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Johann SchumannCaelum / NASA Ames ResearchM/S 269-2Mo�ett Field, CA 94035 USA+(650) 604-0941schumann@ptolemy.arc.nasa.govABSTRACTThis paper presents an algorithm for automatically gen-erating UML statecharts from a collection of UML se-quence diagrams. Computer support for this transi-tion between requirements and design is important fora successful application of UML's highly iterative, dis-tributed software development process. There are threemain issues which must be addressed when generatingstatecharts from sequence diagrams. Firstly, conictsarising from the merging of independently developed se-quence diagrams must be detected and resolved. Sec-ondly, di�erent sequence diagrams often contain identi-cal or similar behaviors. For a true interleaving of thesequence diagrams, these behaviors must be recognizedand merged. Finally, generated statecharts usually areonly an approximation of the system and thus must behand-modi�ed and re�ned by designers. As such, thegenerated artifact should be highly structured and read-able. In terms of statecharts, this corresponds to theintroduction of hierarchy. Our algorithm successfullytackles all three of these aspects and will be illustratedin this paper with a well-known ATM example.KeywordsUML, Scenarios, Automated Software Engineering1 INTRODUCTIONThe Uni�ed Modeling Language (UML) [17] provides astandardized collection of notations for describing arti-facts in a software-intensive system. It supports moderncomplex software development, whereby requirementsare expressed in one notation, e.g., sequence diagrams;the design is then described in other notations, e.g.,class diagrams and statecharts; �nally code is producedusing the earlier notations as a guide. This approachallows di�erent stakeholders to develop models indepen-dently and encourages rapid prototyping.

Each UML notation represents a particular aspect of asoftware system from a particular viewpoint. However,there exists a good deal of overlap between many no-tations. This overlap can be exploited, in the form ofautomatic translations between notations, to reduce thetime spent in design and to help maintain consistencybetween the models of di�erent developers.Currently, commercial tools such as iLogix's Rhapsody[15] and Rational's Rose [14] do not adequately bridgethe gaps between UML notations. The generation ofC++ code is now commonplace, but the generation ofUML models themselves has not been adequately ad-dressed. Some model translations can be trivially de-�ned because the models represent the same informationin slightly di�erent ways. One such example is convert-ing between sequence diagrams and collaboration dia-grams. However, other translations are inherently moreinvolved, such as translating between requirements andactual system designs.This paper presents an algorithm which supports thedesign process by generating statechart designs auto-matically from scenarios. A scenario is a trace of anindividual execution of a (software) artifact [19]. Sce-narios are widely used as a (pre-)requirements techniquesince they describe concrete interactions and are there-fore easier for customers and domain experts to use thanan abstract model. In what follows, scenarios will beexpressed as UML sequence diagrams and the designmodel will consist of a class diagram and UML state-charts.Since each scenario is usually written in isolation, bring-ing many scenarios together will result in inconsistencieswhich have to be detected and resolved1. UML sequencediagrams alone do not contain enough semantic informa-tion to enable the automatic detection of conicts, butthis information can be obtained by allowing the user toexpress constraints on the diagrams. UML provides aconvenient notation for giving such constraints, the Ob-ject Constraint Language [17] (OCL), which is a side-e�ect free speci�cation language. The OCL constraints1This is similar to the feature interactions problem of thetelecommunications industry [11].



