
RE 2003 Mini-tutorial

Scenario-based Requirements Engineering

Alistair Sutcliffe

Centre for HCI Design, Department of Computation

University of Manchester Institute of Science & Technology (UMIST)

PO Box 88, Manchester, M60 1QD, UK

ags@co.umist.ac.uk

Abstract

This mini tutorial explains the concepts and process of

scenario based requirements engineering. Definitions of

scenarios are reviewed, with their informal and more

formal representations, and roles in the requirements

process. The relationships between scenarios,

specifications and prototypes is explored, and set in the

perspective of human reasoning about requirements.

Methods for scenario based RE are described and one

method, SCRAM, is covered in more depth. The tutorial

concludes with a look forward to the future of scenario

based RE and research directions.

1. Introduction

Scenarios have attracted considerable attention in RE,

but unfortunately the term scenario has been interpreted

by too many authors to have a commonly accepted

meaning. The Oxford English Dictionary defines a

scenario as “the outline or script of a film, with details of

scenes or an imagined sequence of future events”.

Scenarios are used in business systems analysis as well as

RE, the most common form being examples or stories

grounded in real world experience.

Jarke et al. [1] reviewed approaches to scenario-

based RE, research issues, and different scenario

concepts; indeed their article introduces a whole issue of

the Requirements Engineering journal devoted to use of

scenarios. Rolland et al. [2] provide a good survey which

distinguishes between the purpose or intended use of a

scenario, the knowledge content contained within a

scenario, how a scenario is represented, and how it can be

changed or manipulated. Another taxonomy by Carroll [3]

classifies scenarios according to their use in systems

development ranging from requirements analysis (stories

of current use), user-designer communication, examples

to motivate design rationale, envisionment (imagined use

of a future design), software design (examples of

behaviour thereof), through to implementation, training

and documentation. Kutti [4] distinguishes between

scenarios in the wide, which describe the system and its

social environment, and scenarios in the small that

contain event sequences pertaining to a specific design.

Anton and Potts [5] survey the different representations of

scenarios in HCI, object-oriented software engineering

and RE, ranging from informal narrative to formatted

texts and more formal models. They also compare

scenarios as models with concrete scenarios or instances

that represent a single example of an event sequence [6].

Scenarios can vary from rich narrative descriptions of a

system’s use with information about the social

environment [7] to descriptions of event sequences in

tabular formats (e.g [8]) to more formal models of system

behaviour [9, 10]). In object-oriented design it becomes

difficult to distinguish between use cases, alternative

paths through use cases, and scenarios, which are just

another path through a use case [11, 12, 13].

Probably the best way to understand scenarios is as a

continuum from the real world descriptions and stories to

models and specifications. At one end of this dimension,

scenarios are examples of real world experience,

expressed in natural language, pictures, or other media

[14, 15]). At the specification end are scenarios which are

arguably models such as use cases, threads through use

cases and other event sequence descriptions [11, 16].

Within the space of scenarios are representations that vary

in the formality of expression in terms of language and

media on one dimension and the phenomena they refer to

on the other; ranging from real world experience, to

invented experience, to behavioural specifications of

designed artefacts.

2. Scenarios as design representations

Scenarios are related to models by a process of

abstraction and to prototypes by a process of design (see

figure 1). Scenarios which are representations of the real

world are generalised during requirements analysis to

produce models, which are familiar to practitioners in

requirements engineering (e.g. i* [17]) or software

engineering (e.g. UML, [18]). Other informal

representations such as design rationale [19] can capture

design decisions that are anchored in a scenario-based

expression of a problem. Models and requirements

specifications become transformed into designs and

eventually implemented. During that process scenarios

which represent behaviour of designed artefacts have a

role to play in validation. In this case scenarios are similar

to models in both format and content, although they

usually illustrate possible sequences of behaviour that

might be valid within the constraints of a requirements

specification [9].

In an alternative development route via prototyping,

scenarios function as design inspiration, and material to

test the prototype design [3, 15, 20]. Scenarios can be

used for reasoning about design and as test scripts in

evaluation methods [21, 22]. Carroll has articulated

several different roles for scenarios in the design process

including as envisionment for design exploration,

requirements elicitation and validation [3, 23].

Figure 1. Role of scenarios and their relationship
to requirements specifications and prototypes.

These views of scenarios point to three different roles:

1. A story or example of events as a grounded

narrative taken from real world experience [3].

These stories are close to the common sense use

of the word and may include details of the

system context (scenes).

2. A future vision of a designed system with

sequences of behaviour and possibly contextual

description [7]. In this case the scenario comes

close to a design mock up.

3. A single thread or pathway through a model

(usually a use case). This is the sense in which

the object-oriented community use the word [11,

13, 18]. This might be represented as an

animated display of an event sequence in a

message sequence or state transition diagram

Thus scenarios may vary according to their content,

how closely they relate to the real world, and their role in

the design process. A scenario of the following form

clearly relates to the real world, is a narrative text, and

expresses a user’s requirements in some sense. Although

it relates to the real world it is in fact made up by myself,

albeit from case study experience:

Dr Patel has been given health education targets

to fulfil by the government. He hasn’t time to

counsel individual patients about life style and

healthy living, but he is interested in how

computers might help. He thinks that if a

computer “advisor”-type system were placed in

his surgery waiting room, patients with time on

their hands might explore the system out of

curiosity and learn something about healthy

living. He wants to target heart disease and

educate the public about the dangers of smoking,

lack of exercise and other lifestyle causes of

heart disease. Unfortunately most of the people

who come into his surgery have seen many

warnings about smoking before and seem to take

no notice.

