
Classification of Research Efforts in Requirements Engineering
PAMELA ZAVE

AT&T Laboratories—Research

1. PURPOSE OF THE CLASSIFICATION
SCHEME

Requirements engineering is the branch
of software engineering concerned with
the real-world goals for functions of and
constraints on software systems. It is
also concerned with the relationship of
these factors to precise specifications of
software behavior, and to their evolu-
tion over time and across software fam-
ilies.

The subject of requirements engineer-
ing is inherently broad, interdiscipli-
nary, and open-ended. It concerns
translation from informal observations
of the real world to mathematical speci-
fication languages. For these reasons, it
can seem chaotic in comparison to other
areas in which computer scientists do
research.

This article presents a classification
scheme for research efforts in require-
ments engineering. For those readers
who are not familiar with requirements
engineering, it is intended to provide an
overview and a coherent framework for
further study. For those readers who do
research in requirements engineering,
it is offered in the hope that it will:

—delineate the area and encourage re-
search coverage of the whole area;

—provide structure to encourage the
discovery and articulation of new
principles; and

—assist in grouping similar things,
such as competing solutions to the
same problem (these groupings would

be a great help in comparing, extend-
ing, and exploiting results).

The great difficulty in constructing
such a classification scheme is the het-
erogeneity of the topics usually consid-
ered part of requirements engineering.
They include the following.

—Tasks that must be completed: elicita-
tion of information from clients, vali-
dation, specification;

—Problems that must be solved: barriers
to communication, incompleteness, in-
consistency;

—Solutions to problems: formal lan-
guages and analysis algorithms, pro-
totyping, metrics, traceability;

—Ways of contributing to knowledge: de-
scriptions of current practice, case
studies, controlled experiments; and

—Types of system: embedded systems,
safety-critical systems, distributed
systems.

A typical list of research topics in re-
quirements engineering contains all
these entries and more. It is intended to
be comprehensive, but it is also confus-
ing.

The obvious way out of this difficulty
is a classification scheme with several
orthogonal dimensions. The more di-
mensions the more precision, at the ex-
pense of making the scheme too complex
to use. I have compromised by settling
on two dimensions, which are presented
separately in the next two sections.

I have referenced a number of papers

Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1997 ACM 0360-0300/97/1200–0315 $03.50

ACM Computing Surveys, Vol. 29, No. 4, 1997



that illustrate the categories and issues
discussed. A reference is nothing more
than an example; it is certainly not a
claim that the referenced paper is the
best or only work in its category! In
addition, Section 4 presents some exam-
ples that do not fit neatly into the nom-
inal categories, and shows how the clas-
sification scheme sheds light on them as
well.

2. FIRST DIMENSION: PROBLEMS

The first dimension is very particular to
requirements engineering. It is an at-
tempt to characterize the work that
needs to be done. It must somehow
cover necessary tasks, recognizable
problems, and proposed solutions with-
out confusing the three.

Basing this primary dimension on so-
lutions to problems seems like a bad
idea, because it would discourage devel-
oping alternative solutions to problems,
or comparing different solutions to the
same problem.

Tasks and problems are both plausi-
ble starting points and indeed overlap
quite a bit. A task can always be de-
scribed as a problem (“How can this
task be accomplished satisfactorily?”)
and a problem can always be described
as a task (“Find a solution to this prob-
lem.”). I prefer to use problems because
they are more stable than tasks. After
all, the best solutions to problems make
certain tasks unnecessary! In other
words, a method is a proposed solution
to a problem and a method dictates
which tasks are performed.

Here is the first dimension of the clas-
sification scheme. Explanatory notes
are interspersed.

(1) Problems of investigating the
goals, functions, and constraints of a
software system. This topic includes all
the problems of gathering information,
analyzing information, and generating
alternative strategies. The longer re-
quirements engineers work on solving
these problems, the bigger the scope of
their work because their stock of infor-

mation and alternatives is always in-
creasing.