amount to a very simple domain theory. Domain theo-ries are under-used in software engineering because thee�ort required to develop a complete and consistent do-main theory usually outweighs the gains. In our case,we do not insist on a complete domain theory, but re-quire only a theory expressing instantiations of globalvariables that can easily be provided by a software en-gineer. In addition, our approach allows for revisions ofthe domain theory based on conicts discovered duringstatechart generation. This use of a domain theory is anovel one, as traditionally domain theories are consid-ered absolute.The addition of semantic information also allows a jus-ti�ed merging of multiple scenarios. Di�erent scenarioswill often contain identical or similar behaviors, and theuse of a domain theory allows us to merge these scenar-ios in a way such that the behavior intended by the useris preserved.Since scenarios only give a partial description of a sys-tem, we expect the use of this algorithm to be similarto that of a code generator | i.e., the algorithm pro-duces a skeleton design which the user then has to mod-ify/complete. Since the user needs to modify the gen-erated statecharts, they must be readable. This meansthat the statecharts must include sensible use of hier-archy and orthogonality. We have devised a number ofways of introducing hierarchy into the generated state-charts. We believe that the use of hierarchy is crucialto the success of design generation tools.Section 2 introduces the relevant parts of the UML alongwith an example that will be referred to throughout thepaper. Section 3 shows how scenarios can be annotatedwith semantic information and Section 4 presents analgorithm that uses this semantic information to gener-ate statechart designs. Section 5 discusses related ap-proaches and we conclude in Section 6.2 UML NOTATION AND EXAMPLEThroughout this paper, we will use an ongoing exampleto illustrate our techniques. The well-known ATM ex-ample (see e.g. [13]) is rather small, yet complex enoughto illustrate the main issues. The example describes typ-ical scenarios for user interaction with an ATM machine(e.g., inserting or removing a card, entering a password),and interaction between the ATM, a consortium and thebank for account validation.Class DiagramA class diagram is a notation for modeling the staticstructure of a system. It describes the classes in a sys-tem and the relationships between them. Figure 1 showsan example of a class diagram for our ATM example. Inan object-oriented fashion, the main class (here \ATMtoplevel") is broken down into sub-classes. The aggre-gation relation ( 3) shows when one class is part of

another one. The generalization relation ( �) showswhen one class is an instance of another. For furtherdetails, see [17].

Figure 1: A Class Diagram for the ATM.

Figure 2: Example of a Statechart.StatechartsStatecharts, introduced originally by D. Harel [6], are�nite state machines extended with hierarchy and or-thogonality (parallelism), allowing a complex system tobe expressed in a more compact and elegant way. Fig-ure 2 shows a simple example of a statechart2. Nodescan either be simple nodes, or composite nodes whichthemselves contain other statecharts. The initial nodein a statechart is marked by �. Transitions betweenstates have labels of the form e[c]=a. If event e occursand guard c holds, then the transition may be selectedto �re which results in action a being taken and a statechange occurring. This behavior is extended in a natu-ral way to handle composite nodes. In Figure 2, if thesystem is in state B when the transition e[c]=a �res,2All class-diagrams and statecharts in this paper have beendrawn using the Argo/UML tool [2].
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Figure 4: Interaction with an ATM (SD2).then the system changes state to A1. If the system isin any of the states A1; A2; A3 when transition f [d]=b�res, then it will change state to C.By using composite nodes, hierarchy (or depth) can beintroduced. This not only decreases the number of indi-vidual nodes substantially, but also enhances readabil-ity and maintainability of a statechart. For details onstatecharts see e.g., [6, 17], for their semantics cf. [7].Sequence DiagramsThe basis for our approach are scenarios which describeconcrete examples of the system's intended behavior.Scenarios can be expressed in UML as sequence dia-grams. A sequence diagram (SD) shows the interactionbetween objects of a system over time. The SD in Fig-ure 3 is an example for interactions between the objects\User", \ATM", \Consortium" and \Bank". The ver-tical lines represent the life-line (or time-line) for thegiven object, de�ning the object's life during the inter-action. Messages (like \Insert card") are exchanged be-tween the objects. In this paper, we will focus on basicSDs; for further details and extensions (e.g., conditionalmessages, or iteration) cf. [17].3 ADDING SEMANTIC INFORMATIONThe simplicity of sequence diagrams makes them suit-able for expressing requirements as they can be easilyunderstood by customers, requirements engineers andsoftware developers alike. Unfortunately, the lack of se-mantic content in sequence diagrams makes them am-biguous and therefore di�cult to interpret. For exam-ple, suppose there exists an additional sequence dia-gram, SD0, identical to SD1 in Figure 3 except thatthere are two \Insert card" messages adjacent to each

