones. Most of the

0162-8828/92$03.00 0 1092 IEEE

~

484

Acquisition

Performance-How well does it function?

Design-How valid is the design?

Adaptation-How adaptable is it?

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 6, JUNE 1992

User Concern
How well does it utilize a resource?
How secure is it?
What confidence can be placed in what it does?
How well will it perform under adverse conditions?
How easy is it to use it?
How well does it conform to requirements?
How easy is it to repair?
How easy is it to verify its performance?
How easy is it to expand or upgrade its capability or performance?
How easy is it to change?
How easy is it to interfere with another system?
How easy is it to transport?
How easy is it to convert for use with another application?

TABLE I
THE RADC SOFTWARE QUALITY CONSUMER-ORIENTED ATTRIBUTES [7]

product-oriented approaches alluded to earlier are quantitative
in the sense that they study quantitative metrics for measuring
the degree to which a software system satisfies a nonfunctional
requirement. The process-oriented treatment proposed here, on
the other hand, is definitely qualitative, adopting ideas from
qualitative reasoning [l]. It should be acknowledged that a
process-oriented treatment of nonfunctional requirements need
not be qualitative. Indeed, one could imagine quantitative
measures for, say, software visibility that can be used as
the system is being developed to offer advance warning that
nonfunctional requirements are not being met. Qualitative
techniques were chosen here primarily because it was felt
that the problem of quantitatively measuring an incomplete
software system is even harder than that of measuring the
final product.

Of course, neither product-oriented quantitative metrics nor
process-oriented qualitative measures have a monopoly on
properly treating nonfunctional requirements. They are best
seen as complementary, both contributing to an evolving
comprehensive framework for dealing with nonfunctional re-
quirements.

Two sources of ideas were particularly influential on our
work. The first involves recent work on decision support
systems, such as that described in [19], [28] and [29]. Lee’s
work, for example, adopts an earlier model for representing
design rationale [38] and extends in by making explicit the
goals presupposed by arguments. The work reported here can
be seen as an attempt to adopt this model to the representation
and use of nonfunctional requirements. The second source
of ideas is the DAIDA environment for information system
development [23] which has provided us with a comprehensive
software development framework covering both notations for
requirements modeling, design, implementation and decision
support, as well as a starting point on how the treatment
of nonfunctional requirements might be integrated into that
framework. Users of the DAIDA environment are offered three
languages through which they can elaborate requirements,
design, and implementation specifications. In developing a
design specification, the user consults and is constrained
by corresponding requriements specifications. Likewise, the
generation of an implementation is guided by a correspond-
ing design specification. Dependency links represent design
decision and relate implementation objects to their design

Quality Attribute

Integrity
Reliability
Survivability

Correctness
Maintainability
Verifiabilitv
Expandability
Flexibility
Interoperability
Portability
Reusabilitv

Fig. 1. Employee and report hierarchy.

counterparts and design objects to their requirements coun-
terparts. The framework proposed in this paper focuses on
these dependency links and how they can be justified in terms
of nonfunctional requirements. An early description of the
framework and an account of how it relates to DAIDA can
be found in [12].

The example used throughout this paper is an expense
management system for a hypothetical research project, similar
to the one used in [6]. According to the example, project
members from organizations based in different countries reg-
ister for and attend various meetings. They then submit their
expense summaries to an expense management system, which
maintains all such information and generates expense reports
for each member, meeting, and project. As shown in Fig. 1,
there are several kinds of employees, including secretaries,
engineers, and researchers, who are in turn classified into
computer researchers, math researchers, and so on.

Establishment of the framework is achieved in two steps.
First, the framework is presented in Section 11. The presenta-
tion includes motivation, the framework’s structure and short
suggestive examples. This framework is then elaborated and
illustrated in the following two sections by examining its appli-
cation respectively to accuracy and performance requirements
for information systems. The final section summarizes the
contributions of this research and presents a number of open
questions and directions for further research.

11. REPRESENTING NON-FUNCTIONAL
REQUIREMENTS: A PROCESS-ORIENTED FRAMEWORK

Formally, the proposed framwork consists of five major
components2 a set of goals for representing nonfunctional
requirements, design decisions, and arguments in support of
or against other goals; a set of link types for relating goals
or goal relationships (hereafter links) to other goals; a set of
generic methods for refining goals into other goals; a collection

2 A n earlier version of portions of this and the next section have appeared
in [13].

MYLOPOULOS er al.: USING NONFUNCTIONAL REQUIREMENTS 485

of correlation rules for inferring potential interactions among
goals; and finally, a labelling procedure which determines
the degree to which any given nonfunctional requirement is
being addressed by a set of design decisions. The examples
throughout this section concentrate on accuracy and to a lesser
extent operating cost requirements for information systems.

During the design process, goals are organized into a goal
graph structure, very much in the spirit of AND/OR trees
used in problem solving [34]. Unlike traditional problem
solving and planning frameworks, however, goals representing
nonfunctional requirements can rarely be said to be “accom-
plished” or “satisfied” in a clearcut sense. Instead, different
design decisions contribute positively or negatively towards a
particular goal. Accordingly, for the rest of the discussion we
will speak of goal satisficing [4213 to suggest that generated
software is expected to satisfy within acceptable limits, rather
than absolutely, nonfunctional requirements.

A. Goals

The space of goals includes three mutually exclusive classes,
namely, nonfunctional requirements goals (NFR goals), satis-
ficing goals, and argumentation goals. In general, each goal
will have an associated sort and zero or more parameters
whose nature depends on the goal sort. For example, an
operating cost requirement might have as parameter a desired
upper bound on the annual operating costs of the system under
development. Sorts may be further subdivided into subsorts,
representing special cases for each goal class. For instance,
the performance sort may have subsorts Time Performance
(or simply Time) and SpacePerformance (or simply Space),
representing respective time and space performance require-
ments on a particular system. Goals, NFRGoals, SatGoals and
ArgGoals will refer respectively to the set of all possible goals,
NFR goals, satsificing goals, and argumentation goals.

I) Nonfunctional Requirements Goals: The sorts for such
goals range over the different categories of such requirements,
including accuracy, security, development, operating or hard-
ware costs, and performance. For our expense management
system, suppose that it is expected of the system under

maintenance, etc.), this requirement might be represented as
OperatingCost [manpower 1 .
2) Satisficing Goals: These are also sorted and parameter-

ized. In this case, however, the sorts range over different
categories of design decisions that might be adopted in order
to satisfice one or more nonfunctional requirements goals. The
parameters associated with each sort, again, depend on the
nature of the corresponding satisficing goal. For instance, one
way to satisfice the accuracy goal mentioned earlier might be
to validate all employee data entered into the system. This can
be represented as a satisficing goal:

Validation [attributes (Employee) 1 ,

where Validation is the goal sort and attributes(Emp1oyee)
is as before. This goal, in turn, might be refined into another
satisficing goal,

Validated By[JohnWong,attributes (Employee) 1 ,

representing the situation that JohnWong will be doing the
validation.

the sort Claim, with subsorts FormalClaim, and Informal-
Claim, representing formally or informally stated evidence or
counter-evidence for other goals or goal refinements. Consider:

Formal Claim[3e: ValidatedBy[e,attributes (Employee)]

3) Argumentation Goals (or Arguments): These always have

AEmpStatus(e,sec I) 1

This argumentation goal suports the refinement from the
goal of validating employee data to the one assigning JohnWong
to the task, by claiming that class I secretaries will perform
the validation. In contrast,

InformationClaim[“Rigorous examination is recommended
for publications by employees.”]

is an informally-stated argumentation goal supporting the
previous argumentation goal by pointing out why class I
secretaries should validate employee data.