Real world

scenarios

Storyboards

Concept demonstrators

Prototypes

Designed artefact

scenarios

Design rationale

Models

Specifications

Problems

User

behaviour System

context

Requirements

Simulations

System event

sequences
+

User

behaviour

Visions

create & validate

create

reflect,

validatethread

traces from

Requirements

generalise to

illustrate

This scenario can funtion as a design brief to initiate a

requirements capture process. A more detailed scenario

could record a day in the life of Dr Patel and his

interaction with one individual patient, Mr Hardcastle. In

the latter case a scenario would be drawn from directly

recorded conversation as found in ethnographic studies

[24].

Depending on one’s usage, scenarios are represented

in different media. Scenarios that describe the real world

are captured as speech or text narratives and may be

embellished with photographs or videos to illustrate the

context. Real world scenarios may be interpreted and then

represented as formatted text and by pathways in use case

or activity sequence diagrams. Designed world scenarios

can be represented by anything from a storyboard sketch

to animated sequences in a formal specification [25] or in

a concept demonstrator [20], so scenarios start out as

stories and examples but converge with models and

prototypes during design.

3. Advantages and disadvantages of scenarios

The advantage of scenarios lies in the way they

ground argument and reasoning in specific detail or

examples, but the disadvantage is that being specific loses

generality. We all naturally look for patterns and

similarities in the world, which is the cognitive process of

generalisation. In RE our reasoning process is the same.

Scenarios in the real world sense are specific examples.

The act of analysis and modelling is to look for patterns in

real world detail, then extract the essence, thereby

creating a model. So scenarios fit into the process of

requirements elicitation which gathers stories and

examples from users and then looks for the generalities.

Another advantage of scenarios lies in their focus on

reality that forces us to address the “devil in the detail”

during requirements specification and validation. In this

case we confront abstract models with scenarios as test

data. Whereas an abstract model can go unquestioned,

unless rigorous automated reasoning is used via formal

methods [26], the detail in scenarios naturally challenges

assumptions in models. Examples exert a powerful effect

on our reasoning because we can identify with detail

through our experience. Real world scenarios are a form

of episodic memory [27] that can give rich details of

events and scenes, but the requirements engineer has to

beware that people’s episodic memory can be highly

selective, so a sample of scenarios may represent atypical

events from a personal viewpoint. Since scenarios situate

examples with existing memory they help in

understanding requirements problems. The concept of

obstacles analysis in RE [28] draws on scenarios to situate

our thought about how problems in the real world (i.e.

obstacles) might prevent a requirement being met.

Scenarios can help to counteract pathologies in

human reasoning [29], such as not testing hypotheses and

assumptions in models. In RE scenarios can help to test

models and specifications during requirements validation;

unfortunately, scenarios can also encourage other

pathologies, so we need to be on our guard. First is

confirmation bias: we tend to seek only positive examples

that agree with our preconceptions [30]. Scenarios should

be collected which include errors, counter-examples and

exceptions as well as the norm. Encysting, or not being

able to see the wood for the trees, can result from

becoming obsessed with the detail in scenarios. Both the

model, abstract and detailed scenario views are necessary.

Unfortunately the products of the generalisation process,

abstract models, are not so easily understood; however,

reasoning with concrete examples as well as abstract

models helps comprehension by building a memory

schema linking the specific (scenario) with the general

(model). This can improve requirements elicitation and

validation. Scenarios can bias beliefs in frequencies of

events and probabilities [29], so it is important to ensure

that a wide ranging sample of scenarios are gathered. This

exposes one of the dilemmas in scenario based RE.

Ideally the more scenarios the better to increase test

coverage, but gathering and using more scenarios incurs

cost. The problem is that we need many scenarios to test a

general requirements specification, but how can we be

sure we have a complete or even an adequate set? This

can be summarised as the 20/20 foresight problem: how

to capture (or generate) a sufficient set of scenarios to

cover all the important problems in the application. I will

return to this in section 7.

4. Scenarios in the requirements and design

process

One particular role of scenariosis to act as a

“cognitive prosthesis” or an example to stimulate the

designer’s imagination. Scenarios can guide thought and

support reasoning in the design process [15, 31].

However, this approach can lead to errors. A scenario, or

even a set of scenarios, does not explicitly guide a

designer towards a correct model of the required system.

An extreme scenario might bias reasoning towards

exceptional and rare events, or towards the viewpoint of

an unrepresentative stakeholder. These biases are an

acknowledged weakness of scenarios; however, we can

trust designers as knowledgeable, responsible people who

are capable of recognising such biases and dealing with

them productively. Indeed, some propose scenarios that

are deliberately exceptional to provoke constructive

thought [32]. Although scenarios are useful as cognitive

probes for design, this is not their only role.

