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Abstract 
In recent years, UML has become a standard language 

for modeling sofrware requirements and design. 
In this paper we investigate the suitability of UML as a 

semiformal requirements specification language. Using 
the Teleservices and Remote Medical Care (TRMCS) case 
study as an example, we identify and demonstrate various 
problems and deficiencies of UML, particularly concern- 
ing use case models and system decomposition. 

We also investigate whether and how the deficiencies 
can be overcome and how potential alternatives could 
look 

Keywords: UML, requirements specification, model, use 
case, decomposition 

1 Introduction 
Semiformal modeling languages are a powerful means 

of describing requirements. Such languages have a long 
tradition, starting about 25 years ago with PSLPSA [23], 
SADT [20] and Structured Analysis [5]. About ten years 
ago, object-oriented specification languages appeared ([3], 
[4], [22] and many others). A few years ago, the object- 
oriented approaches were consolidated into UML [21]. 

The structured languages like DeMarco’s Structured 
Analysis [5] were plagued by many problems, in particular 
the paradigm mismatch between analysis and design, 
missing locality of data definitions, only partial informa- 
tion hiding and no types [8]. Object-oriented modeling 
languages were proposed to overcome these problems. 
However, the early object-oriented specification languages 
also had serious deficiencies, particularly due to their 
inability to model dynamic and behavioral aspects of a 
system. Jacobson [14] tried to overcome these defects by 
introducing the notion of use cases. UML [21] was created 
with the goals of unifying the best features of different 
existing languages and of creating an industq standard. 

However, UML is not the ultimate answer to the prob- 
lem of creating a good language for semiformal modeling 
of requirements. In this paper, we identify several defi- 
ciencies of UML as a language for requirements specifi- 
cation. We select issues from the Teleservices and Remote 
Medical Care (TRMCS) case study representing typical 
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requirements specification problems. We try to model 
these issues with UML and discuss the difficulties en- 
countered. 

We do not attempt a comprehensive analysis of the 
weaknesses of UML. In particular, we do not systemati- 
cally analyze the omissions, inconsistencies, vaguenesses 
and comprehensibility problems in the partially overcom- 
plex and ill-structured metamodel of UML and in the defi- 
nition of UML semantics. Considering the size of the 
UML 1.3 specification (over 800 pages), this would be a 
major research endeavor. Furthermore, when looking at 
the rapid evolution of UML versions, the results would 
probably be outdated before completion. 

The rest of this paper is organized as follows. In section 
2 we outline the case study. In sections 3 and 4 we identify 
deficiencies in UML concerning use case models and sys- 
tem decomposition. In section 5 we investigate whether 
the deficiencies can be overcome by using UML extension 
mechanisms. Finally, we sketch a potential altemative to 
UML. 

2 The case study 
As a case study we use the Teleservices and Remote 

Medical Care System (TRMCS) which was defined by 
Inverardi and Muccini for this workshop [7]. As this case 
study is rather open, we add more precise requirements 
and design decisions where appropriate. The high-level 
goals and constraints of the TRMCS and some high-level 
system design decisions are summarized below. 

Businesdsystem requirements for the TRMCS 
Goal. The TRMCS shall provide medical assistance to at- 
home or mobile patients. 
Subgoals. 
1. The TRMCS shall provide two main services for pa- 

tients: 
adequately service help calls issued by a patient 
continuously telemonitor a patient’s health condition 
and automatically generate a help call when neces- 
sary. 

2. These services shall be available regardless of the 
actual geographic location of the patient (but within 
the limits defined by the service contract). 
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3. The TRMCS shall support and coordinate multiple and 
geographically distributed service providers. 

4. The services provided by the TRMCS shall have the 
same level of reliability, safety, security, accessibility 
and medical ethics as a local service provided by hu- 
mans would have. 

Constraints. The TRMCS shall operate on near-future 
network and computing infrastructures. 
Assumptions. The TRMCS assumes that a patient using a 
TRMCS service has access to a highly reliable and avail- 
able telecommunications system that transmits voice and 
data. 

We assume that the following system design decisions 
have been taken based on the business/system require- 
ments. 

System design decisions for the TRMCS 
1. The TRMCS will be a distributed system having 

a subsystem at the site of every patient 
a subsystem at the site of every service provider 
a mission management subsystem managing the mis- 

one central subsystem. 
2. The central subsystem will communicate with the pro- 

vider subsystems through an Intranet with guaranteed 
quality of service. 

3. The patient support subsystems will communicate with 
the other subsystems through the Intemet and the tele- 
phone network. 

sions needed to take care of the patients 
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4. All events (help calls, alarms) generated by patients are 
directed to the central site. The central site routes them 
to an appropriate service provider according to a policy 
based on patient contracts and provider availability. 