B. Link Types .-

development to maintain accurately employee data. Such a
goal might be represented by: As indicated earlier, design proceeds by refining one or

more times each goal, the parent, into a set of other goals,
Accuracy [attributes (Employee)]

where Accuracy is the goal sort and the parameter of at-
tributes (Employee) evaluates to the set of all atributes
associated with the data class Employee. The interpretation
of this goal is that instances of the attributes of the data
class Employee, i.e., all attributes of employees, ought to be
maintained accurately in the system’s database. As another
example, it may also be expected that the system under
development make minimal demands on manpower. This can
be treated as an operating cost requirement, and since there
are several contributing factors to operating costs (manpower,

the offspring. Unlike AND/OR goal trees, where the relationship
between a collection of offspring and their parent can only be
AND or OR, in our proposed framework there can be several
different types of relationships or link types describing how
the satisficing of the offspring (or failure thereoq relates to
the satisficing of the parent goal. The need for at least some
link types is evidenced in [5] , which states that some quality
characteritics are necessary, but not sufficient, for achieving
others. Boehm et al. then use a four-grade scale to correlate
each quality metric with quality attributes in the final product.

Links may relate a parent goal to one or several of its
offspring. In fact, links may also be used to relate other links .~

to argumentation goals, to indicate that an argument offers
‘[42] actually uses the term to refer to decision methods that look for

satisfactory solutions rather than optimal ones. The term is adopted here in a
broadened sense since in the context of nonfunctional requirements, even the

positive or negative support for a particular refinement of a
goal. Thus, links too need to be satisficed either through a

notions of a solution or optimality of a solution may be unclear. formal refinement process or through arguments provided by

486 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 6, JUNE 1992

the designer.
Let Links denote the set of all links and satisficed be a

predicate which is true of satisficed goals or links and false of
others. Also, let denied be a predicate which is true of goals
and links that have been shown unsatisficeable (“unsolvable”
in problem solving terminology (341). If

Propositions = Goals U Links

then satisficed and denied are predicates taking a proposition
as argument.

Sometimes a proposition will be found to be satisfice-
able-thanks to one refinement-and deniable-thanks to an-
other. For instance, the accuracy goal for employee data might
be satisficeable thanks to a validation procedure adopted for
all such data, but deniable because of a user interface that
permits general access to this information. To deal with such
conflicting cases, we need to distinguish between a proposition
being satisficed or denied, on one hand, and a proposition
being potentially satsificeable or deniable thanks to some
refinement on the other. Accordingly, two more predicates,
satisficeable and deniable are introduced to deal with the latter
case.

The set of logical types to be used for links is presented
below. For each type, axioms are provided which formalize
its semantics in terms of the predicates just introduced (see
Axiom 1 below).

The link type sub is also intended to convey the sense that
G1 contributes partially to the satisficing of Go. This can
be expressed as follows: If satisficed(sub(Go, G I)) then there
exist propositions G2,. . . , G , such that

- (satisficed(G2)A. . . Asatisficed(G,) -satisficeable(Go))

but
satisficed(G1)Asatisfced(G~) A . . . Asatisficed(G,)

Asatisficed(sub(Go, G1))+satisficeable(Go)
In words, if G1 is a sub(proposition) of Go then there exist

propositions G 2 , ‘ . . , G , which cannot achieve the satisficing
of Go without the contribution of G I .

Two additional link types are introduced to represent nega-
tive influences of one goal on another (see Axiom 2 below).

In words, if G1 is a negative sub(proposition) of Go then
denial of G 1 leads to the satisficing of Go and satisficing of
G I contributes to the denial of Go.

Finally, it is useful to define the eql (equivalent) link type
in terms of the link types introduced here:

eql : Propositions x Propositions.
eql(G0, G I) =sup(Go, G l) A s ~ p (G o , G I)

Asup(Go, Gi)Asup(Go, G I)

At times, it may be hard to determine apriori the logical
relationship between a set of offspring and their parent goal
without further expansion of the goal graph. For example, the
designer may see that a certain hiring policy for technical staff
is relevant, without being sure of its impact on a particular
goal, say, in justifying the assignment of a class I secretary
to the task of validating emplyee data. This situation is
accommodated through three variations of an undetermined
link type:

und : Propositions x Propositions.
und(Go, G I) indicates the possible presence of

Axiom 1

AND :

OR :

sup :

sub :

Propositions x 2Prupusitrons.
satisficed(G1)Asatisficed(G~) A . . . Asatisficed(G,)AsatisJiced(AND(Go, { G I , G2, . . . , G,}))--tsaticeficeable(Go)
satisficed(AND(G0, { G I , G2, . . . , G,))A(denied(Gl)Vdenied(Gn) V . . . Vdenied(G,))-deniable(G0)

denied(Gl)Adenied(Gz) A . . . Adenied(G,)Asatisficed(OR(Go, { G I , G2,. . . , G,)))-deniable(Go)
satisficed(OR(Go, { G I , G 2 , . . . , G,})A(satisficed(G1)Vsatisficed(G~) V . . . VsatisJiced(G,))-satisficeable(Go)

satisficed(G1)Asatisficed(sup(Go, G1))-satisficeable(Go)

denied(Gl)Asatisficed(sub(Go, Gl))+deniable(Go)

Propositions x 2Pr0~uSrfr0nS.

Propositions x Propositions.

Propositions x Propositions.

Axiom 2

-sup : Propositions x Propositions.
satisficed(G1)Asatisficed(-sup(Go, G1))+deniable(Go)

denied(G 1) Asatisficed(-sub(Go, G I)) -satisficeable (Go)
If -sub(Go, G I) then there exists G2, . . . , G , such that - (satisficed(G2) A . . . Asatisficed(G,) Asatisficed(-sub(Go, Gl))-deniable(Go))
but
satisficed(G1)Asatisficed(G2) A . . . Asatisficed(G,)Asatisficed(-sub(G0, G1))---tdeniable(Go)

-sub : Propositions x Propositions.

MYLOPOULOS et al.: USING NONFUNCTIONAL REQUIREMENTS 487

positive or negative influence between Go and GI.

Likewise, +und and -und indicate, respectively, possible

these goals needs to be satisficed in turn. Likewise, satisfic-
ing the goal of A[attributes(Researcher)] requires that
all attributes of Researcher be maintained accurately. This
decomposition can be accomplished by a method of the form: positive or negative influence between two propositions.

C. Methods

Goals may be refined by the designer, who is then re-
sponsible for satisficing not only the goal’s offspring but also
the refinement itself represented as a link. Alternatively, the
framework provides goal refinement methods (methods for
short) which represent generic procedures for refining a goal
into one or more offspring, such as:

“To maintain accurately data about class x, you need to
maintain accurately data about all relevant subclasses
of x.”

