
Web Engineering

Literature Review

Version 0.05

Darren Stephens
Centre for Internet Computing

University of Hull

December 19 2001

“If it looks like a duck, walks like a duck, and quacks like a duck, it’s a duck.”
- proverb

1

Contents

1 Introduction 4

2 An Introductory Classification

of Current Work 7

2.1 Overviews of the
Web Engineering Problem Domain 9

2.2 Early Work . 12

3 The Evolution and Form of Web Sites 14

3.1 “Web Engineering is Not Software Engineering” 15

4 Webware, Software, Documents

and Hypermedia 18

4.1 Webware as Software . 18

4.2 Webware as Software-Like Systems 19

4.3 Webware, Software and the Use of
Software Metrics . 20

4.4 Webware and Document Engineering 22

4.5 Webware and Hypermedia Systems 24

5 Is Mark-up a Programming Paradigm? 26

6 Conclusion 28

2

List of Figures

1 Evolution of Web Projects . 5

2 An Overview of Web Engineering Literature 10

3 Booch - Diagrammatic Representation of a Web System 14

4 Hassan - Diagrammatic Representation of a Web System 15

3

1 Introduction

The discipline of “web engineering” is a relatively new one. The term seems
not to have been in (wide) use before 1998 and the 9th ACM Conference
on Hypertext and Hypermedia [Bieber1998], although Murugesan claims to
have used the term as early as 1997[WebE2001]. This is in contrast to the
more general area of hypermedia engineering, which had been defined at least
as far back as the early 1990s. A similar term “Web Document Engineering”
had been used earlier, in 1996 by Bebo White of SLAC (q.v) in a session at
the 5th World Wide Web Conference 1 in 1996 [White1996].

Given the relative immaturity of the area of web engineering, much of the
early literature consists mainly of position papers and overviews of the prob-
lem domain of engineering quality in web projects. Many of these papers
also describe issues of macroscopic structure, the need for component re-
use and process engineering and the problems of mapping the limits of web
sites. Other early works such as Powell [Powell1998a] acknowledge the rapidly
changing nature of web projects and attempt to codify some ground rules for
working on such projects.

As an aid to understanding the need for more structured methods for the
creation of web projects, it is, perhaps, useful to refer to Powell, who divides
the evolution of web applications into a number of generations, illustrated in
Figure 1 (shown overleaf).

The generations can be explained in the following way:

1. The first generation predates the development of the Mosaic browser
and inline images. Browsers of this nature were text-based systems.
Mark-up existed purely to define content, not its presentation. The
first example of this type was the initial site at CERN in Switzerland
(http://info.cern.ch/), the first public web server.

2. The second generation, like the first, was simple, mainly consisting of
static webpages and very basic CGI processes. These initial projects
were usually ad hoc and lowly budgeted. Extra functions were generally

1This conference was held in May of 1996, in Paris, France. The conference programme
is available on-line at: http://www5conf.inria.fr/

4

First Generation

Text driven,
simple

Second Generation
Mainly text driven,

simple CGI,
use of helper apps

Third Generation

Presentationally driven

Fourth Generation
Presentation important
functionality demanded
(plug-in technologies)

Fifth Generation
Developer-centred,

well-engineered
application-driven

Figure 1: Evolution of Web Projects

provided by the use of helper applications that needed to be configured
at the client.

3. In the third generation, begun by the release of Netscape Navigator,
presentational issues assumed greater importance. As Powell observes,
many third generation sites were driven more by appearance than us-
ability. This was an opinion shared by Jakob Nielsen in his regular
surveys of web usability.

4. In the fourth generation, users became used to “pretty” sites and de-

5

manded more functionality. This was provided by additional content,
the use of multimedia and technologies such as Java to provide interac-
tivity and increased functionality. Much of this was (and is) provided
by ‘plug-in’ technologies or the use or scripting and other client side
technologies.

5. The web now appears to be entering a fifth generation. This generation
is driven, not by user requirements but by those of developers. The
growing size and complexity of web systems and the tasks they are
being designed to perform is the cause of this evolution.

Powell refers to this most recent generation of web design as Software Cen-
tred Web Site Development, making direct comparisons with software
development while acknowledging differences, most particularly in terms of
timescales and lifecycles. Once again, there is a return to using markup
purely to define content, separating it from presentation, especially now
through the burgeoning use of XML and its applications. Berners-Lee talks
about this at some length in his book ‘Weaving The Web’ [Berners-Lee2000].
This change is as a result of the growing need for interoperability between
systems as Internet platforms become more fragmented 2. The size of sites
also forces developers to implement this type of more regular design.

2The increasing number of versions of the Windows platform as well as the number of
-not always-compatible Unix variants is evidence of this

6

2 An Introductory Classification

of Current Work

Warren et al. [Warren2001a], in a paper presented at WSE2001, have already
proposed a basis for understanding and classifying research being done on
engineering and metrics for the World Wide Web. According to them, much
of the current work in web engineering is based around three major areas,
viz.:

1. Software Metrics

The area of software quality measurement is an enormous one. A com-
prehensive review is well beyond the terms of this document. Read-
ers are advised to refer to the work of both Pressman and Somerville
[Somerville1989] for an introduction to the area of software metrics. In
his WSE2001 paper, Warren describes the use of systems such as GQM
(Goal-Question-Metric) [Berghout1999] to define general principles for
creation of metrics. The application of this has been principally in
software systems and the possibility exists that at least some of these
can be extended to the web. There is an underlying assumption that
web systems can be described as ‘software-like’ in nature. This is by
no means obvious.