5. The TRMCS will not contain an accounting compo- 
nent. It will provide accounting information to an ex- 
temal accounting system instead. 

6. The TRMCS will leave all decisions about help or 
treatments to humans. It only supports the decision- 
making process by providing information and suggest- 
ine solutions. 

3 A use case model of the TRMCS 
Based on the system requirements and design decisions 

given above, we now want to model software require- 
ments for the TRMCS, using UML as a modeling lan- 
guage. Conforming to the process recommended for the 
use of UML [17] we start with a use case model. 

We identify the following actors who interact with the 
TRMCS: Patient, Dispatcher (person in a provider’s office 
who handles events and help calls), Physician (consulting 
dispatchers and patients), Help Crew (visiting/rescuing a 
patient who needs help), Serviceperson, Manager (of the 
remote health care service), and Accounting System. For 
these actors we define a first-cut set of use cases (Figure 1; 
parts drawn in black). 

In the following subsections, we examine various parts 
of this model more closely and identify six modeling is- 
sues which cannot adequately be handled with UML. 

eleservices and Remote Medical Care System (TRMCS) I Q  - 
A n i t o r  Event stat> Analyze Business -2 

ML model elements are drawn in black. 
ode1 elements drawn in grey are 
eeded, but cannot be modeled in UML. 

Figure 1. Use case diagram of the TRMCS 
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3.1 System-actor interaction 

In a first step, we consider the patient use cases (cf. 
Figure 1). Process Help Request deals with the situation 
where a patient actively asks for help. Monitor Patient de- 
scribes the continuous monitoring of patient data (e.g. 
heart beat). Maintain Subscription of Services deals with sub- 
scription, update and deletion of TRMCS services by a 
patient. Browse Monitored Data allows a patient to look at 
the data that the monitoring function has recorded. 

A closer look at the patient use cases reveals that they 
cannot specify the interaction between a patient and the 
TRMCS completely. For example, the TRMCS should 
warn a mobile patient when a service becomes unavailable 
because she or he is moving into a region with no connec- 
tion to the mobile communication network. So we need an 
active model element (for example, an active object; see 
Figure 1) which is able to initiate communication between 
the system and an actor. 

However, such an element cannot be modeled in UML: 
a use case by definition describes a sequence of actor 
stimuli and system responses that is initiated by an actor 
([18], p.2-124). Active objects are not allowed in UML 
use case diagrams. 

Deficiency 1. A UML use case model cannot specify 
interaction requirements where the system shall initiate an 
interaction between the system and an external actor. 

3.2 Rich context 

When modeling the context of a system, it is important 
that a rich context can be modeled, including interaction 
between actors [ 131. 

In the TRMCS for example, a Dispatcher may phone a 
Physician and alert a Help Crew. Both interactions are re- 
lated to the TRMCS but take place outside the TRMCS 
system boundary. We also have TRMCS-external com- 
munication between Accounting System, Patient and Manager 
(cf. Figure 1). 

However, UML cannot model context associations be- 
cause it forbids associations between actors ([18], p. 2- 
121). 

Deficiency 2. UML cannot model a rich system con- 
text. 

3 3  
Next, we consider the dispatcher use cases. The Dis- 

patcher actor has two major use cases (Figure 1). Handle 
Event specifies how a dispatcher handles a help call (either 
issued by a patient or raised by a TRMCS monitoring 
component). A dispatcher shall handle more than one 
event in parallel. Monitor Event Status specifies how a dis- 
patcher interacts with the TRMCS in order to monitor the 
status and progress of the events that are currently being 
handled. Again, an active element is needed alerting a 
dispatcher when an event occurs (cf. section 3.1 above). 

Use case structure and decomposition 

The problem with Handle Event is that this is a large and 
complicated use case which in fact consists of a structured 
set of sub-use cases: Handle Event is a sequence of three 
sub-use cases: Acknowledge Event, Take Actions and Close 
Event. Take Actions is an iterative sequence of actions, for 
example to phone the patient, then send a nurse to the 
patient and finally informing the patient's physician about 
the findings and treatments of the nurse. Every action 
again is a sequence of three sub-use cases: Analyze Situa- 
tion, Decide And Act and Observe And Get Feedback. The 
sub-use case Decide And Act consists of a set of alternative 
use cases, for example Inform Physician or Send Emergency 
Team. 

Handle Event itself runs in parallel with Monitor Event 
Status because the status of all open events must be moni- 
tored continuously by the dispatcher. 