Every such refinement is represented in terms of a link
having one of the types of the previous section and which
is considered satisficed.

Generally, a method has the form

X ~ / C ~ , X Z / C ~ ~ . . . , X ~ / C ~ : Self‘(~lrx~,...>~n)I

GO (XI 1 . . . , xn) 4 { G’ (xi , . . . , xn) I L

For all G’ such that Pred(G’, XI,. . . , x,)}

4 N D
x/Class : A[attributes(x)] +

{ A[attr(x)] lattr E attributes(x) } .

This method leads to the following further decomposition
of A[attributes(Researcher)]. Assuming that research
employees have attributes degree and pub1 (publications), in
addition to those of Employee,

A Z D A[attributes(Researcher)]

{A[Researcher.name], . . .
A[Resear cher .degree],

A [Re searcher .pub11 } .

2) Goal Satisficing Methods: Such methods refine a goal
into a set of satisficing goals, thereby committing the design
that is being generated to particular design decisions. Return-
ing to our example, there may be two satisficing methods
offered for the goal A[Researcher.publ]. If the publication
record of each researcher is obtained from existing databases,
the accuracy of this information might be ensured through
periodic auditing of those databases. If, on the other hand,
these data are fed directly by the employee in question,
a method may call for the validation of the data by the
employee’s manager:

Here Go represents the parent goal, predicate Pred deter-
mines the set of offspring while L is the link type relating
Go to its offspring. The refinement of Go through a method is
subject to the method’s selection criterion, SelP, consisting of
a Boolean expression with free variables xl, x2 . . . , xn. These
are bound to objects of type cl, % ‘ . , c2, respectively, when
the method is applied.

There are three types of goal refinement methods, corre-
sponding to the three types of goals introduced earlier.

1) Goal Decomposition Methods: These are usually AND

decomposition methods of the form SelP : G
{GI, (22,. . . , G,} used to decompose a goal G into an AND
set of offspring GI, G2, . . . , G,. For instance, the following
method decomposes a goal having a class as argument into
goals having as arguments its immediate specializations:

x/Class : G[x] { G[xijl(xi ZsA x)A
t/xj I((xi ZsA xj) A (xj ZsA X))

l \

Since there are three specializations of Employee in our ex-
ample, the accuracy goal Accuracy [attributes (Employee)]
(abbreviated as A[attributes (Employee)] can be refined us-
ing the subclass goal decomposition method:

A Z D A[attribut es(Employee)]

{A[attributes(Researcher)], . . . ,
A [attributes (Secretary)] } .

In Fig. 2, offspring are shown underneath the parent goal.
Link types are sometimes omitted from figures. Now each of

i/InformationItem : A[i] +zd Audit[i]

i/Inf ormationItem:A[i] “5’ ValZdatZon[i]

Using these methods, A[Researcher .pub11 can be refined
to Audit[Researcher .pub11 or validation[Researcher .pub11
through +und and sup links, respectively. Note that the de-
signer may later change the type of the +und link once the
design has proceeded further and it can be determined that au-
diting indeed leads to more accurate publication data. Clearly,
selection of one of the two alternatives leads to very different
types of user interfaces for the system under development. In
particular, if validation is selected, all publication information
will have to be confirmed by another person, while auditing
calls for the inclusion of an audit requirement on the database
from which publication data are imported.

3) Argumentations Methods: These methods refine a goal
or a link into an argumentation goal, thereby indicating
evidence/counter-evidence, in terms of arguments, for the
satisficing of a goal. For instance, a formal claim consisting
of a conjunction could be refined into claims of each conjunct
related to the parent through an AND link.

Fig. 2 illustrates the goal structure that might be generated
by the simple example we have been introducing piecemeal.
In the bigger picture of information system development, a
source object, say a component of a requirements specification,
is mapped into one (or possibly several) target object(s), say
components of a design specification [131. The dependencies
among these objects are shown through dependency links

488 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 6, JUNE 1992

(-1 n Afattributea (Employee) I

A[attributeslProgra”er)l &attributes(Researcher)l

A[Reaearcher.namel ~[Researcher.degreel

A IReeearcher.~ubll
Audrlmg[Reeearcher .pub11

I -_ -_
I / A

i . lnformolClorm [po,lc;a; ...e

rigorous eXam for pub,l lnformulClnrm[Hmng policy for technical staff]

Legend

4 sori@cig link mapping source

+ dependeql ink

. - ., ,usrificolion-for-selecrion
mapping rarger AND node OR node

Fig. 2. Goal graph structure for accurate employee attributes.

on the left- and right-hand sides of Fig. 2. The use of the
goal structure generated by the designer from nonfunctional
requirements, possibly with the help of methods, is intended
to help her select among alternatives and justify her design
decisions. She can selectively focus attention, thus controlling
goal structure expansion.

D. Correlation Rules

As indicated earlier, the nonfunctional requirements set
down for a particular system may be contradictory. For in-
stance, having built-in procedures for validating or audit-
ing the data managed by the information system in general
requires additional manpower thereby interfering with the
operating cost requirement, Operating Cost[manpower]. Guid-
ance is needed by the designer in discovering such implicit
relationships and in selecting the satisficing goals that best
meet a set of given NFR goals. This is achieved either
through external input by the designer herself or through the
representation of generic interactions between goals through
correlation rules.

Consider a satisficing goal whereby the system under design
will offer an interface for “casual” users, say, all company em-
ployees, who wish to query or update the system’s database.

~pera t ing~os t [manpower l ~ b C a s u a l U s e r I n t e r f a c e
[Employee, Database].

Unfortunately, making the database readily available to
all employees is likely to lead to data inaccuracy, thereby
interfering with accuracy goals. This can be expressed, for
example, by a rule such as:

CasualUserInterface[e , i] A cardinality(e) > 5 A A[i’]

A i’ C i ---f -sub(A[i], CusualUserlizterface[e, i]) .

This rule can be used to infer a -sub link between
the goals Casual User Interface[Employee, Database] and
A[a t t r ibu tes (Employee)], assuming that a t t r i b u t e s (Em-

p l o y e e) ~ Database and that there are more than five em-
ployees.

Likewise, consider a security goal (with sort S) discouraging
secretaries from accessing research publication data. Now a

validation goal which is positive for 4[Researcher. publ],
with a class I secretary as validator, would also contribute
negatively to such a security goal, and vice versa:4

(s[i, e , accessCond] A ValidatedBy[e’, i’] A (i

A isA(e, e’) A HigherClassif icat ior(e , e’)
A accescond)

A -sup(Validation[i’], S[i, e , accessCond]))

1’)

+ (- sup(s [i , e , accessCond], Valzdatzon[i’])

Finally, consider the case where two satisficing goals in-
terfere with each other because of dependence on a critical
resource. This competition may be synergistic or antagonistic,
leading, respectively, to positive or negative argumentation.
For instance, two unrelated goals calling for auditing and
validation of information may influence each other positively
(through sub links) if there is no one on staff assigned to
either task, because they jointly suggest the hiring of personnel
data but may not individually justify hiring additional staff. If,
however, the argumentative structure indicates that they can
share an agent, one new staff member may be hired for the
two tasks.