2. Hypertext
Web systems are generally seen to be specialisms of more general hy-
pertext systems. Current work in this area may have impact on the
more specialist one. Of particular interest are applications and metrics
derived from the use of methods such as OOHDM [Schwabe1995] and
RMM [Isakowitz1995], the most common in use. This is in addition to
the original works of Hatzimanikatis et al [Hatz1995]. and Botafogo et
al. [Botafogo1992], which attempted to address the problem of defin-
ing metrics for idealised hypermedia systems. This area also describes
document engineering, which can, with some justification, be described
as a subset of hypermedia engineering in general. Latterly, the work
of Mendes et al. [Mendes2001] attempts to define and measure metrics
by means of case studies in hypermedia development.

3. Human Computer Interaction

A great deal of work has been done in the area of HCI on the web, espe-

7

cially (although not exclusively) by Jakob Nielsen [Nielsen2000],[Nielsen2001],
who has a long history in the investigation of usability engineering.
Some may argue that any study of engineering for the web must give
great consideration to user interaction because of the highly user-centric
nature of any systems developed. This is a valid observation, but not
necessarily of direct concern when considering the production of sys-
tems in the first instance, for example. Although this field is without
doubt of interest it will not be discussed at any further length in this
document.

It appears that, at present, web development is being equated directly with
software developement, with little thought applied to considering both soft-
ware and mark-up based systems in a wider context. This lack of a wider
view can be seen as recently as 1996 when authors such as Stross [Stross1996]
could say with some confidence:

“A web is a publication, not a piece of software.”

This view is one that is quite clearly becoming outdated. Web projects are
growing rapidly, both in size and complexity. This can be seen in two ways:

1. The number of pages on the web is rising very rapidly, faster than the
number of web users indicated by recent surveys. Google estimates this
figure at 1,610,476,000 ‘pages’ as at November 16 2001.[Google2001]
This figure has grown by around 60% in less than a year. Nielsen
estimated that there were around 100 million web sites in January
2000. This number would rise to 25 million by the end of that year
and then further to around 100 million by the end of 2002. Conversely,
Internet usage in the UK at least had fallen very slightly in mid 2001,
according to a recent survey by the UK Office of Telecommunications
(Oftel) [Oftel2001]. It appears that internet usage, in the short term
at least appears to be reaching a plateau, but the number of pages on
the web is growing at great speed.

2. The number and scope of content development and delivery tools for
the web is growing extremely rapidly and significant communities are
rising up to exploit them (e.g., PHP, ASP, ColdFusion, SourceForge,
Zope etc.)

8

The process of producing such systems, marrying the disparate technolo-
gies they use and for measuring their quality is becoming rapidly ever more
complex. Already there is an appreciation that this increase in the size and
complexity of web projects is a burgeoning problem. A so-called “web cri-
sis” [Zelnick1998], mirroring the “software crisis” that was seen in software
in the 1970s and 1980s. The concerns of practitioners of that time, such as
Djikstra, Parnas and Wirth, calling for increased refinement, modularisation
and re-use are finding resonance with current web developers. Many of the
overview and position documents identify this parallel between current web
development and earlier software engineering.

2.1 Overviews of the

Web Engineering Problem Domain

As has previously been alluded to, managing the production and mainte-
nance of web systems is a non-trivial task, analogous to the management
of software systems. This issue is explored in early work by Murugesan et
al. [Murugesan1999], defining the problem domain of web engineering. The
theme is continued by Deshpande and Hansen [Deshpande2001]. Both works
make a distinction between ‘traditional’ software and web-based systems.
These differences amount to a combination of three main factors:

1. The importance of the user interface - more so than ‘usual’ software.

2. High Network Overhead - web systems are network intensive in general.

3. Heterogeneous components - web projects are likely to comprise mark-
up, program code and other types of content, typically multimedia.

Each of these can be seen in other types of software development but a combi-
nation of these factors, as well as hugely compressed lifecycles for developing
such projects, sets them apart.

These works put the case that web engineering is a discipline of itself and
should be treated as such, separately from software engineering. To illustrate
how the areas within Web Engineering are connected to other disciplines, a
broad illustration of the area is presented ‘ in Figure 2.1.

9

Web
Engineering Multidiscipline

e.g.
Deshpande & Hansen,
Murugesan

Software
Engineering
e.g
Booch,
Pressman

Macroscopic
Structure
e.g.
Ricca

Programming
Languages

Overviews and
Position Papers

Document
Engineering

Web Metrics
e.g.
Mendes

Web as
Hybrid
System

Hypermedia

e.g.
Hatzimanikatis,
Botafogo

Figure 2: An Overview of Web Engineering Literature

Figure 2.1. shows a brief overview of current and recent work in the web
engineering field. There are a number of disparate areas, with between them
shown by solid lines. The dotted lines and boxes show connections to this
document and to the so far seemingly unexplored area of hybrid web systems.
Each of the areas shown will be considered at various points later in this
document.