other. There are three possible ways to interpret theconjunction of the two SDs | either one or two cardsmay be inserted; exactly one card must be inserted soSD0 is incorrect; or, exactly two cards must be insertedso SD1 is incorrect. In current practice, ambiguities areoften resolved by examining the informal documentationbut, in some cases, ambiguities may go undetected lead-ing to costly software errors. In the case of computergeneration of designs, the documentation is usually tooinformal for the automatic resolution of conicts. Thereare two extreme ways to overcome this problem. First,insist that the user provides a complete, formal domaintheory providing semantic information about the mes-sages. Second, assume no additional semantic informa-tion but interpret scenarios based on some heuristic.Neither of these is su�cient, however. The provisionof a complete domain theory is overly burdensome andan algorithm with no semantic information ultimatelyproduces incorrect results.We make a compromise, whereby messages in a sequencediagram may be annotated with a pre/post-conditionstyle speci�cation expressed in OCL. Note that this isonly a small additional burden on the user, since theamount of information required by our algorithm for asuccessful merging of SDs is actually very small. Thespeci�cations should include the declaration of globalstate variables, where a state variable represents someimportant aspect of the system, e.g., whether or notthe user has inserted his card into the ATM. Pre- andpost-conditions should then include references to thesevariables. Note that not every message needs to be givena speci�cation, although, clearly, the more semantic in-formation that is supplied, the better the quality of the



cardIn, cardHalfway, passwdGiven : Booleancard : Card, passwd : SequenceInsert card(c : Card)pre : cardIn = falsepost: cardIn = true and card = cEnter password(p : Sequence)pre : passwdGiven = falseand p->forAll(p->includes(d)=>digit(d))post: passwdGiven = true and passwd = pTake card()pre : cardHalfway = truepost: cardHalfway = false and cardIn = falseDisplay main screen()pre : cardIn = false and cardHalfway = falsepost:Request password()pre : passwdGiven = falsepost:Eject card()pre : cardIn = truepost: cardIn = false and cardHalfway = trueand card = null and passwd = nullRequest take card()pre : cardHalfway = truepost:Canceled message()pre : cardIn = truepost:Figure 5: Domain Knowledge for the ATM class.conict detection. Currently, our algorithm only ex-ploits constraints of the form var = value, but theremay be something to be gained from reasoning aboutother constraints using an automated theorem prover.As well as being used for conict detection, the OCLconstraints can be used to identify identical states indi�erent sequence diagrams which allow these diagramsto be merged. The constraints also allow an automaticpartitioning of the generated statecharts into hierarchi-cal super-nodes (cf. Section 4).Figure 5 gives speci�cations for selected messages in ourATM example. The state variables, in the form of astate vector, are used to characterize states in the gen-erated statechart. The state vector is a vector of valuesof the state variables. In our example, the state vectorhas the form:< cardIn̂ , cardHalfwaŷ , passwdGiven̂ , card̂ , passwd̂ >where var̂ 2 Dom(var) [ f?g, and ? represents an un-known value. The notion of state vector is crucial toour algorithm.4 GENERATING STATECHARTSSingle Sequence DiagramsWe shall �rst consider how individual SDs can be con-verted into statecharts. This process starts by detecting