(1.1) Overcoming barriers to commu-
nication. Requirements engineers have
to talk to a wide range of people with
diverse backgrounds, interests, and per-
sonal goals. How can they communicate
well with people whose backgrounds,
interests, and goals are different from
their own? And who may not know what
they want from a computer system?
Ethnographic techniques are sometimes
proposed as a solution to this problem
[Goguen and Linde 1992; Sommerville
et al. 1992].

(1.2) Generating strategies for con-
verting vague goals (e.g., “user-friendli-
ness,” “security,” “accuracy,” “reliability”)
into specific properties or behavior. For
example, prototyping is often proposed
for exploring the friendliness of a user
interface. There are also product-ori-
ented [Harrison and Barnard 1992] and
process-oriented [Chung and Nixon
1995] approaches to this problem (see
Section 3 for a definition of these
terms).

(1.3) Understanding priorities and
ranges of satisfaction. Many require-
ments are not absolute; they can be
satisfied partially, or only if resources
permit. Requirements engineers must
obtain the information necessary to de-
cide when and how to satisfy these re-
quirements [Yen and Tiao 1997].

(1.4) Generating strategies for allocat-
ing requirements among the system and
the various agents of its environment.
The true requirements always refer to
the real world in which the computer
system will become embedded. Before
the software can be specified, goals,
functions, and constraints must be allo-
cated to the various components and
agents that will contribute to satisfying
them [Alford 1977; Dardenne et al.
1993; Feather 1987; Johnson 1988].

(1.5) Estimating costs, risks, and
schedules. This is the other half of the
information needed to handle optional

316 • Pamela Zave

ACM Computing Surveys, Vol. 29, No. 4, 1997



requirements, which are generally sat-
isfied depending on development re-
sources. Requirements engineers must
estimate the resources needed and be
aware of the reliability of their esti-
mates [Matson et al. 1994; Mukho-
padhyay and Kekre 1992].

(1.6) Ensuring completeness. How
can requirements engineers be sure
that they have not left out any impor-
tant people, viewpoints, issues, facts,
etc., out of their investigations? This is
“completeness” in an informal sense
[Reubenstein and Waters 1991].

(2) Problems of specifying software
system behavior. This topic includes all
the problems of synthesizing informa-
tion and choosing among alternatives,
to create a precise and minimal soft-
ware specification. The longer require-
ments engineers work on solving these
problems, the smaller the scope of their
work because they are discarding alter-
natives and irrelevant information.

(2.1) Integrating multiple views and
representations. The results of investi-
gation are likely to be diverse and to
contain conflicts. Understanding, com-
munication, and negotiation are useful
for reconciling conflicting viewpoints
[Easterbrook 1992]. Formal methods
are useful for composing diverse nota-
tions and for monitoring inconsistencies
[Nuseibeh et al. 1994; Zave and Jackson
1993].

(2.2) Evaluating alternative strategies
for satisfying requirements. Work on
1.2, 1.3, and 1.4 may generate alterna-
tives, from which the specific system
behavior must be chosen. Many of the
papers cited in those sections also in-
clude evaluation strategies.

(2.3) Obtaining complete, consistent,
and unambiguous specifications. This
is “completeness” in the formal sense of
having no missing parts [Heimdahl and
Leveson 1996; Heitmeyer et al. 1996].

(2.4) Checking that the specified sys-
tem will satisfy the requirements. There

are a variety of approaches to this well-
known problem. They include inspec-
tions [Porter et al. 1995], execution and
testing of the specification [Zave and
Schell 1986], and verification [Coen-
Porisini et al. 1994; Du Bois et al. 1997].

(2.5) Obtaining specifications that are
well-suited for design and implementa-
tion activities. This is the problem of
building into the specification qualities
that will ensure successful software de-
velopment. Sometimes designs [Lor and
Berry 1991] or test cases [Weyuker et
al. 1994] can be generated automati-
cally or semiautomatically from a speci-
fication. Designs can also be checked for
consistency with the specification
[Lefering 1992].