Importantly, Roger Pressman, in an article entitled “What a Tangled Web
We Weave” [Pressman2000b] uses the phrase “software-related” to describe
what he calls “WebApps” (what this paper describes as ’webware’).

The implication of this article is that he does not see webware systems as
purely software systems. This is an issue that the Warren WSE paper also
addresses, stating that the “software-like” nature of web systems has yet to be
established fully. Sensibly, Pressman contends, like others in the area, that a
disciplined engineering approach is essential for the creation an maintenance
of useful web systems.

To define ‘disciplined’ he cites the following criteria:

10

1. Problem solving

2. Good Design

3. Thorough Testing

4. Maintenance

He clearly equates these with the well-established criteria applied in soft-
ware enginering. Pressman is not the only person to make this connection
between software and the web, although differences do appear in the degree
of the comparisons that are made. Powell also asserts that such approaches
are preferable to the use of the more prevalent RAD3 [Boehm1997] in web
environments. Although RAD is seen as useful because of its use of pro-
totyping (seen as especially useful for interface design), as a method it is
wasteful and, judging by the current state of many sites, does not result
in well-engineered systems [Powell1998b]. He concludes that this is because
many web practitioners are not conversant with more structured engineering
methods.

Warren et al. speculate that webware may be only one of a family of more
generally engineered artefacts. Engineered items are created using a struc-
tured method, such as the waterfall method in software engineering amongst
others [Pressman2000c]. Any general method for the engineering of artefacts
follows the same basic steps, whatever the artefact may be. These steps are:

1. Analyse - Define the problem domain and evaluate current approaches
where appropriate.

2. Design - Provide one (or more) possible solutions to the problem along
with a rationale for choosing the preferred solution.

3. Build - Construct the system defined by the preferred solution using
the most appropriate methods and tools available.

4. Test - Ensure that the construction phase of the project satisfies design
criteria and is fit for the purpose of its construction.

3A similar idea is also found in the practice of ‘Extreme Programming’

11

5. Maintain - Once the construction has reached the required standard
and is deemed complete (or a stable configuration agreed), ensure that
it continues to meet the required operational standards set and to repair
and enhance it if necessary.

Clearly a web system (like software) is subject to all of these and is clearly an
engineered system of some type when constructed in an ordered way. This
is extended in software engineering by the Sprial [Boehm1988] and Waterfall
models (and its variants) . Much of the work by the authors in this field
are merely restatements of this seemingly facile assertion. Best practice in
the area , defined by the huge number of HTML Authoring texts, largely
conforms to these general principles, confirmed by the work of authors such
as Powell. The early chapters of Jakob Nielsen’s Designing Web Usability
[Nielsen2000] concur with much of this thinking. Nielsen firmly places himself
in the camp who believe in the use of engineering principles, although he
also stresses the importance of creativity and inspiration. Even within this
context however, the value of user-centred design is emphasised and the need
for sound principles of design is established.

2.2 Early Work

As has been established, much of the earliest work in the field only goes as
far as calling for a methodical approach in the development of web projects.
Work in the OOHDM and RMM systems have tried to establish more regular
processes to describe the production process in general hypermedia systems.
Such an approach is, however, complicated by the fact that web projects
may not, as discussed earlier, be like traditional software. There are special
problems to be faced because web systems are heavily loaded toward end-user
functionality, use elements that cannot easily (if at all) be described in a way
satisfactory to traditional software engineering and are subject to lifecycles
generally dissimilar from more conventional software projects.

The area of hypermedia has been extant for a great number of years. It
is widely acknowledged that the defining work is that of Vannevar Bush,
whose article “As We May Think”, published in 1945 describes a prototypi-
cal hypermedia system. Nelson, who is believed to have first used the term
‘hypertext’ [Nelson1965] and Englebart, who demonstrated a working hyper-

12

media system (known as ‘NLS’ - oNLine System) in the 1960s as part of the
‘Augment’ project [Englebart1963], also made huge contributions to the de-
velopment of hypermedia. Conklin [Conkin1987] provides an introduction to
the area of hypermedia a little before the first papers published by Botafogo,
Rivlin and Sheiderman.

Much work however has been done on the organisation of hyperdocuments.
Much of this later work sprang from two major sources; the work of Botafogo,
Rivlin and Shneiderman [Botafogo1992] and work of Hatzimanikatis, Tsalidis
and Christodoulakis [Hatz1995]. The thrust of both sets of work was not
concentrated on Web documents because, at this time of the writing of the
earlier document the web had only been a public entity for about a year.
Take-up of web services, although rapid, had not reached sufficient levels to
warrant special treatment.

Apart from the consideration of the web as a hypermedia system, others,
such as Bray [Bray1996] and Pitkow [Pitkow1995], attempted to consider
engineering problems concerned with the web in other ways. Pitkow was,
for example, far more concerned about underlying network performance and
how to optimise internet systems in this way. Bray’s concerns seemed to be
more about mapping the extent and scope of web sites, a handy precursor
to the work of those like Warren (who is referenced elsewhere in this work).

13

3 The Evolution and Form of Web Sites

The introduction to this document describes a linear development of web
systems, in which there is some considerable overlap between generations,
mainly effected by browser development. This went hand in hand with the
evolution of the HTML mark-up ‘language’ itself [W3C2001] and related
technologies such as XML. The progression is from static document-based
systems to dynamic systems of much more complexity, including elements of
document systems, software and other, less easily classified components.