conicts between the SD and the domain theory (andhence, other SDs). Note that there are two kinds of con-straints on a SD: constraints on the state vector givenby an OCL speci�cation, and constraints on the order-ing of messages given by the SD itself. Conicts betweenthese constraints mean that either the scenario does notfollow the user's intended semantics or the domain the-ory is incorrect. The decision as to which holds must betaken by the user and appropriate modi�cations mustbe made. This enables both the domain theory and theSDs to be re�ned during statechart generation.Let a sequence diagram be represented as follows:s0 m1�! s00; s1 m2�! : : : mr�1�! s0r�1; sr mr�! s0r (1)where themi are messages between objects and si, s0i arethe state vectors immediately before and after messagemi is executed. The source and destination objects ofmessage mi are denoted by msourcei and mdesti , respec-tively. Si will be used as a notational convenience todenote either si or s0i. Si[j] is the jth element of thethe vector Si. vj will denote the name of the variableassociated with position j in the state vector.The initial state vectors are obtained directly from themessage speci�cations: if mi has a precondition vj = y,then let si[j] := y, and if mi has a postcondition vj = y,let s0i[j] := y. Otherwise, si[j] = s0i[j] := ?.Since each message is speci�ed independently, the initialstate vectors will contain a lot of unknown values. Most(but not all) of these can be given a value in one of twoways.� Uni�cation: two state vectors, Si and Sj (i 6= j),are considered the same if they are uni�able, i.e.,there exists a variable assignment � such that�(Si) = �(Sj). This amounts to the detection ofloops within a SD.� The frame axiom: for each j, if si[j] = ?, i > 0,then let si[j] := s0i�1[j] and if s0i[j] = ? then lets0i[j] := si[j]. This assumes, of course, that thereare no hidden side-e�ects between messages.These two techniques extend the state vectors by prop-agating variable values throughout the SD. This allowsus to detect conicts between state vectors | a conictis detected if the state vector immediately following amessage and the state vector immediately preceding thenext message di�er (if they are uni�able they will al-ready have been uni�ed). Any reported conicts mustbe resolved by the user and the algorithm is startedagain. Figure 6 shows how these techniques �t together.Example. Figure 7 shows SD1 from Figure 3 afterthe state vectors have been extended by uni�cation andthe frame axiom. Our procedure detects a conict with



Input. A SD annotated with state vectorsOutput. A SD with extended annotationsfor each state vector Si doif there is some j and some uni�er �with �(Si) = �(Sj) thenunify Si and Sj ;propagate instantiations with frame axiom;if there is some k; l with s0k(l) 6= sk+1(l) thenReport Conict;break;doneFigure 6: Extending the state vector annotations.the domain theory. This arises because state vectorsSV1 and SV2 are uni�ed (the �gure shows the instan-tiations of the vectors after uni�cation). This corre-sponds to the fact that the ATM returns to its initialstate after \Take card" is executed. The state vectorstell us that there is a potential loop at this point, whichwill be created when the SD is translated into a stat-echart (see Figure 8). The e�ect of this loop is thatthere exists an execution path such that the variablepasswdGiven is set to true when \Request password"is encountered (the value of passwdGiven is the third el-ement in the vector). However, the domain theory tellsus that passwdGiven must be false as a pre-conditionof \Request password". Hence, there is a conict, whichrepresents the fact that the developer did not accountfor the loop possibility when designing the domain the-ory. The user must now decide on a resolution of thisconict | either he can tell the system that the loop isnot possible, in which case the uni�er that detected theloop is discarded; or he modi�es the sequence diagram;or he modi�es the domain theory. The action taken inthis case is that the domain theory is updated by giving\Eject card" the additional postcondition passwdGiven= false. This extra postcondition resets the value ofthe variable when the ATM user removes his card.Translation into Finite State MachinesOnce conicts have been resolved, we are ready to gen-erate a statechart. Our strategy is to generate a numberof at statecharts (in fact, �nite state machines (FSMs))for each individual SD, one for each object in the SD.Each FSM describes the behavior of the class to whichthe corresponding object belongs. Messages directed to-wards a particular object, O, are considered events inthe FSM for O. Messages directed away from O areconsidered actions. A loop is detected if the state vec-tor immediately after the current message has been ex-ecuted is the same as an existing state vector and ifthis message is state-changing, i.e., si 6= s0i. Note that
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Figure 7: Figure 3 with Extended Annotations.some messages may not have been given a speci�cation,hence they will not a�ect the state vector. To iden-tify states based solely on the state vector will result inincorrect loop detection (e.g., a message with no speci-�cation will always loop back to its starting state). Toovercome this, loops are only created when the messagechanges the state.Figure 8 shows how a single SD is translated into a FSMfor each object. A FSM, as generated by Figure 8, isa 6-tuple (N; s0; V; �; L; �) where N is the set of nodes,s0 2 N is the initial node, V is the set of state vectors,� : N ! V is a labelling of the nodes with state vectors,L is the set of transition labels and � � N�L�N is thetransition relation. Transition labels are either events,denoted hev;mi, or actions, denoted hac;mi, where mis a sequence of messages. Note that we create a tran-sition for each event and each action. This produces anoverly large number of states but makes analysis eas-ier. For presentation to the user, actions and events canbe amalgamated into the same transition in the usualstatechart style. Our implementation also deals withconditional branches expressed in the sequence diagramwhich introduce transition guards into the FSM, but weomit these here for the sake of clarity3 . The detection ofloops is done in the second if statement in the de�nitionof add.Multiple Sequence DiagramsThe previous section dealt with a single sequence dia-gram. The key ideas were how to identify if a SD con-icts with the domain theory and how to detect loops.When merging multiple sequence diagrams, one waywould be to convert each SD to FSMs and then takethe union of those FSMs. This is essentially the ap-3The semantics of conditional messages in UML SDs is unclear.We follow that presented in [4] where keywords IF, ENDIF, CASE,ENDCASE are used to partition a SD into conditional branches.