Requirements

Analysis

Specification

& Design

Requirements

Validation

Implementation

& Testing

Maintenance

Problem

statement

scenarios

Visioning

scenarios
Scenarios

of use

Context & use

scenarios
Usage

scenarios

Context &use

scenarios

test data

test data

inspiration

input for

modelling

generalisation

for model

motivation

Requirements

Analysis

Specification

& Design

Requirements

Validation

Implementation

& Testing

Maintenance

Problem

statement

scenarios

Visioning

scenarios
Scenarios

of use

Context & use

scenarios
Usage

scenarios

Context &use

scenarios

test data

test data

inspiration

input for

modelling

generalisation

for model

motivation

Figure 2. Roles of scenarios in requirements and
design.

Scenarios are arguably the starting point for all

modelling and design, and contribute to several parts of

the design process (see figure 2). Scenarios of use

describe system operations at different stages of

development. Context scenarios add information about

the system’s physical and social environment. At the

initiation of development, scenarios play three roles: first

as descriptions of the unsatisfactory state of affairs with a

current system which the new system has to solve;

secondly as visions of how the new system might operate;

and thirdly as descriptions of behaviour, representing both

users and the existing system. Usage or behavioural

scenarios are a common form and can be used later in the

life cycle as test data to validate requirements

specifications, designs and implemented systems.

Information on the system’s physical and social context

can be added to usage scenarios, to provide a richer input

to requirements specification and validation, for instance

allowing reasoning about obstacles in the system

enivornment which may prevent requirements being

achieved [27].

Narrative d

nt requirements being

achieved [27].

Narrative d

In HCI scenario-based methods have become an

accepted approach for requirements discovery and design

exploration. For example, Carroll [15] proposes scenarios

of use with claims, a design rationale that represents a

design principle with advantages and disadvantages.

Beyer and Holtzblatt [33] argue for rich scenarios which

describe a business environment as well as system use in

context. Their method uses scenarios in conjunction with

a suite of models analysing the business, social

relationships and user tasks, whereas Carroll adopts a

prototyping approach with scenarios functioning as “tools

for thought”.

In HCI scenario-based methods have become an

accepted approach for requirements discovery and design

exploration. For example, Carroll [15] proposes scenarios

of use with claims, a design rationale that represents a

design principle with advantages and disadvantages.

Beyer and Holtzblatt [33] argue for rich scenarios which

describe a business environment as well as system use in

context. Their method uses scenarios in conjunction with

a suite of models analysing the business, social

relationships and user tasks, whereas Carroll adopts a

prototyping approach with scenarios functioning as “tools

for thought”.

Two RE methods have placed considerable

importance on the role of scenarios, the ScenIC method

[27] and SCRAM [20, 29, 34], while many other RE

methods include scenarios as part of the process (e.g. [35,

24]).

Two RE methods have placed considerable

importance on the role of scenarios, the ScenIC method

[27] and SCRAM [20, 29, 34], while many other RE

methods include scenarios as part of the process (e.g. [35,

24]).escriptions of the real world provide input

 t

. Methods for scenario-based requirements

One productive juxtaposition of scenarios and models

to

escriptions of the real world provide input

 t

. Methods for scenario-based requirements

One productive juxtaposition of scenarios and models

to

to he process of generalisation that produces specific

action sequences (i.e. formatted scenarios) and then a

general model that represents typical behaviour of a group

of users interacting with a system. The process of

generalisation inevitably loses detail and the analyst has

to make judgements about when unusual or exceptional

behaviours are omitted, or explicitly incorporate them as

alternative paths in use cases or in action sequences [11].

Indeed there is merit is eliciting or creating mis-use cases

that describe threats and exception conditions that will

test the system [12]. A criticism of model approaches to

requirements engineering is that they inevitably omit

detail which may be vital, whereas scenarios might be

able to gather such detail but at the price of effort in

capturing and analysing a “necessary and sufficient” set

of scenarios.

to he process of generalisation that produces specific

action sequences (i.e. formatted scenarios) and then a

general model that represents typical behaviour of a group

of users interacting with a system. The process of

generalisation inevitably loses detail and the analyst has

to make judgements about when unusual or exceptional

behaviours are omitted, or explicitly incorporate them as

alternative paths in use cases or in action sequences [11].

Indeed there is merit is eliciting or creating mis-use cases

that describe threats and exception conditions that will

test the system [12]. A criticism of model approaches to

requirements engineering is that they inevitably omit

detail which may be vital, whereas scenarios might be

able to gather such detail but at the price of effort in

capturing and analysing a “necessary and sufficient” set

of scenarios.

ScenIC [27] proposes a schema (see figure 3) of

scenario-related knowledge composed of goals,

objectives, tasks, obstacles and actors. Scenarios are

composed of episodes and action carried out by actors,

who are usually people but may also be machines.

ScenIC [27] proposes a schema (see figure 3) of

scenario-related knowledge composed of goals,

objectives, tasks, obstacles and actors. Scenarios are

composed of episodes and action carried out by actors,

who are usually people but may also be machines.