Much current work on the engineering of web systems concentrates upon
navigational issues (e.g Ricca and Tonella). This is largely in line with the
often cited Botafogo and Hatzimanikatis papers that also concentrate on
‘global’ structures and metrics, giving little if any consideration to the node
level measures that both papers do identify as an issue.

Booch [Booch2000], Hassan [Hassan2001a] and Hassan & Holt [Hassan2001b]
also discuss the macroscopic structure of web systems. In Hassan’s case
this is mainly out of a concern to be able to reverse engineer web system
architecture. The representations they provide for the modelling of such
systems are shown in figures 3 and 3

Web
Browser

Web
Server

Application
Server

File
System

DATA

External
Systems

Figure 3: Booch - Diagrammatic Representation of a Web System

In both cases, the architecture is essentially three-tiered, comprising a browser
(end user), Web Server (middleware system) and Application Server.

Fine detail within these systems differ but Booch alone directly illustrates the
filesystem level as an important component. Booch’s analysis goes a little
further by classifying the right-hand side of his diagram (Fig. 3) as more
in keeping with ‘traditional’ client-server systems, while the left-hand side

14

Web
Browser

Web
Server

Application
Server

Application
Page

Objects DatabasesImages,
video, etc

Web
Pages

Figure 4: Hassan - Diagrammatic Representation of a Web System

details the more newer web-based extensions to the process, an evolution from
more traditional software. The elements of the user interface and network
are added at this point, concurring with other analyses of the properties of
web projects. Hassan’s system is rather more abstract, in that it uses the
application server to acess obejcts or databases of some description. The
mechanism for doing so is not specified.

3.1 “Web Engineering is Not Software Engineering”

Warren [Warren2001b], suggests that web sites obey Lehman’s Laws of Soft-
ware Evolution but also that web systems require one type of maintenance
that is not extant in standard software, speculative maintenance.

Powell, once again, spends a great deal of time considering the web in terms
of software engineering [Powell1998c]. Part of this consideration is a list of
properties of a well-engineered web site:

1. Correctness - The site performs its specified functions and does so as
if error free. Correctness is a difficult quality to specifiy entriely: sites
that may appear to be correct may contain incorrect (invalid or badly
formed) components..

2. Testablity - The site can have functionality and usabilirty tested as
thoroughly as possible, preferably with test data and test scenarios for
sites containing interactive components.

3. Maintainability - Making changes to the site should be as easy as
possible, including the ability to make small changes or even to add or

15

delete entire sections easily.

4. Scalablity - The site is able to support increases in the number of
users. The site should also be able to be ported to other servers easily,
for the purpose of mirroring or clustering, for example.

5. Reusability - The site should be copmponent-based where possible,
allowing developers to re-use similar code in other projects, or to adapt
code from other sources.

6. Robustness - The site should be able to be used by users with the
confidence that services will be available and properly functioning. This
applies not only to interface issues, but also those of bandwidth, server
uptime and properly functioning back-end components.

7. Readability - Source files and resources used to build site components
should be perspicuous for developers, once again aiding maintainability.
Many of the issues involved, such as commenting and formatting of
source code are those that apply in ‘traditional’ programming.

8. Well-Documented - Well-documented sites aid maintainability, in
that the project history is there for future maintainers to see and con-
sult when needed. The importance of on-line help for users as sites
expand should also not be underestimated.

9. Appropriately Presented - The function and target audience of the
site should be key considerations for developers when developing inter-
face components..

These qualities are more specific restatements of Pressman’s application of
sound engineering principles. The first six items certainly describe the quality
of the product in engineering terms. Two of the final three items also define
the quality of the systems for its developers, alluding the more inclusive
concept of habitability (q.v.) of a system for all of its users. The very
last items refers to user interface creation and branding within commercial
projects.

Powell does however state, quite categorically, that web and software engi-
neering are different. This is mainly as a result of the more document and
content-focused nature of many sites and also because of the culture of the

16

developer base. With a large emphasis upon user interface, the aesthetics of
the system take a much more prominent role.

17

4 Webware, Software, Documents

and Hypermedia

As has been discussed earlier, most of the earlier literature (and much of
the later lierature too) identifies clear parallels between web and software
systems. Even considering the work of people like Booch, Pressman et al,
there is little at present to connect the two areas in any significant way.
Little progress has seemingly been made since the first publications in the
late 1990s.

4.1 Webware as Software

The programmes for the major software evolution conference ISPSE / IW-
PSE 4 have contained nothing specifically related to web evolution in the
recent past, while the ICSM conference the has the WSE workshop on web
evolution co-located with it. Generally, the software evolution community
appears to be paying liittle attrention to the specific problem of web evolu-
tion.