Finally, there is a sub-use case Analyze Patient Data, 
which is used both within Handle Event (when analyzing 
what to do) and within the use cases of the actor Physician. 

A good modeling language should allow us to model 
such kinds of structural relationships among use cases in a 
straightforward way. We imagine something like the dia- 
gram shown in Figure 2. We also expect that the structur- 
ing capability comes in combination with a decomposition 
facility, such that we can draw overview diagrams show- 
ing only Handle Event and Monitor Event Status as well as 
detailed diagrams for the dispatcher use cases showing all 
the structural details. 

We now examine how UML handles the structure and 
decomposition of use cases. It turns out that this is a rather 
messy issue because the UML 1.3 specification is incon- 
sistent and contradictory concerning' the relationships 
between use cases. 

A. Structural relationships. The first problem concerns 
structural relationships between use cases in UML. On the 
one hand, the UML specification states that every use case 
should express a complete sequence of interactions which 
is independent of any other use case and that use cases 
specifying the same system or subsystem must not com- 
municate or have associations to each other ([18], pp. 2- 
122, 2-124 and 2-125). On the other hand, UML provides 
three kinds of relationships between use cases: Generali- 
zation, <<Include>> and <<Extend>>. The generalization relates 
general use cases to special case use cases, which is not 
applicable in our example. Both <<Include>> and <<Extend>> 
imply the existence of use cases describing subsequences 
which are not necessarily complete and do require com- 
munication between the base use case and the included 
extending use case. <<Include>> corresponds to a procedure 
call in programming. The relationship between Handle 
Event and Analyze Patient Data can be modeled this way. 
<<Extend>> means that the extending use case is inserted 
into the extended one at a designated extension point if a 
guarding condition is true (a mechanism corresponding to 
macro expansion in assembler programming). The alter- 
native actions (Inform Physician, Send Emergency Team, etc. 
can be modeled as extensions. 
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Expressing sequential, parallel or iterative relationships 
between use cases is impossible in UML. A sequence of 
extensions could be tried as a workaround for the missing 
sequence relationships, but the resulting model would look 
quite cryptic. Another, better workaround is to exploit 
subsystem decomposition (see below). 

Sequence Alternative Iteration Concurrency 

We use Jackson diagrams (extended with parallel decomposition) be- 
cause they provide a natural way of represen!ing a structured decom- 
position and because a use case decomposition has some similari- 
ties to model processes in JSD 1121. The double oval indicates that 
Analyze Patient Data is a sub-use case which is invocated in a pro- 
cedure-like manner (analogous to an -include= relationship in UML). 

Figure 2. An intuitive model of the decomposition of the 
Handle Event use case (which is not possible in 
UML, however) 

B. Use case decomposition. The second problem con- 
cems decomposing a use case into a structured set of sub- 
ordinate use cases. On the one hand, UML explicitly for- 
bids decomposing use cases and forbids communication 
among use cases ([18], pp. 2-122 and 2-125). On the other 
hand, if a system is decomposed into subsystems, then the 
use cases of every subsystem do form a decomposition of 
one or more use cases of the system. The subordinate use 
cases collaborate to perform a superordinate one ([18], p. 
2-125). which means that they must communicate. 

It tums out that the property of use case independence 
(every use case being a complete sequence of interactions 
which is independent of any other use case) is necessarily 
violated as soon as we view a system on different levels of 
decomposition. 

Subsystem decomposition gives us a workaround for 
modeling the structure of the Handle Event use case: we 

model Handle Event and Monitor Event Status on the system 
level. The sub-use cases of Handle Event are modeled in the 
Service Provider subsystem (Figure 3a). The structure of 
Handle Event is modeled by a collaboration within the 
Service Provider subsystem (Figure 3b). However, this 
model is an order of magnitude clumsier and more com- 
plex than a facility for directly modeling structure and 
decomposition of use cases in the style of Figure 2. 

U Su bsystem. 
Service Provider 

Figure 3a. UML model of the Service Provider subsystem 
with a decomposition of the Handle Event use 
case 

3':[nOt finishedj 
react to feedbadk A 

4[finished]: 
terminate 

2:take an action 
Dispatcher 

1:- I 
I I I  1 I 2 . 1 : a n T .  1 I 2 . 2 : d e r  , 1 I 2.3:obferve 

11 2.l.l:include 

of use case Handle Event 
L 1 

Figure 3b. An UML collaboration diagram defining the 
structure of the Handle Event use case 
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Deficiency 3. UML can neither express structure be- 
tween use cases nor a structural hierarchy of use cases in 
an easy and straightforward way. 