Objective

ObstacleGoal

Task

Actor

Scenario

Episodes

Actions

thwart

mitigate

prevent

express

represent

55

engineeringengineering

Figure 3. Schema of scenario-related knowledge
after Potts [27].

Figure 3. Schema of scenario-related knowledge
after Potts [27].

is use scenarios as test data to validate design models.

This approach, proposed in the Inquiry Cycle [8] and its

scuccessor ScenIC, uses scenarios as specific contexts to

test the utility and acceptability of system output. By

questioning the relevance of system output for a set of

stakeholders and their tasks described in a scenario, the

analyst can discover obstacles to achieving system

requirements. Input obstacles can be derived from

scenarios to test validation routines and other functional

requirements. Obstacle analysis has since been refined

into a formal process for discovering the achievability of

system goals with respect to a set of environmental states,

taken from scenarios [28]. Scenarios, therefore, can fulfil

useful roles either as test data, as a stimulant to reasoning

in validating system requirements, or by providing data

for formal model checking.

is use scenarios as test data to validate design models.

This approach, proposed in the Inquiry Cycle [8] and its

scuccessor ScenIC, uses scenarios as specific contexts to

test the utility and acceptability of system output. By

questioning the relevance of system output for a set of

stakeholders and their tasks described in a scenario, the

analyst can discover obstacles to achieving system

requirements. Input obstacles can be derived from

scenarios to test validation routines and other functional

requirements. Obstacle analysis has since been refined

into a formal process for discovering the achievability of

system goals with respect to a set of environmental states,

taken from scenarios [28]. Scenarios, therefore, can fulfil

useful roles either as test data, as a stimulant to reasoning

in validating system requirements, or by providing data

for formal model checking.

Goals are classified into achieving, maintainting or

avoiding states, while obstacles prevent goals from being

achieved, or inhibits successful completion of tasks. The

method proceeds in a cycle of expressing scenarios in a

semi-structured format, criticising and inspecting

scenarios in walkthroughs which leads to refining

requirements and specifications and the next cycle.

Guidelines are given for formatting scenario narratives

and identifying goals, actions and obstacles. Scenario

episodes are assessed with challenges to see if goals can

be achieved by the system tasks, whether the actors can

carry out the tasks, whether obstacles prevent the actors

carrying out the tasks, etc. In this manner dependencies

between goals, tasks, actors and resources can be checked

to make sure the system meets its requirements.

Goals are classified into achieving, maintainting or

avoiding states, while obstacles prevent goals from being

achieved, or inhibits successful completion of tasks. The

method proceeds in a cycle of expressing scenarios in a

semi-structured format, criticising and inspecting

scenarios in walkthroughs which leads to refining

requirements and specifications and the next cycle.

Guidelines are given for formatting scenario narratives

and identifying goals, actions and obstacles. Scenario

episodes are assessed with challenges to see if goals can

be achieved by the system tasks, whether the actors can

carry out the tasks, whether obstacles prevent the actors

carrying out the tasks, etc. In this manner dependencies

between goals, tasks, actors and resources can be checked

to make sure the system meets its requirements.

Dependency analysis and means-ends analysis, in which

tasks and the capabilities of actors are examined to ensure

goals can be achieved, are also present in RE methods

such as i* [17], and this illustrates the convergence of

scenario- and model-based analysis in requirements

engineering. Two paragraphs hardly do justice to ScenIC;

however, my purpose was to draw attention to the

importance of obstacle analysis, and urge the reader to

consult more detail in Potts [27].

Initial requirements capture and domain

familiarisation. This is conducted by

conventional interviewing and fact-finding

techniques to gain sufficient information to

develop a first concept demonstrator. In practice

this takes 1-2 client visits.

Storyboarding and design visioning. This phase

creates early visions of the required system that

are explained to users in storyboard

walkthroughs to get feedback on feasibility.In SCRAM (Scenario-based Requirements Analysis

Method), scenarios are used with early prototypes to elicit

requirements in reaction to a preliminary design. The

approach is based on the hypothesis that technique

integration provides the best avenue for improving RE

and that active engagement of users in trying out designs

is the best way to get effective feedback for requirements

validation. Another motivation is to use scenarios as a

means of situating discussion about the design, so that

new requirements can be elicited by reasoning about

problems posed by scenarios describing a context of use.

Requirements exploration. This uses concept

demonstrators and early prototypes to present more

detailed designs to users in scenario-driven, semi-

interactive demonstrations so the design can be

critiqued and requirements validated.

Prototyping and requirements validation. This phase

develops more fully functional prototypes and

continues refining requirements until a prototype is

agreed to be acceptable by all the users.

The method provides process guidance for conducting

walkthroughs and organising the requirements analysis

process, with guidelines for interviewing and managing

requirements conversations. Initial requirements capture

gathers facts about the domain and captures users’ high-

level goals for the new system. Scenarios are elicited as

examples of everyday use of the current system, with

stories of problems encountered and how they are dealt

with. Gathering a sufficient set of scenarios is a vexed

question. There are several problems that might be

encountered:

This approach essentially merges the elicitation and

validation role of scenarios by providing the context for

the user to assess a design which itself is presenting a

scenario of use. The method steps of SCRAM are

illustrated in figure 4.