(3) Problems of managing evolution of
systems and families of systems. The
first two major topics treat require-
ments engineering as if it were an iso-
lated and unique phase of development.
Of course, that is untrue. As systems
evolve, they undergo many phases of
requirements engineering. The require-
ments engineering of each member of a
family should not be independent of
other family members. This topic is con-
cerned with the coordination of distinct
requirements-engineering phases. It is
concerned with how to make the work
done in a phase reusable, and how to
reuse it in other phases.

(3.1) Reusing requirements engineer-
ing during evolutionary phases. In
other words, this is the problem of en-
suring that the artifacts of require-
ments engineering are maintainable.
Some proposed solutions to this problem
are traceability (recording the relation-
ship between aspects of system behavior
and the requirements that motivated
them) [Leite and Oliveira 1995; Ramesh
et al. 1995] and specification modular-
ity.

(3.2) Reusing requirements engineer-
ing for developing similar systems. In
other words, this is the problem of en-
suring that the artifacts of require-

Classification in Requirements Engineering • 317

ACM Computing Surveys, Vol. 29, No. 4, 1997



ments engineering apply to families of
systems. One example of a solution to
this problem is conceptual modeling of
an entire application domain [Lam et al.
1997; Maiden and Sutcliffe 1992; Ryan
and Mathews 1992]. Another example is
separation of user-interface concerns
from other concerns, so that the same
“look and feel” can be provided across a
product line.

(3.3) Reconstructing requirements. This
problem occurs when you want to reuse
the artifacts of requirements engineer-
ing, but they are missing. It calls for
reverse engineering of requirements.
Very little work has been done on this
problem.

3. SECOND DIMENSION: CONTRIBUTIONS
TO SOLUTIONS

The second dimension could also apply
to other areas of software engineering.
It is an attempt to characterize the
ways that research can contribute to
solving problems. This dimension as-
sumes that, as software engineers, we
can seek to understand social factors
but we can only hope to influence tech-
nical practices.

(A) Report on the state of the practice.
This establishes a baseline from which
others can work [Lubars et al. 1992].

(B) Proposed process-oriented solu-
tion. Some problems must be solved
manually, because we do not know how
to solve them automatically. We can
contribute to solving these problems by
providing orderly methods and heuris-
tics for making the decisions involved
[Goguen and Linde 1992; Jackson
1983]. These contributions are “process-
oriented solutions,” because they focus
on the manual process of requirements
engineering.

(C) Proposed product-oriented solu-
tion. Some problems can be solved auto-
matically, in which case the emphasis is
on formal representations and algorith-
mic manipulations of them. These con-
tributions are “product-oriented solu-

tions,” because they focus on
representation and manipulation of the
products of requirements engineering
[Heimdahl and Leveson 1996; Lefering
1992; Reubenstein and Waters 1991].

Research on prototyping user inter-
faces would be classified 1.2, because it
is addressing the problem of how to
make a system user-friendly. As an ex-
ample of the difference between contri-
butions B and C, if the research empha-
sizes representation and automated
implementation of interface choices and
policies, then it would be a contribution
of type C. If the research emphasizes
working with users to determine their
preferences, then it would be a contribu-
tion of type B.

As another example of the difference
between B and C, of the two cited solu-
tions to problem 1.1, one [Goguen and
Linde 1992] is a contribution of type B,
and the other [Sommerville et al. 1992]
is a contribution of type C.

(D) Case study applying a proposed
solution to a substantial example. A
case study provides important evidence,
but it is necessarily anecdotal [van
Lamsweerde et al. 1995]. Ideally it
would be done in preparation for a more
systematic and objective evaluation of
the proposed solution, as in E.

(E) Evaluation or comparison of pro-
posed solutions. To belong in this cate-
gory, evaluation of a single proposed
solution should be objective in some way
(“I tried it and I liked it” is not enough)
[Maiden and Sutcliffe 1992; Zave 1991].
Naturally, a comparison of several solu-
tions is more likely to be systematic and
objective. A controlled experiment with
quantitative results is the ideal contri-
bution in this category [Porter et al.
1995].