3.4 Use case interaction 

UML does not model interaction between use cases. 
Communication and any associations between use cases 
are not allowed (see section 3.3). Preconditions such as 
“use case A requires that use case X has been previously 
executed” cannot be formally expressed in UML’. 

In reality, however, use cases do interact. For example, 
consider the patient use cases. The way how Process Help 
Request and Monitor Patient are carried out (and whether 
they are carried out at all) depends on the services the 
patient has subscribed to in the Maintain Subscription of 
Services use case. 

Moreover, services itself may interact. Imagine a situa- 
tion where Monitor Patient automatically issues a help call 
and transmits patient data, thereby blocking the commu- 
nication device. If the patient decides to issue a manual 
help request at that time, the use case Process Help Request 
is blocked because the communication device is in use by 
Monitor Patient. In order to recognize and resolve such 
problems, it is important to identify use case interactions 
and to model them explicitly. 

Use case interaction has similarities to feature interac- 
tion [16] as observed by Finkelstein [6]. 

In order to express use case interaction problems, we 
must be able to model states that can be accessed and 
modijied by use cases. UML allows individual use cases to 
be modeled as state machines. However, UML cannot 
model states being shared between use cases, because a 
state machine must be allocated to a single classifier or 
behavioral element, but not to a subsystem ([ 181, p. 2-141 

Deficiency 4. UML provides no adequate means for 
and 2-181). 

dealing with use case interaction. 

3.5 

UML nurses the illusion that the functional require- 
ments of a system can be expressed by a collection of use 
cases alone, ’ without modeling any persistent state. As 
evidence, consider that the UML use case semantics say 
so2, that the UML-inspired Rational Unified Process basi- 
cally models requirements with use cases only [17], and 
that UML does not allow inter-use case state machines 
(see section 3.4 above). 

Use cases alone do not suffice 

In the pre-UML literature on use cases, there existed a notion of 
preconditions for use cases. UML 1.3 however, defines a precondition 
to be “a constraint that must be true when an operation is invoked” 
(Glossary in [18], p. B-13). Reconditions for use cases could at best 
be expressed informally in a textual description of a use case. 
“...the dynamic requirements of the system as a whole can be 
expressed with use cases.” ([18], p. 2-127). “Each use case specifies a 
service the entity provides to its users (...). The service (...) is a 
complete sequence. This implies that after its performance the entity 
will in general be in a state in which the sequence can be initiated 
again.” ( [ I Q  p. 2-124). 

However, this approach does not work in practice for 
any system where system state plays an important role. 
For the TRMCS, we have already demonstrated that the 
potential interaction between the patient use cases cannot 
be modeled without state variables that are shared between 
the use cases (see section 3.4 above). Moreover, the way a 
use case has to respond to the stimuli received from an 
actor frequently depends on the actual state of the system. 
For example, when a Patient sends a Turn monitoring on 
stimulus to the Monitor Patient use case, the reaction that 
has to be specified in this use case depends on 

whether the patient has previously subscribed to a moni- 
toring service, 
whether the patient is allowed to use the service (if he 
did not pay his bill the TRMCS might block a service), 
whether the current geographical location of the patient 
allows communication with a provider. 
These conditions in turn depend on the outcome of 

other use cases or on actions of a system entity which 
actively monitors a system condition (cf. section 3.1). It is 
impossible to specify the required reaction of the Monitor 
Patient use case without refemng to state variables repre- 
senting the three conditions listed above. 

Theoretically, one could introduce pre- and postcondi- 
tions for use cases and use global state variables in these 
conditions. Stereotypes would be the vehicle to do so in 
UML. However, such a specification would become ex- 
tremely clumsy for all systems with more than a few state 
variables. As every system that needs a database belongs 
to this category, this approach provides no practical solu- 
tion for the specification of state-dependent requirements. 
As far as we know, nobody has ever tried to integrate 
state-dependent behavior into a use case model in this 
way. 

In a practical semiformal requirements language we 
must be able to combine use cases with a model of objects 
and states. The use cases capture functional requirements 
by specifying the behavior of a system as observed from a 
user’s perspective. The objecvstate model, on the other 
hand, models both the state space and the events and op- 
erations that modify it. In [9] we present an approach that 
systematically and consistently combines a use case model 
and a class/object/state-model. 

However, UML is quite weak here.‘ Classes and their 
associated state machines are regarded as realizing use 
cases, not to augment them with a specification of state- 
dependent behavior. State machines shared by a set of use 
cases cannot be modeled (cf. section 3.4 above). 

Deficiency 5. A UML use case model cannot express 
state-dependent system behavior adequately. 