The work of Boldyreff and at the Research Institute in Software Engineer-
ing (RISE) in Durham in the UK, amongst others, does try to place Web
engineering within a wider software engineering context. RISE has, in the
past, and is continuing today, to do a great deal of research in the area
of software metrics, but most particularly in the field of software systems
evolution and in the field of web maintenance, evolution and metrics (viz.
WWWMaint, the WWW Maintenance project and WebSEM-Web Site Eval-
uation Metrics, in conjunction with CIC Scarborough) [RISE2001]. Much of
this work has connections with the work of Lehman and his laws of software
evolution ([Lehman1985],[Lehman1999] inter alia), which is a starting point
for some of Warren’s work [Warren2001b], [Warren1999]. There are also
weaker connections to more general software evolution, apparent in the work
of Glover [Glover2001], also working at Durham, who describes the improve-
ment of software systems to allow easier maintenance. His work describes
the problems of adapting software systems when its environment changes
(environment being anything with which the software interacts). He spec-

4the International Symposium / Workshop on Principles of Software Evolution

18

ifies an agent-based system to help devise self adapting systems to react o
environment changes.

To define the evolution of web systems in terms of software, only manages
to describe web systems purely in software terms. This, given some of the
emerging properties of document systems, and the way in which they (both
documents and their properties) are being considered by those who create
them, is not likely to provide satisfactory answers to the problem of the
nature of the web.

To some degree Warren’s work shares some of these concerns although his
paper presented at WSE2001[Warren2001a] does present the possibility that
web and software systems may be members of a higher level family of engi-
neered artefacts. This is likely to be a rich area of exploration in the near
future.

4.2 Webware as Software-Like Systems

Many software engineers, such as Pressman [Pressman2000a] (q.v.), have
found themselves commenting on the production of web-based systems, There
seems to be a belief in many quarters that web engineering is merely a spe-
cialised case of engineering a software system.

Pressman acknowledges that major differences exist between “traditional”
software engineering projects and web engineering [Pressman2000b]. Most of
these are connected with software lifecycle and the software process, where
many theories about software evolution can be greatly twisted. Lehman’s
laws of software eevolution are applicable but the lifecycle of a web project is
likely to be highly compressed and discontinuous. This can lead to differences
in engineering approach in web systems.

The work of people such as Hassan and Holt as well as commentaries by
Booch amongst others point to an interesting middle ground: WebApps (as
Pressman calls them) are like software systems but are also heterogeneous,
containing different types of components and need to be largely platform
independent. Pressman also identifies some ccharacteristicsof WebApps that
make them distinct from so-called “traditional ” software.

19

• Firstly, development lifecycles for WebApps tend to be shorter 5.

• Secondly, security is a major consideration when using a web based
application.

• Thirdly, the user interface and aesthetics are given a much higher ppri-
ority largely because of their greater role. Unlike software projects
(with the possible exception of hypermedia projects), web projects are
largely much more content driven.

4.3 Webware, Software and the Use of

Software Metrics

As has already been mentioned, web projects appear to be undergoing some
type of development crisis. There are distinct parallels with software projects
of the late 1960s and early 1970s. The discipline of Software Engineering
was defined to help address some of these development issues, signposted by
such papers as Djikstra’s deprecation of the GOTO statement in languages
of the time [Djikstra1968] and the work of Parnas [Parnas1972] and Wirth
[Wirth1971] in calling for more structure, modularisation and re-use. These
are issues that are rising up again in the creation of web systems

Traditional software metrics are broadly comprised of size metrics, complex-
ity metrics and density of comment. Each of these can be measured in a
variety of ways. Object-oriented metrics are primarily applied to classes,
message passing, coupling, cohesion and inheritance. Many class based met-
rics measure the complexity of a class by considering its constituent meth-
ods. Traditional metrics can be applied in these cases. Little of impor-
tance appears to have been done to produce a mapping basis for metrics
between object-oriented systems and node-based hypermedia systems, al-
though object-oriented development methods do exist within hypermedia.

Webware can justifiably be described as a subset of a more generic class
of hypermedia applications, being distributed across a network,scalable but
closed in the sense that the embedded link system is generally not extensible
(at least not in HTML: XML and XLink change this) . We must, therefore,

5Discontinuity notwithstanding

20

also consider whether any current developments in the field of hypermedia
are applicable to webware. As Hall and Lowe comment, however, metrics
in the area of hypermedia are not common[Lowe1999a], Mendes, Mosley
and Counsell’s paper, published in IEEE Multimedia in Summer 2001 (q.v)
attempts to address this situation by attempting to use some existing metrics
to provide a starting point for the production of meaningful metrics. This is
partially successful but does not attempt to consider the role of programming
in the engineering process.

The use of the term ‘programming language’ when applied to HTML/XML
etc. seems not to be well- defined in literature surrounding the subject.
Hall and Lowe do appear to link mark-ups and programming languages to-
gether when they discuss the ‘Publishing Model’ for hypermedia development
[Lowe1999b]. The possibility of being able to apply some software metrics
to mark-up documents appears to be a real one if this relationship can be
established more firmly.

Metrics applicable to the web can be placed into three broad categories, each
containing some overlap with the others:

• Development Metrics are those concerned with the creation of HTML
and other mark-ups, the topology of the hypermedia navigation space
and the creation of other components, whether they are programmatic
like Java applets or servlets, script based like Javascript or PHP or of
other types, such as SVG, Flash, RealMedia etc. These are the already
discussed node and global metrics.