Validation[i] A Audit[i’]A

A AuditedBy[e’, i’]

A sub(Audit[i’], Validation[i]).

T I e , e’/Emlpoyee : ValidatedBy[e, i]

+ sub(Validation[i], Audit[i’])

It is now possible to describe the expansion procedure that
starts with a set of NFR goals and iteratively expands them into
a goal graph structure. Throughout the expansion, the system
maintains a list of all propositions that are to be refined, called
Open, while the list Closed includes all propositions that have
been completely refined.

Once a proposition has been selected from Open for refine-
ment, the designer chooses whether she wants to propose a
refinement or apply one of the available methods. Carrying
out a chosen refinement involves creating propositions for the

4The representation of security requirements is adopted from [20]

MYLOPOULOS el al.: USING NONFUNCTIONAL REQUIREMENTS 489

using both the designer's judgement and correlation rules in
the system. This process is repeated for the chosen proposition
until there are no more refinements the system or the designer
can offer. At this time, the proposition is placed on the Closed

labelsource

S

D

C

1r

list and another open proposition is selected.

E. The Labelling Procedure

link type

sub SUP -sub -sup und

I'f S 1.- D 1-

D 17- S I'f IT

? ? I'
1- lr IT I' I .

9 7

~

490 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL 18, NO. 6, JUNE 1992

sort and InformationItem (abbreviated Info) as the parame-
ter. They are expressed as Accuracy[i] (abbreviated as A[i]),
where i is a collection of information items. Information items
may be categorized into three types of propositions: i) that an
entity in the system has the property of some class during
some time interval; ii) that an entity in the system has an
attribute with a certain value during some time interval; iii)
that an object in the system, say a record, has one and only
one corresponding entity in the application domain, say an
employee. Accuracy requirements can then be expressed on
collections of such information items, such as the employee
attributes of Section I1 (see [12] or [13] for this). In general,
satisficing accuracy goals is understood in terms of the degree
of confidence in the accuracy of information items maintained
by the project system.

B. Goal Refinement Methods

1) Goal Decomposition Methods: We present below some
examples of accuracy decomposition methods, to be used in
the .

.

.

.

iliustration of Section III~D.

Subclass method: In order to establish the accuracy of
a class c of information items, establish the accuracy of
each immediate specialization, c,, of c. This is a special
case of the goal decomposition methods mentioned in
Section 11-C.
Subset method: To establish the accuracy of a set of
information items, establish the accuracy of each subset
of information items. Similarly, a superset method can
be provided.
Individuahtttributes method: To establish the accuracy of
the attributes of a class of information items, establish the
accuracy of each attribute of the class.
Derivedlnfo method: To establish the accuracy of a set of
information items, establish that the function that derives
them is correctly designed and that all of the function’s
source parameters, currently in the system, are accurate.
AttributeSelection method: To establish the accuracy of
an information item obtained by a sequence of attribute
selections (e.g., Joe .project. budget), establish the ac-
curacy of each information item obtained in the sequence
(e.g., Joe.project, Project.budget).
Conservation method: To establish the accuracy of a
collection of information items that can no longer be de-
composed into information items currently in the system,
establish i) their accuracy, when received by the system
from some external agent, and ii) their correct internal
manipulation by the system.
CorrectExternalManipulation method: To establish the
accuracy of information items upon receipt, establish Cor-
rectInfoFlow, i.e., they were accurate when they were first
transmitted by the original sender, and have subsequently
been correctly manipulated until receipt by the system.
CorrectInfoFlow is a sub-sort of Correctness goals which,
unlike accuracy goals, are related to actions that induce
certain results.

2) Goal Satisficing Methods: Taking the premise that the

accuracy of information items depends entirely on the process
in which they are manipulated within the system and its
environment, accuracy satisficing goals alter that process.‘
Accuracy satisficing goals include preventive, curative, and
precautionary techniques. They affect the level of our confi-
dence in the accuracy of information items.

Preventive accuracy satisficing goals detect and disallow
inaccuracies, when information items are received by the
system. Most of them require direct interaction between the
system and agents in the application domain. They can be
specialized by varying the agent who performs the needed
task, the volume of information items, evidences attached, the
time of processing and output, etc.

.

Confirmation: The informant, either a machine or a per-
son, double-checks the previously submitted information
item. This technique can be specialized: to confirmation-
via-identical-channel if the confirmation and first trans-
mission use the channel; otherwise to confirmation-via-
distinct-channel (e.g., via a daisy-channel).
Verification: A verifier, who is a co-worker of the sender
of information item makes a duplicate entry of the item
onto some medium in the system (e.g., via duplicate IBM
key-entry operation). As with confirmation, verification
can be specialized to verification-via-identical-channel or
verification-via-distinct-channel.
Validation: A validator performs checking in the ap-
plication domain, using certain records or procedural
guidelines to ensure that the information item meets
predetermined standards. The type and thoroughness of
the checking can be reflected in specialized methods:
creation-validation for directly contacting the information
source, experirrientution for re-testing the information
item, etc.
Audit: An accuracy auditor uses procedures to periodi-
cally go through suspicious sampled information items.
Consistency-checking: To prevent frequently-occurring er-
rors, the system enforces certain integrity constraints (e.g.,
check-sums incorporated into ISBN’s).

Curative satisficing goals trace inaccuracies to their source,
and provide for recovery from inaccuracies. Precautionary
satisficing goals make information flow more reliable in terms
of what is involved, such as senders, receivers, and commu-
nication channels.

3) Goal Argumentation Methods: These methods support or
deny the use of accuracy satisficing goals and various refine-
ments in terms of arguments. Examples include:

resource-assignment: In performing a task for a satisficing
goal, assign resources in the application domain. For
example, one can support a refinement from a goal of
validating expense summaries to one assigning a staff
member to the task, by claiming that class I secretaries

‘Martin (301, for instance, offers a glossary of techniques for improving
accuracy.

MYLOPOULOS et al.: USING NONFUNCTIONAL REQUIREMENTS

NFR Goal
SatGoal

Mutual-ID
Casualuser

Verification

491

Accuracy Security

(I?, , sub) . (R2. -sub) (&,-sub)
(R? .$ ub)

< Tri te - s u b >
< T r u e , sub >

will perform the validation.

Validation[Su”ary] FormalClairn[3e :

ValidatedB y

[e, Summary] A EmpSta tus(e , Sec I)]

policy-manual-consultation: When a question arises about
the applicability of various types of methods, consult
policy manuals in the application domain.
priority-based-selection: Select a method among alterna-
tives according to their relative priority. For example, for
a satisficing goal which is good for high-priority accuracy
goal A but bad for goal B, the priority would be a positive
argument for A but negative for B.

C. Correlation Rules

Accuracy satisficing goals, such as verification, usu-
ally contribute positively to accuracy goals (such as
A[attribute (Researcher)]) provided that the (verification)
process is rapid. Otherwise, information items will become
less timely. This perturbation is an example of a satisficing
goal becoming negative. For e ~ a m p l e : ~

Verif iedBy[e, i, t]AEzcessiwe(t) A A[i’] A i’ C_ i --f
- sub(A[i’], Veri f icat ion[i])

Verification may be negative for a security goal if the verifier
is not allowed to access the information item to be verified.