Input. A sequence diagram, S, containing objectsO1; : : : ; Ok and messages m1; : : : ;mr (as in (1)).Output. A FSM COi for each object, 1 � i � k.for i = 1; : : : ; k doCreate a new FSM, COi , with a single node, n0;i(the initial node) and current node in COi := n0;i;donefor i = 1; : : : ; r doadd(mi; ac;msourcei );add(mi; ev;mdesti );donewhere add(mess, type, obj)curr := current node in Cobj ;if there is a n 2 NCobj with hcurr; l; ni 2 �and l = htype;messi and s0i = �(n) thencurrent node in Cobj := n;return�if there is a n 2 NCobj with s0i = �(n)and mi is state-changing thenadd new transition hcurr; htype;messi; ni;current node in Cobj := n;return�add a new node n and let �(n) := s0i;add a transition hcurr; htype;messi; ni;current node in Cobj := n;returnFigure 8: Translating a sequence diagram into FSMs.proach taken in [18]. Recall, however, that one of ourmain aims is to generate readable statecharts which canthen be further modi�ed by the user. Merely taking theunion of the FSMs would result in a chart with manyindependent branches, one for each SD. Our approachmakes an analysis of which nodes in di�erent FSMs canbe identi�ed so that di�erent branches can be merged.The result is a statechart with fewer nodes correspond-ing more closely to the statechart that a designer mightproduce manually from the SDs.The idea is that we recognize similar nodes from dif-ferent FSMs and join them with empty �-transitions.A standard algorithm from [1] can then be used to re-move these �-transitions and simultaneously merge sim-ilar nodes. A key question then is how to recognizesimilar nodes. The obvious solution is to de�ne similar-ity such that two nodes are similar if their state vectorsare the same. However, such a de�nition would producean excessive number of similar nodes since some mes-sages do not change the state vector. The way aroundthis when merging multiple SDs is to base the notion ofsimilarity on both the state vectors and the ordering of