• Deployment Metrics are concerned with how the engineered items
are placed into the server environment and how they interact with other
services, such as databases and mail transport, for instance. This is, in
part, addressed in the work of those like Pitkow, Bray (both mentioned
earlier.) and similar. This is a major part of engineering a web project,
much more so than many in ‘traditional’ software enginering, given
the non-deterministic nature of internet performance. Some may class
these as ‘operational issues’ and not of relevance to the engineering of
the initial system. These may also be classified as global metrics.

• Delivery Metrics are those measures which are applicable to the final
delivery of the artefact mainly characterised by usability and end-user

21

prperformanceetrics. The principal work in this field has been done
by Nielsen and associates amongst others and will not be dealt with
further.

It is a misapprehension to believe that any of these fields are totally distinct
from one another. Measures taken to address issues in one area may have
significant impacts in either or both of the others. This may go some way to
refuting the argument that deployment metrics are not relevant.

Much current work in hypermedia engineering is focused on the application
of the major design methods, Schwabe and Rossi’s OOHDM [Schwabe1995]
and Isakowitz, Stohr and Balasubramanian’s RMM [Isakowitz1995]. Broadly
speaking these two methods are similar in nature although it can be ar-
gued that RMM is slightly more user-centric due to its explicit definition of
construction and run-time testing stages. As mentioned earlier, the object-
oriented nature of these systems suggests that they would be a fertile ground
for the application of some types of object-oriented software metrics. Puz-
zlingly, this seems not to have happened to any great degree. Gaedke and
Gellersen have spent a great deal of time applying Object-Oriented methods
to first hypermedia in general, then more recently, to web systems

4.4 Webware and Document Engineering

The use of the term “document engineering” as applied to the World Wide
Web is also a relatively new one, stemming from the inital work of Bebo
White, discussed earlier, and explored in much of the work defining web
engineering as multi-disciplinary that has already been dicussed. The need
to create ordered and well-made documents seems to have been a key issue
when the first mark-ups were defined in the mid-1970s. An important part of
the development of mark-up languages was a recognition that many different
types of data may need to be represented (in some cases) or referenced,
where representation was not possible 6. Indeed, Rick Jelliffe [Jelliffe1998]
identifies this feature as a highly important one in any mark-up language.
Earlier browsers used the helper application to access the data referenced by
HTML documents in the usual way.

6The SGML standard makes provision for utilising data that the author does not wish
to be, or cannot be, marked up

22

The rise in the use of XML and also in the use of technologies such as XSLT
has resulted in improved engineering of systems because the construction of
such items has required them to be done in a more regular, modular way.
The recognition of the need for engineering principles to be applied to web
documents was noted in a session at WWW6 in 1995 by Bebo White of SLAC
(Stanford Linear Accelerator) 7 In this session at the conference he defines
a ‘Web Document’ as a collection of linked ‘Web Pages’. He also goes on to
define the term ‘Web Document Engineering’ a precursor to the more generic
term ‘Web Engineering’ coined around two to three years later.

Although little published work seems to exist in this specific area at present
there is a definite increase in interest, resulting in the creation of a new
forum, the ACM Symposium on Document Engineering [ACMSDE2001], to
be held in Atlanta, USA in November 2001. Unfortunately, the proceedings
of this conference were not available at the time of writing although they
are expected in the very near future. The call for papers to this conference
acknowledges that, ‘documents’ are no longer static, physical entities’. It
continues, to provide this instructive definition of a document from a more
contemporary viewpoint:

“A document is a representation of information that is de-
signed to be read or played back by a person. It may be pre-
sented on paper, on a screen, or played through a speaker and its
underlying representation may be in any form and include data
from any medium. A document may be stored in final presen-
tation form or it may be generated on-the-fly, undergoing sub-
stantial transformations in the process. A document may include
extensive hyperlinks and be part of a large web of information.
Furthermore, apparently independent documents may be com-
posed, so that a web of information may itself be considered a
document.”

This may seem to illustrate the major difference between software and web-
ware in a traditional sense; documents are designed to be read by humans,
software is to be read by machines. Software source, however, is meant to be

7SLAC ran the first non-European web server, going on-line on December 12 1991,
according to http://www.w3c.org/History.html

23

read by humans, those developing and maintaining the code. In this sense
there can be no doubting that, in the source state, software projects are
also document systems. This, once again, reinforces the idea that web and
software systems may be part of a more general family of artefacts.

4.5 Webware and Hypermedia Systems

Lowe and Hall, during the course of a survey of web engineering practice,
found little, if any, evidence of well-defined metrics extant in the more general
area of hypermedia. Given the amount of work done in the hypermedia field,
this is somewhat surprising. It is, however an area of burgeoning interest
in the software engineering sphere as even more traditional texts such as
Pressman’s [Pressman2000] now make reference to engineering quality in
webware, even though it may only be at a superficial level.

Little attention seems to be being paid to the uncomfortable (for software
engineers) issue of how non-software components are engineered and their
roles within wider systems. For a web project this is a major issue, both in
terms of product and process. This is an issue that the Web-SEM project
was created to address [Boldyreff2001].

Even some of the most recent work (such as that of Ricca and Tonella)
seems to concentrate on the macroscopic structures within web hypermedia.
Little seems to be being written about the previously mentioned relationship
between mark-up languages and what Wirth describes as, “formal notations”
[Wirth1977] rather than programming languages per se. It appears that
little progress has been made from previously mentioned papers published
in 1992 by Botafogo et al. and in 1995 by Hatzimanikatis et al. where
idealised hypermedia systems are modelled, mainly to analyse navigation
and movement through them.