A security satisficing goal (such as Mutual-ID) or a user-
friendliness satisficing goal (such as Casual User Interface) can
be positive or negative for an accuracy goal. Consider Mutual-
ID[a:Agent, i : I n f o , p:Procedure, t : T i m e] . TO mutually
ensure the identity of the agent a, attempting to access
certain information items i, and the identity of the system
process, both the agent and the system, during time interval
t, go through a test procedure, p, which requires alternating
queries and answers by the two (this is similar to the
challenge response process [37]). This would be positive for
accuracy goals if a malicious user, in the absence of mutual
indentification, would penetrate the system and falsify the
information item.

Table 111 summarizes some of the correlations. Entries of
the form: < condition, orientation > mean “if the condition
holds, then the relationship between the requirements goal and
satisficing goal is given by the orientation.”

The table is similar in spirit to the “relationship matrix”
[21], which indicates, informally and without correlation rules,
how much each engineering characteristic affects each cus-
tomer quality requirement in terms of four types of values:
strong positive, medium positive, medium negative, or strong
negative.

An accuracy satisficing goal can be synergistic or antag-
onistic with respect to another satisifcing goal, for one or
more types of nonfunctional requirements goals. Suppose a
single channel can sometimes be shared for confirmation
and verification. Now confirmation-via-distinct-channel and
verification-via-distinct-channel are mutually synergistic if a

’The time parameter (t) is omitted when not needed.

Ro :

I?,
R2 RI A Erressicse[t]

R1 .
I n f o r m a n t - I D - cstnbl?shed[c]

Rd . S [l . e AccessCond] A I.Pr?ftrdBy[e’, i‘.t] A 1 I’

.A[.‘] A I‘ 2 I
b r w t f t rdBy[e . 1, t] A R,

.lfutisal - ID[e . i . p . t] A & A

A zs.A(e. e’) A HtyherCZassr f fcation(e. e’) A AccessCond

new channel can be installed for shared use by the two, but
mutually antagonistic if the channel is unshareable.

D. Illustration

Consider the example of research expense management
system in Section I. Now assume that A[attributes (Rpt)]
is the root node of the goal tree representing an accuracy
requirement, “all the attributes of expense reports should be
accurate”. The root goal can be refined with the subclass
method into three offspring corresponding to the subclasses
of Rpt, specified as part of functional requirements (See Fig.
3):

A [a t t r i b u t e s (Rpt)] dND_
{ A[at t r i b u t e s (Pro j Rpt)], A[at t r i b u t e s (MtgRpt)],

A [at t r i b u t e s (Mbr Rpt)] } .

Now each of these offspring needs to be satisficed. Focusing
on the subgoal of A[attributes (ProjRpt)], the goal of
A[attributes (ProjRpt)] is decomposed by the individu-
ahttributes method in terms of the accuracy of the attributes.

A [a t t r i b u t e s (P r o j R p t)] *
{A[ProjRpt.mon], . . . , A[ProjRpt.budgetLeft]}

The legend or the symbols are given in Fig. 2. (When omitted,
assume that the link type for satisficing and argumentation
methods is sup in the remainder of this paper.)

Focusing on A[ProjRpt .exp)], the designer indicates that
ProjRpt.exp is a derived information item, where the deriva-
tion function, f , is shown in Fig. 3. Thus, the derivedlnfo
decomposition method is instantiated: the function needs to be
correctly designed and the parameters of the function should
be accurate. Next the subset method is instantiated for the

492 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 6, JUNE 1992

R A [attributes(Rpt) 1

U U
[attributes(ProjRpt)l A[attributes(MbrRpt)I A[attributes(MtsRptll

A[ProjRpt . budgetlef tl

AIExp-PrOjl

A[Exp. summary.when1
@~[Reim-req.datel

where f = ComputeAmount (E m , Exp.date, Exp.proj, ProjRpt.mon. ProjRpt.proj)

Fig. 3. Goal graph structure with decompositions for accurate expense-reports attributes.

decomposition of AccurateParameters[f]:

A[(ProjRpt.exp)] AND, {CorrectDerivFn

[f ,ProjRpt.exp],

AccurateParameters[f]}

Acc.~lrateParameters[f] AND_ {A[Exp.date],

. . . , A[Exp.proj]}.

Two competing alternatives (i.e., disjunctive refinements)
are foreseen by the designer for the date the expense was
incurred: it may come from either the expense reimbursement
requests (by requiring the members to send their reimburse-
ment request forms to the central management office), or the
expense summary (by requiring the secretary to submit it
directly):

A[Exp.date] 3
{A[Exp.reim-req.date], A[Exp.summary.when]}.

To explore the first alternative, the designer applies the at-
tributeselection method:

A[Exp.reim-req.date] AND_

{ A[Exp.reim-req.date], A[Reim-req.date]}.

To illustrate manipulation of information items, we introduce
some method applications which were not shown in Fig. 2.
The designer indicates that Exp. reim-req should be received
from an external agent. According to the conservation method,
Exp.reim-req should be received from an external agent.
According to the conservation method, EX^. reim-req should
be both accurate when received and correct when processed
by the system:

A[(Exp.reim-req)] { A[Rec(Exp.reim-req)],

CorrectProcessing

[Reim-req.dat e] }.

When invoked by the designer, the labelling procedure assigns
U (undetermined) to all goals, since there are no closed leaves.

Although omitted, all the links in Fig. 3 have S as their labels,
since they are the results of generic-method applications.

The designer uses the correct External Manipulation method
to refine the accuracy of the received information item (Fig.
4):

A [Rec (Expzeim-req)] { Correctcreat ion

[Rec(Exp.reim-req)],

Correc t ln f loFlow

[Rec(Exp.reim-req)]}.

Unfortunately, ensuring the correct creation and subsequent
transmissions of the item from the creator to the system is in
many cases costly and impractical. Accordingly, the designer
may resign himself to using some satisficing methods for
A[Rec (Exp.reim-req)]. In selecting a method, the designer
uses the argumentation method of policy-manual-consultation,
Designer's Consultation Guidelines (DCG). The designer re-
gard the validation method to be appropriate:

CorrectInfoFlow[Rec(Exp.reim-req)] 2
Validation[Exp.reim-req].

Note how the method above (call it validation,) is supported
by a designer-supplied argument:

validation, --%In f ormalClaim["DCG : Careful examin-
ation is preferred for those materials that are
directly related to issuing a check"].

To satisfice the goal of validation, the designer again con-
sults the DCG and discovers that class I secretary is one,
but not the only, good class of candidate for carrying out
the validation. Thus, a class I secretary is assigned (call the
assignment, assign?,) and the assignment is supported by:

Validation[(Exp.reim-req)] 3 Form,nlClaim,

[ValidatedBg [Sec I. . . .] A . . .]
assign,, 3 In fo rma lc l a im.

[.'DCG : For . . . ,consider class Isecretary."].