messages:De�nition 1 Two nodes, n1 and n2 in a FSM, are sim-ilar if they have the same state vector, �(n1) = �(n2),and they have at least one incoming transition with thesame label, i.e., there exist transitions t1 = hn3; l; n1iand t2 = hn4; l; n2i for some nodes n3; n4.The existence of a common incoming transition meansthat in both cases, an event has occurred which leavesthe state variables in an identical assignment. Hence,the de�nition takes into account the ordering of the mes-sages and the current state.We illustrate how �-transitions are introduced when con-sidering the FSMs generated for an object, O. Supposewe start with sequence diagrams which are translatedinto FSMs C1; : : : ; Ck, then we create a new FSM, C,which includes C1; : : : ; Ck and has �-transitions as fol-lows:1. Let C be the union of C1; : : : ; Ck, i.e., NC = [iNCi ,�C = [i�Ci etc.2. Let C have a new initial node n0 and create �-transitions from n0 to each of the initial nodes ofC1; : : : ; Ck.3. For each pair of similar nodes, n1 and n2 in NC ,create �-transitions from n1 to n2 and from n2 ton1.The algorithm that we use subsequently is a variant of astandard algorithm for transforming a non-deterministic�nite automaton (NFA) into a deterministic �nite au-tomaton (DFA) [1]. Each state in the DFA is a setof NFA states which simulates \in parallel" all possi-ble moves the NFA can make on a given input string.In order to leverage o� this algorithm, we introduce �-transitions as above. These �-transitions are removed bythe algorithm resulting in a FSM that has successfullyinterleaved a number of SDs by placing similar nodesinto a single state in the output.Note that the output of the algorithm is only determin-istic in the sense that there are no �-transitions remain-ing. It still may be the case, however, that there aretwo transitions leaving a state labelled with the sameevents but di�erent actions. Hence, our algorithm mayproduce non-deterministic statecharts. Note that this isa good thing, as a designer may wish to leave a designnon-deterministic initially and re�ne it later.Example. Figure 11 gives the statechart generated au-tomatically from the SDs in Figures 3, 4, 9 and 10. Ouralgorithm, implemented in Java, has actually been ap-plied to the full ATM example, which consists of eleven
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Figure 11: Statechart generated from SD1, SD2, SD3 and SD4.SDs. Two conicts were found and a loop was detectedwhich was not intended, but which was allowed by theSDs and domain theory. In this way, the algorithm car-ries out some degree of validation of the input SDs.Introducing HierarchySo far, we have shown how to generate FSMs withoutany hierarchy. In practice, however, statechart designstend to get very large and so the judicious use of hierar-chy and orthogonality is crucial to readability and main-tainability of the designs. In what follows, we considerhow hierarchy can be introduced automatically into theFSMs generated by our algorithm.There are several issues which comprise a \well-designed" statechart (see, for example, [9]). They in-clude the consolidation of related behavior, the sepa-ration of unrelated behavior, and the introduction ofmeaningful abstractions. We consider three approaches

for introducing hierarchy into the generated FSMs: us-ing implicit information present in the state vectors, in-troducing generalizations, and using information explic-itly given by the user in class diagrams.Using the State VectorThe set of state variables in our annotated SDs pro-vides an excellent means for introducing structure intothe generated statechart. State variables usually encodethat the system is in a speci�c mode or state (e.g., if thecard is inserted or not). Thus it is natural to partitionthe statechart into subcharts containing all nodes be-longing to a speci�c mode of the system.More speci�cally, we recursively partition the set ofnodes according to the di�erent values of the variables inthe state vectors. In general, however, there are manydi�erent ways of partitioning a statechart, not all ofthem suited for good readability. Thus, we introduceadditional heuristic constraints on the layout of the stat-



echart. These constraints rule out unreadable partitionsand are controlled by user-given parameters:1. the maximum depth of hierarchy (too many nestedlevels of compound states limit readability);2. the maximum number of states on a single level;3. the maximum percentage of inter-level transitions(transitions between di�erent levels of the hierarchylimit modularity, but can occasionally be useful);4. a partial ordering, �, over the state variables, de-scribing an order in which partitions should be at-tempted (some state variables may be more \im-portant" than others and thus should be given pri-ority). The ordering encapsulates important designdecisions about the way in which the statechartshould be split up.The process of structuring a given subset S of the nodesof a generated FSM is shown in Figure 12. Given theset of variables W of the state vector and the ordering� , a sequence W 0 is constructed w.r.t. �. Then thenodes S are partitioned. In case the partition does notmeet the design criteria ((1){(3) above), a warning willbe issued that the given ordering would result in a non-optimal hierarchy and a new ordering of the variablesis selected. This selection is done until the criteria aremet.The actual splitting is performed recursively accordingto the variable sequenceW 0. Let vj be the top-level vari-able (minimal inW 0) on which to split. The partition ismade up of m equivalence classes corresponding to eachpossible value of vj given in the SDs. For example, forthe boolean variable cardIn we would collect all nodeswhere this variable is true or false, respectively. Thenthese compound states will be partitioned according tothe remaining variables.GeneralizationsSince SDs often represent concrete instances of a moregeneral behavior, it is useful to be able to introduce gen-eralizations into the generated statechart. We presentone example of this here. The input SDs show that theevent \Cancel" can occur in one of two states (see Figure11). \Cancel" can be generalized, however, such thatit can occur in any state in which cardIn is true andcardHalfway is false. This suggests the introduction ofhierarchy by partitioning the statechart over the valuesof cardIn and cardHalfway, using the ordering cardIn� cardHalfway. At present, such generalizations aregiven explicitly by the user, in the form of expressingan ordering or invoking a transformation, but it maybe possible to suggest generalizations automatically, forexample, by using machine learning techniques.