Scenarios

user tasks
Initial

requirements

capture

Requirements

exploration and

validation

Prototyping and

requirements

validation

Storyboarding

and design

visioning

Managers,

users

Mockups,

storyboards

Users

Concept

demonstrator

Final

development

Scenarios

design rationale

Test tasks

scenarios

project

initiation

high level

vision/requirements

requirements &

Initial design

requirements &

interactive design

validated

requirements

& refined design

Users tend to miss out steps in scenarios that

they assume are known to the analyst: the

implicit or tacit knowledge problem.

Each person may give an individual view of

problems encountered. It can be difficult to distil

a set of common problems from users with

diverse views.

Acquiring a sufficient set of scenarios to cover

not only normal use but also situations when

things go wrong can take considerable effort.

The volume of scenarios can become daunting,

and this presents a problem of finding a valid

sub-set.

People tend to either forget abnormal examples

or to exaggerate problems. Problems

encountered most frequently and recently will be

recalled first, but individuals will remember

different episodes. Unravelling these potential

biases can be difficult, e.g. a personality clash

may make a particular problem vivid for one

individual whereas for everyone else, the

problem was minor.

Figure 4. Process road map of the SCRAM
method.

SCRAM does not explicitly cover modelling and

specification, as this is assumed to progress in parallel,

following the software engineering method of the

designer’s choice (e.g. UML and Unified Process [18]).

The method consists of four phases:
The best way to proceed is to gather scenarios of

normal system use; look for commonalties between

different individual versions and create a common

“normal use case”. Note that where individual variations

occur, these can be useful hooks for questions later on

about different individual strategies for using the system.

Once the normal use case is in place, gather a set of

exceptions (c.f. alternative paths in use cases). The

number of alternatives necessary depends on system

complexity and safety criticality. This phase also captures

users’ high-level goals.

Figure 5. Storyboard sketches for a ship
emergency management system.

Storyboards are created by developing a preliminary

design from a sub-set of the usage scenarios gathered in

phase 1. Storyboards are sketches or mock up screens that

show key steps in user system interaction. Figure 5

illustrates a storyboard sequence derived from the

scenario script. The analyst walks through the storyboard

explaining what happens at each stage in terms of system

functionality, and asks for the users’ opinions. The

limitation of storyboards is their poor interactivity. Users

can be asked to simulate the actions they would carry out,

but mimicking the system response is more difficult. One

of the merits of storyboards and scenarios is that they help

involve users in design. When users voice concerns about

a design, users’ reactions and suggestions for

improvements are recorded. Storyboards and paper

prototyping allow for quick iterations of a design, but they

can mask the system functionality. Better feedback will

be obtained by demonstrating an interactive prototype in

the next phase of requirements exploration.

Scenarios complement goal modelling because, while

goals focus on abstractions that describe users’ intentions,

scenarios make abstract intentions clearer by giving

examples of how a new system might work to fulfil users’

goals. Policies and high-level aims are decomposed into

lower-level goals, and scenarios of business strategy,

competitors’ actions and system operation can help this

process. To give an example, in safety critical systems the

top level policy might be “to expedite the safe navigation

of the ship within the constraints of operational

efficiency”. The weakness of goal modelling is recording

vague intentions without real thought about their practical

implications. Scenarios can help by making the abstract

concrete. As visions of the future system’s usage,

scenarios cannot be created until analysis has decomposed

the system to a level where some detail of sub-goals is

apparent. An example might be “the system diagnoses the

potential fire hazards with different types of cargo and

recommends safety measures to take if the cargo is likely

to be explosive or emit noxious chemicals. The

information is passed to the fire fighting crew who can

take appropriate action.” This scenario suggests further

questions (and hence discovers further goals) about

assumptions concerning the system’s knowledge of the

cargo – which may not be accurate –and whether the crew

know what the appropriate action is (prompting a possible

training requirement). Scenarios therefore have their role

to play in complementing goal models that record a

hierarchy of user intentions and their relationships.

Prior to the session the concept demonstrator is

developed and tested. A concept demonstrator is an early

prototype with limited functionality and interactivity (see

figure 6), so it can only be run as a “script”. Scripts

illustrate a scenario of typical user actions with effects

mimicked by the designer. Concept demonstrators differ

from prototypes in that only minimal functionality is

implemented and the user cannot easily interact with the

demonstrator. A contextual scenario is developed based

on the preliminary domain analysis. This is a short

narrative (half to one page) describing a situation taken

from the users’ work context, e.g. “a typical day in the life

of ...” running through key tasks. It should also contain

sufficient background material to “situate” the action, that

is to give the users enough information to interpret the

script. An example for a ship emergency management

system follows.

Fire detected in no. 2

hold; alarm sounds

2. Display of hazardous cargo

colour

code for

hazard

Evacuation instructions

Activate automatic systems

4. Advice on fire fighting

Give instructions to crew

Crew muster instructions

and report status

1.

3.

alarm

+

cargo

cargo

Hold 2-L1CO2

isolate

sprinkler

?v

?v

?v

status
CO

2

evacn x
muster x

team
engines

forward
aft

standby

status
ready

crew

strategy

CO
2

x

hose
isolate

Figure 6. Concept demonstrator for ship
emergency management system.