MYLOPOULOS et al.: USING NONFUNCTIONAL REOUIREMENTS 493

Sec I, alway~Dieallowed1

s [attributes(Su"ary), Sec I. ... I
[attributes(Reim-req). Sec I, ... I

..-. .$
InformlClaim [DCG: For those general tasks :a? InformalClarm ["DCG: Careful examination IS

that require moderate experience,
consider class I secretary.'?

preferred for those materials that are
directly related to issuing a cheque.'q

Fig. 4. Mutual exclusion in satisficing accuracy of received reimbursement information.

Now suppose, as in Fig. 4, that a security requirement was
considered earlier: reimbursements should not be revealed to
secretaries with a job classification below 11. However, this
is in direct conflict (i.e., mutually exclusive or sufficiently
negative) with using a secretary of class I as the validator.
Now the system uses the correlation rules to propose two new
links with type -sup:

S [att r i butes (Reim - Req):
SecI ,AlwaysDisallowed]

Val*&tedBy[SecI, Exp. reim - req; . . .]
- s u p VdzdatedBy[SecI, Exp. reim - req, . . .]

S[attributes(Reim - req), SecI, . . .]

Suppose that the designer assigns FormalClaim[validat-
edBy[Sec I , . . .] A . . .] the label S (satisficed), and labels all
the other leaves.8

The labelling procedure of Section I1 propagates the labels
upwards. Some of the results are shown in Fig. 4. Since the
validation by a class I secretary is sufficient counter-evidence,
the security goal (see left-hand side of figure) is labelled D
(denied). This value and the U value in the AND link in the
upper-left corner are further propagated; the minimum value
of the two is selected, resulting in D.

Note that the denial of the root security goal is not final.
Instead of a class I secretary, the designer may see if a higher-
ranking staff member can do the validation. Other satisficing
methods may be considered as well. The designer will choose
one alternative and provide an argument for later use in
justifying the final design; then the labelling procedure will
update the labels which reflect the current status of the process.

The success, or lack thereof, of goal satisficing methods
relies on the cooperation between the system and agents in
the environment, which is described in the user's procedure
manual,9 which is initially drafted during the design process.
The manual indicates policies that the agents in the environ-
ment should obey when interacting with the system in order
to satisfice the methods selected. For instance, if a verification
method is selected, the manual indicates that a member must

'To resolve conflicts, a negotiation-based approach may be taken (e.g., [24],
[40]). We use argumentation methods to record how conflicts are resolved,
e.g., by attachment of priorities.

'In acquiring formal requirements [39] recognizes the need for generating
documents which are in spirit similar to our manuals.

transfer his expense information to the system and to the
project office which will enter the same information into the
system.

At the design stage, the choice of method (related to
requirements for accuracy, security, and the like) results in
selection among design alternatives." In the next section,
we consider how performance goals are dealt with in the
implementation stage.

Iv. DEALING WITH PERFORMANCE REQUIREMENTS1

The previous section illustrates the dynamic process aspect
of design. This section focuses on performance requirements,
as a second example of how a class of nonfunctional require-
ments can be treated within our proposed framework. Unlike
accuracy requirements, which were treated in the context
of system design, performance requirements will be treated
during the implementation phase when designs are mapped on
to implementations.

A starting point for understanding good system performance
is the set of standard definitions from computer systems theory
(e.g., [27]), such as achieving low response time and suitable
device utilizations. In practice,12 performance goals often focus
on response time and throughput, and are developed for
particular applications systems. They are often stated briefly,
yet users expect the system to somehow meet their (implicit)
performance concerns. And as we will see, performance goals
can result in very complex goal-graph structures.

When implementing an information system using perfor-
mance as a main criterion, the implementor has to abandon
generic implementation algorithms and structures. Instead, im-
plementation techniques have to be selected on a case-by-case
basis from a number of alternatives. Inputs to this mapping
process are: 1) a given set of implementation alternatives; 2)
the source schema (some portion of the design specification);
3) a workload characterization for the particular system (e.g.,
an estimate of the number of researchers to be handled by the
expense management system); 4) performance goals, specified
for a particular system. As examples of performance goals, one

"See the description of dependency types in Section 1I.C.
"An earlier version [36] of portions of this section appears in the Proc.

3rd Int. Workshop on Database Programming Languages, Nafplion, Greece,
August 1991.

Many thanks to Michael Brodie for his insight on the use of performance
goals in industry.

~

494 IEEE TRANSACTIONS ON SOITWARE ENGINEERING, VOL. IS, NO. 6, JUNE 1992

could require that a researcher registering for a meeting should
get from the system under design fast response time, and
that storage requirements for information on all researchers
be minimized. The framework detailed in section I1 is then
applied for the satisficing of these qualitative goals. Outputs
of the process are the target implementation, goal graphs,
and a prediction of performance [36] calculated in terms of
a performance model.

It is interesting to contrast the treatment offered in this
section with other research based on the transformational
approach, such as the TI system [2]. TI, like its transformation-
based peers, focuses on correctness requirements, i.e. making
sure that the generated implementation is consistent with the
original specification. Performance, if treated at all, is treated
as a selection criterion among alternative transformations.
Kant’s early work [25], on the other hand, does address
performance goals. Her framework, however, focuses on con-
ventional programming-in-the-small rather than information
system development, relies on quantitative performance mea-
sures (which are available for her chosen domain but are,
unfortunately, not available for information systems because of
their complexity) and assumes an automatic programming set-
ting rather than the dialectical software development process
adopted here.

A. Layered Goal Structures

Since generating efficient implementations is better under-
stood than some of the other phases of information system
development, we can impose additional structure in the repre-
sentation of performance goals. This is accomplished through
a series of language layers, which account for potentially
interacting data model features, implementation techniques,
and performance characteristics of design languages. This
layered approach is inspired by a framework for prediction of
performance of relational databases [22]. As design decisions
are made at highler layers, corresponding to higher levels of
abstraction, they are reflected in lower layers that describe
the system in more detail. The layering shows where to
introduce inputs related to design components, thus providing
the information needed to make implementation decisions,
while controlling the number of concepts to consider at a time.

We apply this layering approach to performance-based se-
lection among implementation alternatives for conceptual de-
sign specification 1ang~ages.I~ Our layering organizes some
recent work on performance and implementation from the
areas of semantic data models and object oriented sy~ tems . ’~
For each layer, there are goal graphs whose refinements have
an impact on graphs at lower layers. Fig.5 shows a series of
linguistic subsets, where higher-level languages include more
features supported by semantic data models: 0) The target
relational data model, such as the database system facilities
offered by the DBPL language [6]; 1) entities, both persistent
data entities (such as John, an instance of Researcher), and
finite entities (e.g., integers), arranged in classes; 2) attributes,

l3 See [36] for more on-performance prediction for conceptual design
languages.

I4This includes results on record layout for entities and attributes 141, (91,
1351, 1461, enforcement of constraints 181, 1441, and process scheduling 1111.

Entity Activlty Constraint

Classification

Aggregation

Speciahsation

6

Fig. 5. Layers arranged in a grid.