3.6 Tracing information flow 

In order to model the requirements stemming from the 
system design decision about routing events (decision 
number four, see section 2), we have four options: 

We only model an association between the Dispatcher 
actor and the Process Help Request use case. 

16 



We model the complete process of forwarding, routing 
and delivering an event at its originating point, i.e. in the 
Process Help Request use case. 
We model the parts of the process where they belong, 
i.e. forwarding in Process Help Request, routing in the 
Central Site subsystem and delivery in the Service Provider 
subsystem, and we model the flow of information be- 
tween these entities. 
We model the parts as in the third option, but instead of 
modeling the information flow, we describe the se- 
quence of subprocesses (forwarding-routing-delivery) in 
the originating use case (as done in the second option). 
The first option ignores the information flow between 

subsystems, which is incompatible with the notion of de- 
composition. The second option concentrates the flow 
requirements in ofie use case, which contradicts the prin- 
ciples of information hiding and separation of concerns. 
Furthermore, the first two options both leave the specifi- 
cation of Central Site and Service Provider substantially 
incomplete. 

The fourth option introduces too much redundancy into 
the specification and also breaks information hiding. 

So we decide in favor of the third option. (By the way, 
modeling components and flow of information were 
strengths of the structured analysis methods of the Eight- 
ies.) However, modeling such a problem in UML turns out 
to be quite clumsy. 

What we would expect is that we have to model the 
items shown in Figure 4a. An Event Router entity specifies 
the routing requirements in subsystem Central Site. An 
Event Delivery entity specifies the delivery requirements in 
subsystem Service Provider. Associations specify the in- 
formation flow. 

Dispatcher i b  
a /  

Physician 

Patient 

.subsystem” 

‘ *Subsystem. 1 -Subsystem= .,a 
Teleservicw and Remote Medical 
Care System (TRMCS) 

Manager 

A 

Service Provider - Central Site 

--J “Subs~stem” -Subsystem. 

M a ~ ~ ~ ~ ~ e n t  Patientsupport 

1 

Dispatcher 

Figure 4a. Information flow from end to end 

However, the information flow must also be modeled in 
the context of every individual subsystem and on the sys- 
tem level. 

On the subsystem level, we therefore must add the fol- 
lowing model elements (Figure 4b): 

Event Router as an actor in the context of subsystem 
Patient Support. 

Process Help Request as an actor in the context of Cen- 

Event Delivery as an actor in the context of Central Site 
Event Router as an actor in the context of Service Pro- 

tral Site 

vider. 

&Fl-j Patient Support 

Patient Event Router 

Process Help Request Event Delivery 
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4 Decomposition of the TRMCS 
In this section we investigate the decomposition prob- 

lems which arise when UML is used as a requirements 
specification language. 

Every large system needs to be decomposed in order to 
make it comprehensible and manageable. A good decom- 
position (one that follows the basic software engineering 
principles of information hiding and separation of con- 
cerns) decomposes a system recursively into parts such 
that 
(i) every part is logically coherent, shares information 

with other parts only through narrow interfaces and 
can be understood in detail without detailed knowledge 
of other parts, 

(ii) every composite gives an abstract overview of its parts 
and their interrelationships. 
If high-level design decisions imply a subsystem 

structure, then the decomposition of the requirements 
model on the next lower level may also follow this struc- 
ture. Design decisions conceming system decomposition 
should follow information hiding criteria anyway. Figure 
4c shows such a decomposition for the TRMCS. 

UML basically has three model elements that can be 
decomposed hierarchically: 

A package is a container and a namespace for an arbi- 
trary set of model elements. The decomposition has no 
other semantics. 
A subsystem is a specialization of a package. Subsys- 
tems partition a system into a set of behavioral subunits. 
Every subsystem encapsulates its behavior. 
A class can be a composite aggregation of a set of part 
classes? 4 

4.1 Subsystems need high-level behavior 

If a subsystem is constructed according to information 
hiding criteria, it is typically not a mere container for the 
model elements which make up the subsystem. In par- 
ticular, a subsystem frequently exhibits behavior of its 
own, specifying the high-level behavior of the subsystem 
as a whole. 

The TRMCS for example, comprises a set of Service 
Provider subsystems. Each of these subsystems has a high- 
level behavior expressed by the following states: 

non-operational: the provider is known to the TRMCS, 

operational: the provider is in business and is providing 
but currently it is not in business, 

services (or is principally ready to do so), 

Theoretically, composition is a specialization of aggregation and 
hence defined on any set of classifiers (Class, Actor, Use Case, 
Component,...). However, semantics are defined for class composition 
only. 
A classifier is also a namespace which may contain a (restricted) set of 
model elements in its scope. The semantics is the same as if the 
classifier additionally would be a package (except that a classifier 
cannot import model elements from other namespaces). 

starting up: the provider is in the process of becoming 
operational, 
closing down: the provider is in the process of becoming 
non-operational. 
The operational state in turn has three substates: idle 

(waiting for events to serve), active (handling at least one 
event), and overloaded (unwilling to accept further events). 