(F) Proposed measurement-oriented
solution. It is now widely accepted that
an organization can improve its prob-
lem-solving simply by monitoring and
measuring how well it solves problems,
and then tracking those measurements
over time. Thus measurement of the

318 • Pamela Zave

ACM Computing Surveys, Vol. 29, No. 4, 1997



success of requirements-engineering ac-
tivities can be viewed as a problem-
solving technique in its own right, as
well as a means of comparing other
solutions. For example, measurements
of previous development projects help
solve problem 1.5. Measurements of cus-
tomer satisfaction help solve problems
1.1, 1.2, 1.3, and 2.2. A readability met-
ric might help solve problem 2.4. Mea-
surement can help solve 2.2 by checking
the domain assumptions that were and
are used to make strategic choices [Fic-
kas and Feather 1995].

4. OTHER EXAMPLES

When an article spans many categories
in one dimension, it is usually narrowly
focused in another dimension. Some-
times the other dimension is also in this
classification scheme. For example, Reu-
benstein and Waters [1991] and Porter
et al. [1995] both make contributions of
a very specific kind. But their contribu-
tions—an intelligent automated assis-
tant and rigorous evaluation of inspec-
tion techniques, respectively—address
many requirements problems simulta-
neously and in a wide-spectrum fashion.

Sometimes the focused dimension is
not in the classification scheme. I have
deliberately neglected problem solu-
tions, so an article focused on a solution
technique might address several prob-
lems. For example, automated transla-
tion of natural-language specifications
into formal specifications [Ishihara et
al. 1992] is a solution that might allevi-
ate problems 1.1, 1.6, 2.1, 2.3, or 2.4. As
such, it can be compared for effective-
ness to drastically different solutions to
these problems, such as ethnography
and executable specifications.

Another neglected dimension is that
of application domain. For example, the
A-7 method [Heninger 1980; Parnas and
Clements 1986; Parnas and Madey
1995; van Schouwen et al. 1992] is a
comprehensive requirements method for
real-time process-control systems. It at-
tempts to solve (or at least alleviate)
almost all requirements problems

within the limits of that application do-
main.

ACKNOWLEDGMENT

This classification scheme was developed and re-
fined while I was program chair of the Second
IEEE International Symposium on Requirements
Engineering. I would like to thank everyone who
participated.

REFERENCES

ALFORD, M. W. 1977. A requirements engineer-
ing methodology for real-time processing re-
quirements. IEEE Trans. Softw. Eng. III, 1
(Jan.) 60–69.

CHUNG, L. AND NIXON, B. A. 1995. Dealing with
non-functional requirements: Three experi-
mental studies of a process-oriented ap-
proach. In Proceedings of the Seventeenth
International Conference on Software Engi-
neering, ACM Press, ACM, New York, NY,
25–37.

COEN-PORISINI, A., KEMMERER, R. A., AND MAND-
RIOLI, D. 1994. A formal framework for AS-
TRAL intralevel proof obligations. IEEE
Trans. Softw. Eng. XX, 8 (Aug.) 548–561.

DARDENNE, A., VAN LAMSWEERDE, A., AND FICKAS,
S. 1993. Goal-directed requirements acqui-
sition. Science of Computer Programming XX,
3–50.

DU BOIS, P., DUBOIS, E., AND ZEIPPEN, J.-M.
1997. On the use of a formal RE language:
The generalized railroad crossing problem. In
Proceedings of the Third IEEE International
Symposium on Requirements Engineering,
IEEE Computer Society, ISBN 0-8186-7740-6,
128–137.

EASTERBROOK, S. 1992. Domain modelling with
hierarchies of alternative viewpoints. In Pro-
ceedings of the IEEE International Sympo-
sium on Requirements Engineering, IEEE
Computer Society, ISBN 0-8186-3120-1, 65–
72.

FEATHER, M. S. 1987. Language support for the
specification and development of composite
systems. ACM Trans. Program. Lang. Syst.
IX, 2 (Apr.), 198–234.

FICKAS, S. AND FEATHER, M. S. 1995. Require-
ments monitoring in dynamic environments.
In Proceedings of the Second IEEE Interna-
tional Symposium on Requirements Engineer-
ing, IEEE Computer Society, ISBN 0-8186-
7017-7, 140–147.