Performance

Time Spare

Throughput Response Main Secondary

Time Memory Storage

Fig. 6. The performance sort.

defined on entity classes, roughly corresponding to the Entity-
relationship Model [101; 3) transactions, modeled as classes
with attributes and instance entities; 4) entities and transactions
with attributes, and classes arranged in IsA hierarchies, roughly
corresponding to the Taxis subset described in [35]; 5) the
above Taxis subset, extended with constraints; 6) the source
conceptual design specification language, including constraints
and long-term processes (whose nature has aspects of entities
and activities, as well as constraints), comparable to Taxis
[l l] or TDL [6].

B. Performance Goal Refinement Methods

Performance goals drive selection of implementation al-
ternatives, and are stated in terms of concepts applicable
to information systems, such as response time. Many of
our methods are based on features specific to information
systems, and their implementation. All performance goals use
the Performance sort. There are several sub-sorts, some of
which are shown in Fig. 6.

1) Goal Decomposition Methods: One aspect of goal de-
composition involves the selection of an appropriate sub-sort.
For example, we can use the time-space goal decomposition
method to decompose the goal of “good performance for
the Researcher class at layer &in into the goals of good
time performance for Researcher at layer 4 and good space
performance for Researcher at layer 4:”

P [R e s e a r c h e r . 41 *
{ T z m e [R e s e a r c h e r , 41 S p a c e [R e s e a r c h e r , 41)

Likewise, a goal involving time can be decomposed by the
throughput-response time method, and a goal involving space
can be decomposed by the main memory-secondary storage
method.

Another aspect of goal decomposition involves the decom-
position of goal parameters. The subclass and individuakt-
tributes performance goal decomposition methods are similar

Here P stands for the Performance sort.

495 MYLOPOULOS P I Q/.: USING NONFUNCTIONAL REQUIREMENlS

Name Meeting
{P[o,(i). Layer o (i) is an operation on i 11 J ’ ComputerResearcher

This method can be specialized. The individual-bulk oper-
ations method decomposes a goal on the basis of whether Researcher

OperatingSystems

496

SraticO~serDerermindion
[Researcher. Meet iag , 1 I

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 6, JUNE 1Y92

DynamicOffselDeterminatwn
[Resarcher.Meeting, 11

atuibutes of

Time [bulk operations on
attributes(Researcher), 41

LAYER 4
time-space
Tim[attributes(Researcher), 41

Time[individual operations on
attributes(Researcher), 41

individual-bulk

individual attributes
Time[individual operations on
Researcher.Meeting, 41 . -i/nformalClaim["SO% atm. frequently accessed"]

AccessManyAttributesP erTuple
[Researcher.Meeting, 41

LAYER 3

I I

UniformTime[individual operations on
Researcher.Meeting. 31 Time[individual operations on

Researcher.Meeting, 31

LAYER 2 Time[find offset, 21 6 Time[retrieve
from storage, 21

I sub

2 brequentSchemaChonges
[Researcher.Meeting, 211

LAYER 1 - 4 - -

Fig. 7. A Performance goal graph.

The implementor decomposes the Layer 3 Time Goal (see
middle left of Fig. 7) according to the implementation compo-
nents of the operation (only some of which are shown). The
result is a set of Layer 2 (attributes) time goals - for finding
the offset for the Meeting attribute field within a relational
tuple, retrieving the value from secondary storage, etc. The
implementor focuses on finding the offset quickly; earlyFixing
is positive. The implementor reviews the source schema and
observes that Meeting is always referenced explicitly in the
code. ExplicitReferences[Researcher .Meeting, 21 is recorded
as an argument for the sub link, and static offset determination
for the Meeting attribute is chosen as an implementation
technique. Thus the implementor has dealt with a Layer 2
issue, resulting in a mapping target at Layer 1.

An alternative implementation is dynamic offset determina-
tion. The -sub link records its negative impact on the goal
of minimizing time. However, this would have a positive
impact on another goal-ffering uniform time performance.
As shown in the lower right-hand side of Fig. 7, when
dealing with frequent schema changes, a structure that reduces
expensive run-time reorganization can offer less variation in
response time.

V. CONCLUSIONS
The main contribution of this research is that it offers a

concrete framework for integrating nonfunctional requirements
into the software development process, at least for information
systems. In tackling this task, our research extends earlier
work by Lee [14], [28], [29] and [38]. The framework is still
under refinement and a prototype implementation is underway,
intended to provide a vehicle for more thorough testing and
for gaining experience with the framework's strengths and

weaknesses.
Much remains to be done with this work. Firstly, the

framework needs to be applied to other types of nonfunctional
requirements and life-size examples. Secondly, the framework
needs a theoretical foundation for representing and reasoning
with nonfunctional requirements. This foundation needs to
include a semantics for nonfunctional requirements. For exam-
ple, what does it really mean to claim that a particular design
decision enhances system accuracy concerning employee data?
Moreover, a proof theory based on this semantics is required,
including efficient algorithms for special classes of inferences
related to nonfunctional requirements. The whole framework
we have offered here can then be justified on formal semantic
grounds rather than informal, intuitive ones.

Unfortunately, it seems that such a formal semantic treat-
ment of nonfunctional requirements would need to be done
individually for different types of requirements and is therefore
a long-term research project. In the meantime, an experimental
approach such as the one adopted here can offer solutions that
may find immediate use in an area of computer practice that
is in great need of concepts, methodologies, and tools.

ACKNOWLEDGMENT

We would like to thank the referees for their constructive
and detailed comments, as well as E. Yu and S. McIlraith for
providing helpful suggestions.

REFERENCES

[I] Artif Intell. J . , vol. 24, Dec. 1984.
[2] R. Balzer, "A 15 year perspective on automatic programming," IEEE

Trans. SofhYareEng., vol. SE-11, pp. 1257-1268, Nov. 1985, .
[3] V. R. Basili and J. D. Musa, "The future engineering of software: A

management perspective," IEEE Computer, vol 24, pp. 90-96, Sept.