This emphasis upon large scale structure influences work on usability is-
sues [Nielsen2001],[Krug2000]. Few of them sufficiently describe the problem
of the creation and maintenance of web systems from the point of view of
the developer. Nakayama [Nakayama2000] has approached this problem, de-
scribing not only macroscopic design issues but also those of page layout and
conceptual relevance. The technique presented still concentrates on improv-
ing visual layout for the end user’s benefit, placing less emphasis upon the

24

developer’s needs.

Work in large scale hypermedia appears to be like macroeconomic theory:
it may help to explain large scale phenomena like inflation or interest rates
but does not, for instance, seem to explain the operation of smaller systems
such as the markets for certain products or localised behaviours. In a similar
sense, explanations of global navigation do not describe behaviour inside
nodes within that system. As Deshpande and Hansen discuss (q.v), this may
be an issue that is uppermost in the engineering of web systems.

25

5 Is Mark-up a Programming Paradigm?

The architect Christopher Alexander describes the concept of “inhabitabil-
ity” in an architectural system. He asserts that those who finally use the
structure are not, in fact, its only users. Even those who build and maintain
such systems also need to use it in some way. Good architecture also takes
account of the needs of these users. Thus, the engineering quality of a web
system affects not only its end users but also those who ‘inhabit’ the code
while writing, testing and maintaining it. In building such systems the needs
of the developer must also be given appropriate weight.

This is a subject spoken about by the programmer Richard Gabriel in his
book ‘Patterns of Software’, [Gabriel1996a]. The importance of building
code that is easy for developers to ‘inhabit’ is an established one for normal
software systems. Software metrics attempt to quantify the factors that
developers feel to be important indicators of code’s complexity compared to
its ease of use.

Although not widely accepted and controversial, there are a very few sources
who classify HTML (and markups generally) as VHLLs (Very High Level
Languages) in much the same way that a language such as SQL might
be [Frostburg2000]. Even Lowe and Hall, as discussed previously, make at
least some connection. Open as this point is to argument, it has not pre-
vented some from attempting to provide more conventional measurements
for HTML. Capers Johnes [Johnes2001] provides figures for function points
within HTML, classifying it as a Very High Level Language in a similar
grouping to languages like Perl and Python.

Such languages are more naturalistic for programmers (and non-programmers)
and are generally more declarative in nature. The number of volumes that
introduce users to “programming in HTML” are too numerous and written
by those with sufficient knowledge of the subject for them all to have confused
terminology. This suggests that many do perceive HTML as a programming
language of sorts but the lack of literature that states it explicitly is a highly
puzzling state of affairs.

More contentiously, they may also be more suited to visual programming
methods. They are also generally highly limited in scope and are not useful
for general purpose activity, as are many lower level languages. Previous

26

internal discussion papers [Stephens2001a], [Stephens2001b] have proposed
similar ideas to explain why some types of software metric may be appropriate
for measuring quality in web hypertext systems.

27

6 Conclusion

Most of the work so far in the field of Web Engineering has focused on only
a few specific areas. This is perhaps not so surprising, given the highly dis-
parate nature of web systems and the inherent difficulties in trying to tie
them together cogently. In the web’s infancy, the major research concerns
centred around the topology of the web and delivery of services. The engi-
neering quality of the sites themselves were not considered formally. Early
webmasters developed support networks, used ad hoc engineering methods
and passed them on as best practice. Thoughts about the engineering quality
of web systems only started to become a pressing issue as the size of projects
started to balloon.

The time when such ad hoc methods could be relied upon as a method of
ensuring quality has now passed: the size of web projects necessitates group
working and production of such systems on a large scale.

Now that the engineered quality of web systems is being more actively con-
sidered the work divides into several relatively distinct areas, each flawed in
some small way as part of a larger picture.

One of these areas is ‘Idealised Hypermedia’, as seen in the work of Hatzi-
manikatis et al, Shneiderman et al and latterly with Ricca & Tonella. Each
of them concentrates mainly on hypermedia systems at the global level, only
focussing on those metrics. Node-based measures are hardly considered at
all.

Others, like Boldyreff, for example, seem to consider web systems simply as
adjuncts to software systems. This attitude persists because, seemingly, only
the software components of such systems are being considered and not the
mark-ups contained at the node level. The role and nature of markup itself
seems to have been largely forgotten or relegated to a level of little impor-
tance in the wider scheme of web systems development, possibly beacause the
production mark-up it is not considered as a type of software development.

Document engineers, if the evidence of recent activity is to be believed, are
beginning to re-evaluate the function and role of documents. There is a grow-
ing appreciation that documents are now no longer static entities. There is
seemingly no acknowledgement, however, that the construction of a docu-

28

ment system has some visible similarities to the construction of software
systems.

There appears to be little or no work of a more ‘holistic’ nature with regard
to web engineering. Such a hybrid approach, mixing programming paradigms
with the creative process of content creation, would seem to be a necessity
given the web’s rapid evolution and its need to be a truly heterogeneous
cross-platform environment. Once the relationship between software and
document system is more clear, the application of appropriate metrics can
be considered afresh.