Contextual scenario

Your ship is a modern container ship of 30,000 tons

displacement with a multinational (mainly Filipino) crew

of 36 with five UK officers. The cargo manifest lists

containers with a mixture of industrial goods and

domestic removals. You have left Southampton at 10

a.m. this morning en route to Cape Town and

are proceeding west down the English Channel

heading 250 degrees at 15 knots, position 50

miles south of Plymouth. The weather is fine,

visibility range 15 miles, wind NW force 3. At

3.10 a member of the crew reports smoke in

number two hold, and a fire alarm sounds.
 A scenario script, based on the captain’s emergency

management task, is used for the concept demonstrator.

1. The location of the fire is investigated and

preliminary instructions given to the crew to

evacuate the area if necessary.

2. Automatic fire suppression systems are activated

if present, such as flooding compartments with

CO2.

3. Instructions are given by tannoy to the crew to

proceed to fire muster stations and start to fight

the fire.

4. Junior officers are assigned to manage key fire

fighting teams.

5. The cargo manifest is checked to see if any

dangerous (explosive, flammable, corrosive, etc)

cargo is present near the fire.

6. Fire fighting tactics are planned to account for

any dangerous cargo and other hazards, e.g.

electrical equipment.

7. Instructions are given to fire fighting crews. The

progress of fire fighting is monitored and further

instructions given as necessary, until the fire is

under control.

Note that the scenarios do not attempt to cover all aspects

of the users’ tasks or the situation; for instance the

damage assessment phase is not described, nor is the

means of communication between the captain and crew.

A number of validation sessions may be necessary to test

different parts of the design.

Probe questions are asked at key points in the

demonstration script. The users are invited to critique the

concept demonstrator. The concept demonstrator is

explained by the analyst, while another member of the

design team runs and interacts with the system. Limited

hands-on testing may be provided at the end of the

session. In a follow-up phase, the users are encouraged to

clarify any points they found ambiguous, go back to any

parts of the demonstration, and elaborate further

requirements. The requirements engineers may also

follow up points raised or user comments made during the

session.

Scenarios can be linked to design decisions

represented in design rationale diagrams that illustrate

trade-offs and assumptions affecting choice (see figure 7).

Further links can complete the pathway from scenarios to

more formal requirements specifications.

Fire is detected

Alarm raised

Cause of problem

diagnosed

Response planned

How to raise

the alarm

Requirements

issues

Sound warning

Visual alarm

Sound and

visual alarm

indicates location

Design options

Broadcast

warning

Reliable warning

Provides

more

information

Assessment

criteria

Steps in scenario Design rationale diagram

+

-

+

Figure 7. Design rationale diagram illustrating
alternative design solutions for requirements

issues linked to the concept demonstrator
scenario script.

Once the demonstration has been completed, a

summary of the requirements is listed on a whiteboard (or

another appropriate medium). The requirements are

discussed and prioritised using an essential/

useful/optional scale. Design rationale may be introduced

in this step to help structure discussion about design

trade-offs with assessment criteria (often non-functional

requirements) that can be used to judge the merits of

alternative solutions. The process can be repeated using a

more functional prototype as necessary.

6. Tool support for scenario-based RE

While commercial requirements management tools

such as DOORS and Rationale Rose enable scenarios to

be recorded either explicitly or in general narrative

comment fields, there are few tools which support the

process of scenario-based RE. Formatting and checking

scenarios for consistency can be helped by lexicial

approaches which provide a database of keywords and

templates for formatting scenario-related knowledge [36].

The RETH hypertext tool [10] links scenarios, goals and

functional requirements to support scenario inspections.

The CREWS-SAVRE tool [37] helped the generation of

variations on a seed scenario by first expanding possible

event sequences that could be traced from a use case-like

behaviour model, then suggesting possible permutations

to an event sequence using a taxonomy of errors drawn

from the human factors literature [38, 39].

There are approaches to eliciting and generating

better sets of test scenarios besides brute force validation

by volume. One approach is to use constraint relaxation

having started with worst case scenarios, and this can be

partially automated by converting scenarios into event

sequence models and then running these against a

requirements specification [40].

 Scenario-based requirements validation has been

explored using high-level descriptions of systems

expressed as Bayesian Belief Nets (BBNs) [40]. Scenarios

expressed as task-based episodes in a similar manner to

ScenIC are evaluated with a BBN tool that automatically

tests variations in the scenario for environmental

conditions such as weather, and training of human actors.

This approach was taken further by applying evolutionary

computing techniques to generate variations in a

requirements specification, then running the specifications

against a set of scenarios, determining which design

variation had better performance and breeding these

variations following the principles of evolution [41]. In

spite of these initiatives, support for scenario-based RE is

still primitive. Tools are needed that automatically extract

interesting facts from scenarios, to produce models which

can then be checked for consistency, completeness etc.

While scenarios have become an established

technique in RE and elsewhere, many questions remain

for future research. The trade-off between informal

scenarios as tools for thought and more formal scenarios

which converge with models may vary between domains.