GOGUEN, J. A. AND LINDE, C. 1992. Techniques
for requirements elicitation. In Proceedings of
the IEEE International Symposium on Re-
quirements Engineering, IEEE Computer So-
ciety, ISBN 0-8186-3120-1, 152–164.

Classification in Requirements Engineering • 319

ACM Computing Surveys, Vol. 29, No. 4, 1997



HARRISON, M. AND BARNARD, P. 1992. On defin-
ing requirements for interaction. In Proceed-
ings of the IEEE International Symposium on
Requirements Engineering, IEEE Computer
Society, ISBN 0-8186-3120-1, 50–54.

HEIMDAHL, M. P. E. AND LEVESON, N. G. 1996.
Completeness and consistency in hierarchical
state-based requirements. IEEE Trans. Softw.
Eng. XXII, 6 (June), 363–377.

HEITMEYER, C. L., JEFFORDS, R. D., AND LABAW,
B. G. 1996. Automated consistency check-
ing of requirements specifications. ACM
Trans. Softw. Eng. Method. V, 3 (July) 231–
261.

HENINGER, K. L. 1980. Specifying software re-
quirements for complex systems: New tech-
niques and their application. IEEE Trans.
Softw. Eng. VI, 1 (Jan.) 2–13.

ISHIHARA, Y., SEKI, H., AND KASAMI, T. 1992. A
translation method from natural language
specifications into formal specifications using
contextual dependencies. In Proceedings of
the IEEE International Symposium on Re-
quirements Engineering, IEEE Computer So-
ciety, ISBN 0-8186-3120-1, 232–239.

JACKSON, M. 1983. System Development. Pren-
tice-Hall International.

JOHNSON, W. L. 1988. Deriving specifications
from requirements. In Proceedings of the
Tenth International Conference on Software
Engineering, IEEE Computer Society, ISBN
0-8186-0849-8, 428–438.

LAM, W., MCDERMID, J. A., AND VICKERS, A. J.
1997. Ten steps towards systematic require-
ments reuse. In Proceedings of the Third
IEEE International Symposium on Require-
ments Engineering, IEEE Computer Society,
ISBN 0-8186-7740-6, 6–15.

DO PRADO LEITE, J. C. S. AND DE PADUA ALBUQUER-
QUE OLIVEIRA, A. 1995. A client oriented re-
quirements baseline. In Proceedings of the
Second IEEE International Symposium on Re-
quirements Engineering, IEEE Computer So-
ciety, ISBN 0-8186-7017-7, 108–115.

LEFERING, M. 1992. An incremental integration
tool between requirements engineering and
programming in the large. In Proceedings of
the IEEE International Symposium on Re-
quirements Engineering, IEEE Computer So-
ciety, ISBN 0-8186-3120-1, 82–89.

LOR, K.-W. E. AND BERRY, D. M. 1991. Auto-
matic synthesis of SARA design models from
system requirements. IEEE Trans. Softw.
Eng. XVII, 12 (Dec.) 1229–1240.

LUBARS, M., POTTS, C., AND RICHTER, C. 1992. A
review of the state of the practice in require-
ments modeling. In Proceedings of the IEEE
International Symposium on Requirements
Engineering, IEEE Computer Society, ISBN
0-8186-3120-1, 2–14.

MAIDEN, N. A. M. AND SUTCLIFFE, A. G. 1992.

Requirements engineering by example: An
empirical study. In Proceedings of the IEEE
International Symposium on Requirements
Engineering, IEEE Computer Society, ISBN
0-8186-3120-1, 104–111.

MATSON, J. E., BARRETT, B. E., AND MELLICHAMP,
J. M. 1994. Software development cost es-
timation using function points. IEEE Trans.
Softw. Eng. XX, 4 (Apr.) 275–287.

MUKHOPADHYAY, T. AND KEKRE, S. 1992. Soft-
ware effort models for early estimation of
process control applications. IEEE Trans.
Softw. Eng. XVIII, 10 (Oct.) 915–924.