Input. A FSM, (N; s0; V; �; L; �), S � N , an ordering� over the state vector variables, WOutput. A partitioning P of the FSMW 0 := hv1; :::; vki for vi 2W and vi � vj ; i < j;P := partition(S;W 0);while :optimal(P) doW 0 := select-variable-ordering(W );P := partition(S;W 0);donewhere partition(S;W 0)vj := �rst(W 0); // split on �rst var. in W 0DS(vj) := Ss2Sf�(s)[j]g;m := jDS(vj)j;for 1 � i � m doSi := fs 2 Sj�(s)[j] = ith(DS(vj))g;Pi := partition(Si; rest(W 0));doneP := hPijPi 6= hi iwhere optimal(P)check P according to our design criteriaFigure 12: Sketch of algorithm for partitioning over thestate vector.Example. Figure 13 shows the FSM from Figure 11which has been partitioned according to the orderingcardIn � cardHalfway, and in which the \Cancel"message has been generalized (explicitly by the user) asin the previous paragraph to produce the same behaviorfor the source state of `Request password' as for theother two states in which it is applicable.Using Class DiagramsIt is important to incorporate other design decisionsmade by the developer into the synthesis process.Within the UML framework, a natural place for higher-level design decisions are class diagrams. These describethe types of the objects in the system and the static re-lationships among them.A hierarchical structure of a generated statechart caneasily be obtained from the class diagram: the outer-most superstate (surmounting the entire statechart) cor-responds to the class node of the corresponding object.Aggregation results in a grouping of nodes, e.g., in Fig-ure 1, the ATM statechart will have subcharts physicaldevice and dialogs. If a class contains several sub-classes (e.g., card-reader and cash-dispenser aresub-classes of physical-device in Figure 1), the state-charts corresponding to the sub-classes are sub-nodes ofthe current node. Due to space restrictions, we do notshow the resulting statechart when Figure 1 is struc-tured according to the class diagram.



Figure 13: Structured statechart for the ATM example.The �nal way of introducing structure is somewhathigher-level than the �rst two. Typically, the class di-agram can be used to obtain a very abstract structureand the �rst two methods can be used to introduce fur-ther structure within each subchart generated using theclass diagrams.5 RELATED WORKThere have been a number of recent attempts at gen-erating speci�cations from scenarios. Our work stressesthe importance of obtaining a speci�cation which canbe read, understood and modi�ed by a designer. Thisis reected in the following main ways.Many approaches make no attempt to interleave di�er-ent scenarios. [18] gives a learning algorithm for gener-ating a temporal logic speci�cation from a set of exam-ples/counterexamples expressed as scenarios. Each sce-nario gives rise to a temporal logic formula Gi and sce-nario integration is merely SiGi augmented with rulesfor identifying longest common pre�xes. In terms ofgenerating FSMs, this corresponds to having separatebranches in the FSM, one for each scenario. However,this does not correspond well to what a human designerwould do.A more e�ective integration of scenarios necessitatessome way of identifying identical states in di�erent sce-narios. The solution to this in [10] is to ask the userto explicitly name each state in the FSM generatedfrom a scenario. Di�erent states are then merged ifthey have been given the same name. This approachrequires a good deal of e�ort from the user, however.The SCED tool [13] generates FSMs from traces using