In some cases scenarios are throw-away examples to

stimulate thought; in other cases scenarios become

transformed into models by a systematic process. The

process of extracting knowledge from and testing with

scenarios is still in its infancy. Furthermore, scenarios lie

on the boundary of informal and formal representations of

knowledge. The bottleneck is human ability to process

large volumes of narratives and examples. In the future,

tools that extract information from speech, text and image

may play an increasingly important role in scenario-based

RE.

7. Reflections and outstanding problems

While scenarios are an important and useful addition to

the battery of RE techniques they are not without

problems. The two most critical problems are sampling

and coverage. Both reflect the tension between specific

detail in scenarios and abstraction in requirements

specifications. Sampling is difficult because of

representativeness, i.e. how do you know when you have

collected an appropriate and representative set of

scenarios for the current problem? This is linked to

coverage: how do you know when you have a sufficient

set of scenarios for adequate testing in requirements

validation? There are no easy answers to these problems.

One approach is to generate variations from a single seed

scenario [29, 34, 42] by using a schema to suggest

variation points. However, this assumes a formatted

scenario which is closer to a model; furthermore,

automatic generation creates too many scenario variants

which swamp the requirements engineer in excessive

detail [16]. The silver bullet of scenario-based RE is the

20/20 foresight, or how to anticipate critical aspects in a

future system environment that will impact on system

requirements. Of course that doesn’t exist otherwise

governments (e.g. socio-economic scenarios), the military

(e.g. wargame scenarios) and manufacturers of complex

systems (e.g. scenarios for avionics systems) would not

experience the unexpected. Creative brainstorming and

reuse of knowledge can improve the practice of scenario-

based RE. Further research needs to be undertaken to

investigate the dependencies between scenarios and

models at different levels of granularity from enterprise

business models and competition scenarios [43] to

requirements for designed systems that we are familiar

with in RE.

References

[1] M. Jarke, X.T. Bui and J.M. Carroll, “Scenario

Management: An Interdisciplinary Approach,”

Requirements Engineering, vol. 3, 155-173, 1998.

[2] C. Rolland, C.B. Achour, C. Cauvet, J. Ralyte, A.G.

Sutcliffe, N.A.M. Maiden, et al., “A Proposal for a

Scenario Classification Framework,” Requirements

Engineering, vol. 3, 23-47, 1998.

[3] J.M. Carroll, Ed. Scenario-Based Design: Envisioning

Work and Technology in System Development, New York:

Wiley, 1995.

[4] K. Kuutti, “Workprocess: Scenarios As a Preliminary

Vocabulary,” in Scenario Based Design, J.M. Carroll, Ed.

New York: Wiley, 1995, 19-36.

[5] A.I. Anton and C. Potts, “A Representational

Framework for Scenarios of System Use,” Requirements

Engineering, vol. 3, 219-241, 1998.

[6] A.I. Anton and C. Potts, “The Use of Goals to Surface

Requirements for Evolving Systems,” 1998 International
Conference on Software Engineering: Forging New

Links, 1998, 157-166, Los Alamitos CA: IEEE Computer

Society Press.

[7] M. Kyng, “Creating Contexts for Design,” in Scenario
Based Design, J.M. Carroll, Ed. New York: Wiley, 1995,

85-108.

[20] A.G. Sutcliffe, “Scenario-Based Requirements

Analysis,” Requirements Engineering, vol. 3, 48-65,

1998.

[8] C. Potts, K. Takahashi and A.I. Anton, “Inquiry-Based

Requirements Analysis,” IEEE Software, vol. 11, 21-32,

1994.

[21] A.G. Monk and P. Wright, Improving Your Human-

Computer Interface: A Practical Technique: Prentice

Hall, 1993.

[9] P. Heymans and E. Dubois, “Scenario-Based

Techniques for Supporting the Elaboration and Validation

of Formal Requirements,” Requirements Engineering,

vol. 3, 1998. [22] A.G. Sutcliffe, “Bridging the Communications Gap:

Developing a Lingua Franca for Software Developers and

Users,” INFORSID, 2000, 13-32, Toulouse: Inforsid.[10] H. Kaindl, “An Integration of Scenarios with Their

Purposes in Task Modelling,” DIS 95 Conference
Proceedings, 1995, 227-235, New York: ACM Press. [23] A.G. Sutcliffe and J.M. Carroll, “Generalizing

Claims and Reuse of HCI Knowledge,” BCS-HCI

Conference, 1998, 159-176, Berlin: Springer-Verlag.[11] A. Cockburn, Writing Effective Use Cases, Boston

MA: Addison-Wesley, 2001.

[24] I. Sommerville and G. Kotonya, Requirements

Engineering: Processes and Techniques, Chichester:

Wiley, 1998.

[12] I. Alexander, “Initial industrial experience of misuse

cases in trade-off analysis”, Proceedings IEEE Joint

International Conference on Requirements Engineering,

2002, 61-70, Los Alamitos CA: IEEE Computer Society

Press.

[25] P. Dubois, E. Dubois and J. Zeippen, “On the Use of

a Formal Representation,” ISRE '97: 3rd IEEE

International Symposium on Requirements Engineering,

1997, 128-137, Los Alamitos CA: IEEE Computer

Society Press.