An adequate model of these states and their associated 
behavior would be a statechart (or state machine in UML 
terminology) on the level of the subsystem (Figure 5).  
However, UML regards subsystems as containers of be- 
havioral entities only and hence disallows associating a 
state machine with a subsystem5. 

Provider subsystem 
behavior 

I non-operational +O 

starVlnit subs stem 
and load dataiase 
from central site 

closing down 1 
stop AND IN idle/ 
Inform central site t and shut down 

operational 

events = 0 

Number of Number of 
unresolved unresolved 

MaxPendin MaxPendin 
events c 

load 

events 2 

Figure 5. High-level behavior of the Service Provider 
subsystem (not possible in UML) 

As a workaround, one could consider using classes and 
composition aggregation for decomposition instead of 
subsystems. This would make it easy to model behavior 
on any level of the decomposition. However, classes are 
unsuitable for modeling a subsystem decomposition (see 
section 4.2 below). 

Thus it is impossible in UML to model subsystem be- 
havior as described above for the TRMCS. 

Deficiency 7. UML cannot model the behavior of high- 
level system components such as subsystems. 

4.2 Subsystems are objects 

A closer look at the Service Provider subsystem reveals 
that this subsystem not only has a behavior of its own, but 
also has subsystem-level operations and attributes. For 
example, start, stop (cf. Figure 5) and isAvailable (deter- 

In the UML metamodel. Subsyslem is defined as a specialization both 
of Package and of Classifier. Since state machines can be associated 
with classifiers, this should also be possible with subsystems. 
However, the definition of subsystem semantics does not allow us to 
do so: “A subsystem has no behavior of its own” ([18], p. 2-181). 
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ervice Provider 
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ite ... 

0 
'start up close down 
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ananemant ... 

I I  

Provider Is Operational ... 
atient Data ... 

object (representing a single instance) 

object set (representing multiple instances) 

use case 

state 

composite relationship 
elementary relationship 
interaction 
state transition 

Dots after a name indicate a composite element having parts that are not shown or only partially shown in the diagram. 

The behavior of a composite object with state transitions is interpreted as if the object were a composite state of a state machine. 
In contrast to composite states, however, a composite object may have features (attributes and operations) and may comprise 
enties other than states (objeck, use cases, etc.). 

n 
hysician 

Figure 6. An aspect-integrated model of the Service Provider subsystem and its context (not possible in UML) 

mines whether the subsystem currently accepts events) are 
operations on the subsystem as a whole. The subsystem 
name, its service capacity and MaxPending (the maximum 
number of events that can be pending before the subsys- 
tem becomes overloaded; cf. Figure 5) are examples of 
attributes characterizing the subsystem as a whole. 

Taking these facts into account and recalling that a sub- 
system may have behavior of its own (see section 4.1), we 
can conclude that a subsystem should not be simply a 
container for the model elements that make up a behav- 
ioral unit of a system, as UML sees it. Instead, a subsys- 
tem would be better characterized as a composite object 
that plays a given role in the system. Entities of this kind 
are modeled by classifier roles in UML. However, a UML 
classifier role can only occur within collaborations and 
there is no decomposition defined for classifier roles - 
hence classifier roles cannot do the job. 

A potential alternative might be to model subsystems as 
UML classes and use composition aggregation as a 
vehicle for hierarchical decomposition. However, this 
approach does not work either. The main reason is that we 
frequently have situations where objects of the same class 
occur in different subsystems, playing different roles 
there. In the TRMCS for example, we have an active ob- 
ject alerting a dispatcher when an event arrives. We also 
have an active object alerting a patient when a service 
becomes unavailable. Both objects belong to the same 
class Alert Actor, but they are embedded in different sub- 
systems where they play different roles, collaborating with 
different actors and objects. Event List is another example. 
In the Service Provider subsystem, we need Event List ob- 
jects in three roles: Pending Events, Events In Progress (list 
of currently handled events) and Local Event History. In the 
Central Site subsystem, another Event List object plays the 
role of Global Event History. 

As we cannot allocate a class in two different places 
(by definition, a decomposition is strictly partitioning), 

decomposing classes would require defining a subclass for 
every role, resulting in highly complex and artificial mod- 
els. 