MYLOPOULOS ef ul ’ USING NONFLINCTIONAL REQUIREMENTS

1991, .
V. Benzaken, “An evaluation model for clustering strategies in the
02 objecf-oriented database system,” in Proc. 3rd Int. Con$ Database
Theory, pp. 126-140, 1990.
B. W. Boehm et al.,Characteristics of Software Qualify. Amsterdam:
North-Holland, 1978.
A. Borgida et al., “Support for data-intensive applications: Conceptual
design and software development,” in Proc. 2nd Int. Workshop on
Database Programming Languages, pp. 258-280, 1990.
T. P. Bowen et al., “Specification of software quality attributes,” Rep.
RADC-TR-85-37, Rome Air Development Center, Griffiss Air Force
Base, NY, Feb. 1985.
S. Ceri and J. Widom, “Deriving production rules for constraint man-
agement,” in Proc. 16th Int. Conj Very Large Data Bases, pp. 566577,
Aug. 1990
A. Chan eta/., “Storage and access structures to support a semantic data
model,” in Proc. 8th Int. Conf: Very Large Data Bases, pp. 122-130,
Sept. 1982.
P. P . 3 . Chen, “The entity-relationship model-toward a unified view
of data,” ACM Trans. Database Systems, vol. 1, pp. 9-36, Mar. 1976.
K. L. Chung et al., “Process management and assertion enforcement
for a semantic data model,” in Proc. EDBT ’88, Int. Conf: Extending
Database Technology, pp. 469437, Mar. 1988.
L. Chung, “Representation and utilization of nonfunctional requirements
for information system design.” in Proc. CASE ’91 pp. 5-30, 1991,.
K . L Chung, “From information system requirements to designs: A
mapping framework,” Information Systems, vol. 16, pp. 429-461, 1991.
J. Conklin and M. L. Begeman, “gIBIS: A hypertext tool for explanatory
policy discussions,” ACM Trans. Office Information Systems, vol. 6, pp.
303-331, 1988.
J. de Kleer, “Problem solving with the ATMS,” Art$ Intell. J . , vol. 28,
pp. 127-162, 1986.
C. DiMarco, “Computational stylistics for natural language translation,” - -
Ph.D. dissertation, Dept. Computer Science, Univ. Toronto, 1990.
J. Doyle, “A truth maintenance system,” Art$ Intell. J . , vol. 12, pp.
231-272, 1979,
S. F. Fickas, “Automating the transformational development of soft-
ware,” IEEE Trans. Software Eng., vol. SE-11, pp. 1268-1277, 1985.
U. Hahn et al., “Teamwork support in a knowledge-based information
systems environment,” IEEE Trans. Software Eng., vol. 17, pp. 467-482,
May 1991.
H. R. Hartson and D. K. Hsiao, “Full protection specifications in
the semantic model for database protection languages,” in Proc. ACM
Annual Conf:, pp. 90-95, Oct. 1976.
J. R. Hauser and D. Clausing, “The house of quality,” Harvard Business
Review, pp. 63-73, May-June 1988.
W. F. Hyslop, “Performance prediction of relational database man-
agement systems,” Ph.D. dissertation, Dept. Computer Science, Univ.
Toronto, 1991.
M. Jarke et al., “DAIDA: An environment for evolving information
systems,” ACM Trans. Information Systems, vol. 10, Jan. 1992.
W. L. Johnson et al., “Representation and presentation of requirements
knowledge,” USCiInformation Sciences Institute, Oct. 1991.
E. Kant. “On the efficient svnthesis of efficient oroerams.” Artif Intell.

1 ” _1

J . , vol. 20, pp. 253-305, May 1983.
(261 S. E. Keller et al., “Specifying software quality requirements with

metrics,” in Tutorial: System and Software Requirements Engineering,
R. H. Thayer and M. Dorfman, Eds. IEEE Computer Society Press,
1990, pp. 145-163.

[27] E. D. Lazowska et al., Quantitative System Performance. Englewood
Cliffs, NJ: Prentice-Hall, 1984.

(281 J. Lee, “SIBYL A qualitative decision management system,” in Arti-
ficial Intelligence at MIT: Expanding Frontiers, vol. 1, P. H. Winston
and S. A. Shellard, Eds. Cambridge, MA: The MIT Press, 1990, pp.
105-1 33,
-, “Extending the Potts and Bruns model for recording design
rationale,” in Proc. 13th Int. Conj Software Eng., pp. 114-125, May
1991.
J. Martin, Security, Accuracy, and Privacy in Computer Systems. En-
glewood Cliffs, NJ: Prentice-Hall, 1973.
J. Mostow, “Towards better models of the design process,”AIMagazine,
vol. 6, pp. 44-57, 1985.
J. Mylopoulos et al., “A language facility for designing database-
intensive applications,” ACM Trans. Database Systems, vol. 5 , pp.
185-207, June 1980.
J. Mylopoulos et al., “Telos: representing knowledge about information
systems,” ACM Trans. Information Systems, vol. 8, pp. 325-362, Oct.
1990.

497

[34] N. Nilsson, Problem-Solving Methods in Artificial Intelligence. New
York, McGraw-Hill, 1971.

[35] B. Nixon et al., “Implementation of a compiler for a semantic data
model: Experiences with taxis,” in Proc. ACM SICMOD I987 Annual
Conf., pp. 188-131, Dec. 1987.

[36] B. Nixon, “Implementation of information system design Specifications:
A performance perspective,” in Database Programming Languages:
Bulk Types & Persistent Data. San Mateo, CA: Morgan Kaufmann,
1992, pp. 149-168.

[37] C. P. Pfleeger, Securiy in Computing. Englewood Cliffs, NJ: Prentice-
Hall, 1989.

[38] C. Potts and G. Bruns, “Recording the reasons for design decisions,” in
Proc. 10th Int. Conf Software Eng., pp. 418-427, 1988.

[39] H. Reubenstein, “Automated acquisition of evolving informal descrip-
tions,” Ph.D. dissertation; also Tech. Rep. 1205, MIT Artif. Intell. Lab.,
1990.

[40] W. N. Robinson, “Negotiation behavior during requirement specifica-
tion,” in Proc. 12th Int. Conf: Software Eng., pp. 268-276, Mar. 1990,

[41] G.-C. Roman, “A taxonomy of current issues in requirements engineer-
ing,” ZEEE Computer, vol. 18, pp. 14-23, Apr. 1985.

[42] H. A. Simon, The Sciences of the Artificial, 2nd ed. Cambridge, MA:
MIT Press, 1981.

[43] C. U. Smith, Performance Engineering of Software Systems. Reading,
MA: Addison-Wesley, 1990.

[44] M. Stonebraker, “Triggers and inference in database systems,” in On
Knowledge Base Management Systems, M. L. Brodie and J . Mylopoulos,
Eds.

(451 R. H. Thayer and M. C. Thayer, “Glossary,” in Tutorial: System and
Software Requirements Engineering, Richard H. Thayer and Merlin
Dorfman, Eds. IEEE Computer Society Press, 1990, pp. 605-676.

[46] G. E. Weddell, “Selection of indexes to memory-resident entities for
semantic data models,” IEEE Trans. Knowledge and Data Eng., vol. 1,
pp. 274-284, June 1989.

New York: Springer-Verlag, 1986, pp. 297-314.

John Mylopoulos received the Ph.D. degree from
Princeton University, Princeton, NJ, in 1970

He is currently a Professor of computer science
at the University of Toronto, and is also a principal
investigator of a project funded by the Information
Technology Research Centre of Ontario, the aim
of which IS the design of a knowledge-based man-
agement system He also leads a project funded by
Canada’s Networks of Excellence Programme His
research interests in the past included the design of
Taxis and Telos; his current research interest5 in-

clude knowledge representation systems, knowledge-based systems, and their
applications in building information systems He has published approximately
100 refereed journal and conference proceedings dnd has edited three books,
he is also a member of several editorial boards.

Lawrence Chung received the B.Sc. and M. Sc.
degrees in computer science from the University
of Toronto in 1981 and 1984, respectively, and is
currently a Ph.D. student there.

He has participated in the Taxis implementation
project, and his interests include implementation
of semantic data models, development of informa-
tion systems, application of artificial intelligence
to software engineering, and representation of non-
functional requirements.

Brian Nixon received the B.Sc. and MSc. degrees
in computer science from the University of Toronto
in 1980 and 1983, respectively, and is now a Ph.D.
student there.

He has participated in the Taxis implementation
project, and his interests include the implementa-
tion of semantic data models and performance of
information systems.