[13] I. Jacobson, M. Christerson, P. Jonsson and G.

Overgaard, Object-Oriented Software Engineering: A

Use-Case Driven Approach, Reading MA: Addison

Wesley, 1992. [26] C.L. Heitmeyer, R.D. Jeffords and B.G. Labaw,

“Automated Consistency Checking of Requirements

Specifications,” ACM Transactions on Software

Engineering and Methodology, vol. 5, 231-261, 1996.

[14] P.A. Gough, F.T. Fodemski, S.A. Higgins and S.J.

Ray, “Scenarios: An Industrial Case Study and

Hypermedia Enhancements,” 1995 IEEE International

Symposium on Requirements Engineering (RE '95), 1995,

10-17, Los Alamitos CA: IEEE Computer Society Press.

[27] C. Potts, “ScenIC: A Strategy for Inquiry-Driven

Requirements Determination,” 4th IEEE International

Symposium on Requirements Engineering, 1999, 58-65,

Los Alamitos CA: IEEE Computer Society Press.[15] J.M. Carroll, Making Use: Scenario-Based Design of
Human-Computer Interactions, Cambridge MA: MIT

Press, 2000. [28] A. Van Lamsweerde and E. Letier, “Handling

Obstacles in Goal-Oriented Requirements Engineering,”

IEEE Transactions on Software Engineering, vol. 26,

978-1005, 2000.

[16] A.G. Sutcliffe, N.A.M. Maiden, S. Minocha and D.

Manuel, “Supporting Scenario-Based Requirements

Engineering,” IEEE Transactions on Software
Engineering, vol. 24, 1072-1088, 1998. [29] A.G. Sutcliffe, User-Centred Requirements

Engineering, London: Springer-Verlag, 2002.

[17] J. Mylopoulos, L. Chung and E. Yu, “From Object-

Oriented to Goal-Oriented Requirements Analysis,”

Communications of the ACM, vol. 42, 31-37, 1999.

[30] P.N. Johnson-Laird, The Computer and the Mind: An

Introduction to Cognitive Science, Cambridge MA:

Harvard University Press, 1988.

[18] Rational Corporation, UML: Unified Modelling

Language Method, [http://www.rational.com], 1999. [31] J.M. Carroll, Ed. HCI Models, Theories, and

Frameworks: Toward a Multidisciplinary Science, San

Francisco: Morgan Kaufmann, 2003.[19] J. Conklin and M.L. Begeman, “GIBIS: A Hypertext

Tool for Exploratory Policy Discussion,” ACM
Transactions on Office Information Systems, vol. 64, 303-

331, 1988.

[32] J.P. Djajadiningrat, W.W. Gaver and J.W. Frens,

“Interaction Relabelling and Extreme Characters:

Methods for Exploring Aesthetic Interactions,” DIS2000

Designing Interactive Systems: Processes, Practices
Methods and Techniques, 2000, 66-71, New York: ACM

Press.

[33] H. Beyer and K. Holtzblatt, Contextual Design:

Defining Customer-Centered Systems, San Francisco:

Morgan Kaufmann, 1998.

[34] A.G. Sutcliffe and M. Ryan, “Experience with

SCRAM: A SCenario Requirements Analysis Method,”

IEEE International Symposium on Requirements

Engineering: RE '98, 1998, 164-171, Los Alamitos, CA:

IEEE Computer Society Press.

[35] J. Robertson and S. Robertson, Mastering the
Requirements Process, Harlow: Addison Wesley, 1999.

[36] J. Leite, G.D.S. Hadad, J. HoracioDoorn and G.N.

Kaplan, “A Scenario Construction Process,”

Requirements Engineering, vol. 5, 38-61, 2000.

[37] N.A.M. Maiden, S. Minocha, K. Manning and M.

Ryan, “CREWS-SAVRE: Systematic Scenario

Generation and Use,” IEEE International Symposium on
Requirements Engineering: RE '98, 1998, 148-155, Los

Alamitos CA: IEEE Computer Society Press.

[38] E. Hollnagel, Human Reliability Analysis: Context

and Control, London: Academic Press, 1993.

[39] J. Reason, Human Error, Cambridge: Cambridge

University Press, 1990.

[40] A.G. Sutcliffe and A. Gregoriades, “Validating

Functional System Requirements with Scenarios,” IEEE
Joint International Conference on Requirements

Engineering, 2002, 181-188, Los Alamitos CA: IEEE

Computer Society Press.

[41] A.G. Sutcliffe, “Evolutionary Requirements

Analysis,” IEEE Joint International Conference on
Requirements Engineering, 2003,Los Alamitos CA: IEEE

Computer Society Press.

[42] A.G. Sutcliffe, J.E. Shin and A. Gregoriades, “Tool

Support for Scenario-Based Functional Allocation,” 21st
European Conference on Human Decision Making and

Control, 2002,.

[43] X.T. Bui, G. Kersten and P.C. Ma, “Supporting

Negotiation with Scenario Management,” 29th Hawaii

International Conference on System Sciences, 1996, 209-

219, Honolulu: University of Hawaii.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