Deficiency 8. UML cannot adequately model the de- 
composition of a distributed system like the TRMCS, 
neither with the language element Subsystem nor with 
another UML language element. 

4.3 Aspect-integrated component views 

Structured Analysis, which was the standard language 
before object-oriented approaches took over [5] ,  [l 13, had 
an outstanding strength: the hierarchical decomposition of 
dataflow diagrams. This feature made it possible to de- 
compose a system recursively into smaller, less complex 
parts. Every part was a comprehensive local specification 
of the aspects of functionality (activities), data (stores) and 
behavior (control specs). Every composite was an abstrac- 
tion of its parts and of the information flow between the 
parts.6 In more abstract terms, Structured Analysis pro- 
vided a separation of concerns by separating subproblems. 

In an object-oriented requirements specification, it 
would also be quite valuable to have a hierarchical de- 
composition that separates subproblems, but keeps all 
aspects of a subproblem together. With such a decomposi- 
tion, understanding a selected subproblem would be much 
easier because we no longer need to assemble the required 
information from a collection of different (and possibly 
separately decomposed) aspect models. 

For example, consider the Service Provider Subsystem. 
To get an overview of this subsystem, we want to model 
the subsystem as a set of abstract, high-level components: 
classes or objects and their interrelationships, use cases 
and the entities they communicate with, and the high-level 
behavior of the subsystem (Figure 6). For every complex 

I t  must be mentioned, however, that this paradigm was broken by the 
global data dictionary which was not decomposable. 
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Figure 8. Decomposition of the composite object Events within Provider Is Operational and its context (not possible in UML). 

component such as Provider Is Operational in Service Pro- 
vider, we would like to do the same (Figure 7) and proceed 
recursively until we arrive at simple classes or objects, use 
cases and states (Figure 8). 

Again, some elements of Service Provider are suppressed. The elements of Events are not further decomposable. 

However, modeling such an aspect-integrated decom- 
position of a system is impossible in UML7. A basic prin- 
ciple underlying the design of UML is to provide separate 

The diagrams of Figures 6-8 have been drawn using an alternative 
object modeling language called AmRA [IO], [IS] (see section 6). 
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models for different aspects; the separation of class dia- 
grams and use case diagrams being the most prominent 
example. Subsystems were added later to UML when the 
need for a system decomposition mechanism was recog- 
nized by the creators of UML. However, subsystems can- 
not do the job: they can neither act as a composite object 
or composite state nor can they have behavior of their own 
(cf. Deficiency 7 in section 4.1). 

Deficiency 9. UML cannot model all aspects of a com- 
posite entity like a subsystem together in a single view. 

5 Can we overcome the deficiencies? 
In this section we investigate whether the problems 

identified in sections 3 and 4 can be overcome using the 
UML extension and tailoring facilities. 

UML has a powerful built-in extension facility: the so- 
called stereotypes. A stereotype in a modeling language is 
a well-formed mechanism for expressing user-definable 
extensions, refinements or redefinitions of elements of the 
language without (directly) modifying the metamodel of 
the language. Although stereotypes do not change the 
metamodel, they are conceptually powerful enough to 
completely redefine a language [2]. However, in the more 
recent versions of UML, the power of UML stereotypes 
has been seriously constrained by the decision to restrict 
the number of stereotypes per model element to one and 
by disallowing a stereotype to have features and associa- 
tions. 

Profiles are a mechanism for adapting UML to the 
needs of specific kinds of systems or specific problem 
domains. The basic idea is to tailor the language by se- 
lecting a subset of the metamodel and introducing addi- 
tional well-formedness rules, standard elements, and con- 
straints. However, for those profiles that the OMG is 
intending to adopt as a standard, the OMG also allows a 
profile to modify the metamodel if absolutely necessary 

As we will see below, some of the deficiencies can be 
fixed with stereotypes. Profiles, on the other hand, do not 
provide much help in our case, because they are primarily 
oriented towards tailoring by subsetting and constraining. 
At best, a “Distributed Systems” profile could tie together 
the minor metamodel modifications required to fix or 
alleviate the deficiencies concerning subsystems and de- 
composition. Doing major metamodel modifications in a 
profile would be a misuse of this mechanism. 

A fundamental point in the analysis of a deficiency is 
whether the nature of the problem is accidental, essential 
or fundamental. Accidental deficiencies in a language can 
be fixed by minor modifications that fully conform to the 
paradigm of the language, i.e. to its basic ideas, structures 
and properties. Overcoming essential deficiencies requires 
modifications affecting major concepts of the language. 
Fundamental deficiencies cannot be removed without 
modifying basic concepts of the language. 

deficiencies 1 and 2 are accidental, 

( ~ 9 1 ,  P. 23). 