the Biermann-Krishnaswamy algorithm [3]. This algo-rithm uses backtracking to identify identical states insuch a way that the �nal output FSM will be determin-istic. As a result, there is no use of semantic informationabout the states and the algorithm ultimately may pro-duce incorrect results by identifying two states that arein fact not the same. In addition, designers will oftenintroduce non-determinism into their designs which willonly be resolved at a later implementation stage. Hence,the insistence on determinism is overly restrictive.[12] tackles the problem of integration by requiring thatthe user gives an explicit diagram (a high-level MessageSequence Chart) showing the transitions from one sce-nario to the next. This merely shows, however, how thestart and end points of di�erent scenarios relate. Thereis no way to examine the contents of scenarios to, for ex-ample, detect interleavings or loops. [5] follows a similarapproach, essentially using an AND/OR tree instead ofa high-level Message Sequence Chart.The work closest to our own is described in [16] wheretimed automata are generated from scenarios. Theuser must provide message speci�cations with ADD andDELETE lists which maintain a set of currently validpredicates in a STRIPS-like fashion. States are thenidenti�ed if the set of valid predicates is the same.The ability to introduce structure and hierarchy intothe generated FSM is crucial if user modi�cations mustbe made. [10] allows the limited introduction of hier-archy if the structure is explicitly represented in thescenarios (e.g., concurrent threads expressed in a col-laboration diagram lead to a statechart node with twoorthogonal subnodes). However, structure beyond thatpresent in the scenarios must be introduced manually.Our work extends this approach by introducing hier-archy where the structure is deduced from other UMLnotations, such as a class diagram, or from a domaintheory, where partitioning is made over a state variable.Most other approaches assume the correctness of theinput scenarios. In practice, the scenarios will containambiguities and inconsistencies. Our algorithm detectsconicts which may correspond to such ambiguities andhence can be used as a guide for re�ning the scenarios.To further extend our consistency checks, we may beable to leverage o� work done in checking the consis-tency of SCR requirements speci�cations [8], or work inthe feature interactions community [11].6 CONCLUSIONSWe have presented an algorithm for generating UMLstatecharts from scenarios. These scenarios compriseparts of the system requirements and are given as se-quence diagrams. By adding semantic information inthe form of a domain theory we are able to correctlyidentify similar states and to detect and report incon-



sistencies. By identifying similar states, our approachallows the merging of a number of sequence diagramsinto a single statechart. In order to make such an al-gorithm practical, the generated statecharts must bereadable. To enable this, we introduce structure andhierarchy into the generated statechart. Informationand guidance for structuring are taken from the domaintheory, a UML class diagram and additional preferencesthe user may select. A prototype of this algorithm hasbeen implemented in Java.The development of high-quality software requires a rig-orous enforcement of formal techniques during the entirelifecycle. UML covers a wide spectrum of diagrams andnotations on various levels of software development andencourages an iterative life-cycle. For high productivity,a transition between the di�erent levels has to be madee�ectively and fast. However, current CASE tools onlysupport translations from speci�cation to code (e.g.,generation of C++ code from class diagrams or stat-echarts). Our approach can be used to close the gapbetween the requirements and speci�cation phase.Since most requirements do not specify the full behav-ior of the system, the generated SCs are only a skele-ton which serve as a basis for manual re�nement andmodi�cation. Therefore, our algorithm fully supportsiterative model development. Careful software designrequires that the speci�cation and requirements are al-ways kept in a consistent state. Manually maintainingconsistency is a tedious and error-prone task. Our algo-rithm provides the �rst step towards an automated toolfor carrying out such a task. Future plans will augmentour algorithms so that changes made to the generatedstatechart can be fed back to the sequence diagrams. Inthis way, design modi�cations can be validated on-the-y by highlighting scenarios that are no longer valid, orsuggesting new scenarios that become possible.REFERENCES[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Prin-ciples, Techniques, and Tools. Addison-Wesley,1986.[2] Argo/UML. University of California, Irvine, 1999.http://www.ics.uci.edu/pub/arch/uml/index.html.[3] A. Biermann and R. Krishnaswamy. Con-structing programs from example computations.IEEE Transactions on Software Engineering, SE-2(3):141{153, 1976.[4] T. Gehrke and T. Firley. Generative sequencediagrams with textual annotations. In For-male Beschreibungstechniken f�ur verteilte Systeme(FBT99), pages 65{72, 1999.
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