NUSEIBEH, B., KRAMER, J., AND FINKELSTEIN, A.
1994. A framework for expressing the rela-
tionships between multiple views in require-
ments specification. IEEE Trans. Softw. Eng.
XX, 10 (Oct.) 760–773.

PARNAS, D. L. AND CLEMENTS, P. C. 1986. A
rational design process: How and why to fake
it. IEEE Trans. Softw. Eng. XII, 2 (Feb.),
251–257.

PARNAS, D. L. AND MADEY, J. 1995. Functional
documentation for computer systems engi-
neering. Science of Computer Programming
XXV (Oct.), 41–61.

PORTER, A. A., VOTTA, JR., L. G., AND BASILI,
V. R. 1995. Comparing detection methods
for software requirements inspections: A rep-
licated experiment. IEEE Trans. Softw. Eng.
XXI, 6 (June) 563–575.

RAMESH, B., POWERS, T., STUBBS, C., AND EDWARDS,
M. 1995. Implementing requirements trace-
ability: A case study. In Proceedings of the
Second IEEE International Symposium on Re-
quirements Engineering, IEEE Computer So-
ciety, ISBN 0-8186-7017-7, 89–95.

REUBENSTEIN, H. B. AND WATERS, R. C. 1991.
The requirements apprentice: Automated as-
sistance for requirements acquisition. IEEE
Trans. Softw. Eng. XVII, 3 (Mar.) 226–240.

RYAN, K. AND MATHEWS, B. 1992. Matching con-
ceptual graphs as an aid to requirements re-
use. In Proceedings of the IEEE International
Symposium on Requirements Engineering,
IEEE Computer Society, ISBN 0-8186-3120-1,
112–120.

SOMMERVILLE, I., RODDEN, T., SAWYER, P., BENTLEY,
R., AND TWIDALE, M. 1992. Integrating eth-
nography into the requirements engineering
process. In Proceedings of the IEEE Interna-
tional Symposium on Requirements Engineer-
ing, IEEE Computer Society, ISBN 0-8186-
3120-1, 165–173.

VAN SCHOUWEN, A. J., PARNAS, D. L., AND MADEY, J.
1992. Documentation of requirements for
computer systems. In Proceedings of the IEEE
International Symposium on Requirements
Engineering, IEEE Computer Society, ISBN
0-8186-3120-1, 198–207.

320 • Pamela Zave

ACM Computing Surveys, Vol. 29, No. 4, 1997



VAN LAMSWEERDE, A., DARIMONT, R., AND MASSO-
NET, P. 1995. Goal-directed elaboration of
requirements for a meeting scheduler: Prob-
lems and lessons learnt. In Proceedings of the
Second IEEE International Symposium on Re-
quirements Engineering, IEEE Computer So-
ciety, ISBN 0-8186-7017-7, 194–203.

WEYUKER, E., GORADIA, T., AND SINGH, A. 1994.
Automatically generating test data from a
boolean specification. IEEE Trans. Softw.
Eng. XX, 5 (May) 353–363.

YEN, J. AND TIAO, W. A. 1997. A systematic
tradeoff analysis for conflicting imprecise re-
quirements. In Proceedings of the Third IEEE

International Symposium on Requirements
Engineering, IEEE Computer Society, ISBN
0-8186-7740-6, 87–96.

ZAVE, P. 1991. An insider’s evaluation of PAIS-
Ley. IEEE Trans. Softw. Eng. XVII, 3 (Mar.)
212–225.

ZAVE, P. AND JACKSON, M. 1993. Conjunction as
composition. ACM Trans. Softw. Eng. Method.
II, 4 (Oct.) 379–411.

ZAVE, P. AND SCHELL, W. M. 1986. Salient fea-
tures of an executable specification language
and its environment. IEEE Trans. Softw. Eng.
XII, 2 (Feb.) 312–325.

Received December 1995; revised March 1997; accepted October 1997

Classification in Requirements Engineering • 321

ACM Computing Surveys, Vol. 29, No. 4, 1997