Analyzing our nine deficiencies, we can say that 

deficiencies 3,4,5, and 7 are essential, 
deficiencies 6 , 8 ,  and 9 are fundamental. 
Deficiency 1 (missing active model elements in use 

case diagrams) can be removed with a stereotype ccactiveu 
for use cases or with a slight modification in the meta- 
model allowing the inclusion of active objects in use case 
diagrams. Deficiency 2 (no rich context) can be removed 
with a small, local modification in the metamodel, allow- 
ing associations between actors. 

Deficiency 3 (no adequate modeling of use case struc- 
ture and hierarchy) can partially be treated by defining a 
use case structure diagram in the style of Figure 2. This 
can be accomplished with a set of stereotypes for use cases 
and dependency relationships. However, consistency be- 
tween such use case structures and the structure introduced 
by the subsystem decomposition cannot be ensured. Re- 
moving this problem would require a uniform model de- 
composition concept - a fundamental modification. 

Deficiency 4 (inadequate treatment of use case interac- 
tion), Deficiency 5 (inadequate modeling of itate-depend- 
ent system behavior) and Deficiency 7 (no models of high- 
level component behavior) are related. As first aid for 
alleviating these problems, the following three measures 
could be taken. They imply moderate modifications of the 
UML metamodel and the UML semantics. 

Allow a subsystem to have behavior of its own, i.e. 
allow the attaching of state machines to subsystems. 
Augment the use case model in the specification part of 
a subsystem with a class/object model which models 
state variables and operationdevents modifying them. 
Consider this class/object model not as a realization of 
the use case model; instead view the two models as be- 
ing complementary. 
Establish consistency between the two models with sys- 
tematic cross-referencing [9]. 
In order to remove these deficiencies completely, a se- 

mantic integration of the aspects of structure, functional- 
ity, behavior and user interaction would be necessary - 
again a fundamental modification. 

The treatment of Deficiency 6 (awkward information 
flow models), Deficiency 8 (inadequate decomposition 
concepts), and Deficiency 9 (no aspect-integrated views of 
composite entities) as well as the complete removal of 
deficiencies 3, 4, 5, and 7 would require modifications in 
the very foundations of UML - abandoning the concept of 
a loosely coupled collection of aspect models and moving 
towards an integrated model with a uniform decomposi- 
tion mechanism (cf. section 6). 

6 Is there an alternative to UML? 
For the practical use of a universal semiformal require- 

ments specification language in industry, there is currently 
no altemative to UML. 

However, from a research point of view there is life 
beyond UML. UML is built upon two fundamental con- 
cepts: 
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A class model is the core of a UML specification. This 
can easily be seen when analyzing the contents of the 
Core Package in the UML metamodel. The UML class 
concept still preserves the basic paradigm of its an- 
cestor, the entity-relationship model: it is basically a 
flat structural description of the objects that the system 
has to deal with. 
Specifications in UML consist of a collection of 
loosely coupled models (class model, use case models, 
collaborations, activity models, etc.). These are tied to- 
gether by very few and semantically quite weak rules. . .  

Both these concepts are not at the- heart of an object- 
oriented modeling approach. If we put them aside, we 
open a design space for object-oriented modeling lan- 
guages which are conceptually different from UML. 

In our research group we have developed such a lan- 
guage which we call ADORA m a l y s i s  and Description of 
- Requirements and Architecture) [l], [IO], [U]. The foun- 
dation of ADORA is a hierarchy of abstract objects where 
each object truly integrates the aspects of structure, func- 
tionality, behavior and user interaction. 

In ADORA we get rid of the problems related to de- 
composition and aspect interaction plaguing UML (Defi- 
ciencies 3 to 9). A detailed description of ADORA is be- 
yond the scope of this paper. Figures 6, 7 and 8 give an 
impression of how an ADORA model looks. 

7 Conclusions 
In this paper, we have described a set of deficiencies of 

UML as a language for semiformal requirements specifi- 
cation. We have taken a pragmatic approach, identifying 
the problems that become apparent when using UML for 
the specification of a distributed system. We have also 
analyzed the nature of these deficiencies and discussed 
how to overcome them. It turns out that some problems 
can be fixed, while major deficiencies are rooted in fun- 
damental concepts of UML and thus are here to stay with 
UML. 

Our findings provide insight and guidance both for the 
further evolution of UML and for research on alternative 
modeling languages for requirements specification that 
might replace UML in the future. 
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