29

References

[ACMSDE2001] Munson EV, ACM Symposium on Document Engineer-
ing, Available on-line at
http://www.documentengineering.com/ Accessed: Octo-
ber 12 2001

[Berghout1999] Berghout E, van Solingen R, The Goal / Question / Met-
ric Method, McGraw-Hill, 1999

[Berners-Lee2000] Berners-Lee T,Weaving The Web, TEXERE, 2000, pp38-
46

[Bieber1998] Bieber M, Hypertext and Web Engineering, In Proc.
9th ACM Conference on Hypertext and Hypermedia:
Links,Objects, Time and Space-Structure in Hypermedia
Systems, 1998, pp277-278

[Boehm1988] Boehm BW, A Spiral Model of Software Development and
Enhancement, Computer 21(5), May 1988, pp61-72

[Boehm1997] Boehm BW, Devnani-Chulani S, Egyhed A eds, Knowl-
edge Summary: Focused Workshop on Rapid Application
Development, USC, Los Angeles CA, USA, 23-27 June
1997.

[Boldyreff2001] , Boldyreff C, Warren P, Gaskell C, Marshall A, Estab-
lishing a Measurement Programme for The World Wide
Web, In Proc. 2001 Symposium on Applications and the
Internet-Workshops, (SAINT 2001 Workshops), IEEE,
2001

[Booch2000] Booch G, The Architecture of Web Applications, Avail-
able on-line at IBM Partnerworld for Developers,
http://www.developer.ibm.com/library/articles/-
booch web.html, Accessed: October 12 2001

[Botafogo1992] Botafogo RA, Rivlin E, Shneiderman B, Structural Analy-
sis of Hypertexts: Identfying Hierarchies and Useful Met-
rics, ACM Transactions on Information Systems 10(2),
April 1992, pp142-180

30

[Bray1996] Bray T, Measuring the Web In Proc. 5th WWW Confer-
ence, Paris, France, 1996

[Bush1945] Bush V, As We May Think, The Atlantic Monthly, July
1945

[Conkin1987] Conklin, J Hypertext: An Introduction and Survey, IEEE
Computer, 20(9), September, 1987, pp17-41

[Dalton1996] Dalton S, A Workbench to Support Development and
Maintenance of World-Wide Web Documents, Available
Online at :http://www.dur.ac.uk/ dcs0cb/workbench/,
Accessed November 10 2001, Department of Computer
Science, University of Durham, UK, 1996

[Deshpande2001] Deshpande Y, Hansen S, Web Engineering: Creating
a Discipline among Disciplines, IEEE Multimedia 8(2)
April-June 2001, pp82-87

[Djikstra1968] Dijkstra EW, Go To Statement Considered Harmful,
CACM, 11(3), March 1968, pp147-148

[Englebart1963] Englebart DC, A Conceptual Framework for the Augmen-
tation of Man’s Intellect, In Vistas in Information Han-
dling,Spartan Books, pp1-29, 1963.

[Englebart1995] Englebart, DC, Boosting Our Collective IQ - Selected
Readings, Bootstrap Institute/BLT Press, 1995

[Frostburg2000] Survey of Programming Languages,
Available on-line at:
http://www.frostburg.edu/dept/cosc/htracy/cosc120/
MODULES120/NetPL/PL Net.htm,
Accessed November 2, 2001,
Last alteration date: December 13 2000, Department of
Computer Science, Frostburg State University MD USA,
2000

[Gabriel1996a] Gabriel RP, Patterns of Software, Oxford University
Press, 1996

31

[Gaedke1999] Gaedke M, Gellersen HW, Schmidt A, Stegem’́uller U,
Kurr W)Object-oriented Web Engineering for Large-scale
Web Service Management, Thirty-Second Annual Hawaii
International Conference On System Sciences (HICSS-32)
Maui, USA, January 5 - 8, 1999.

[Gellersen1998] Gellersen HW, Gaedke M, An Object-Oriented Model (not
only) for Hypertext in the Web, HTF5: The Fifth Inter-
national Workshop on Engineering Hypertext Function-
ality into Future Information Systems, 20th International
Conference on Software Engineering, Kyoto, Japan, April
1998.

[Glover2001] Glover JJ, Inherently Flexible Software, PhD Thesis, Uni-
versity of Durham UK, 2001

[Google2001] , Google.com, Available online at:
http://www/google.com, Accessed November 16 2001

[Hassan2001a] Hassan AE, Architecture Recovery of Web Applications,
MSc Thesis, University of Waterloo, Ontario, Canada,
2001

[Hassan2001b] Hassan AE & Holt RC, Towards a Better Understanding
of Web Applications, In Proc. Third International Work-
shop on Web Site Evolution WSE 2001, Florence, Italy,
November 2001,

[Hatz1995] Hatzimanikatis AE, Christodoulakis D, Tsalidis CT,
Measuring the Readability and Maintainability of Hyper-
documents, Software Maintenance: Reasearch and Prac-
tice. Vol 7, pp77-90

[Isakowitz1995] Isakowitz T, Stohr EA, Balasubramanian P RMM: A
Methodology for Structured Hypermedia Design, CACM
38(8) August 1995, pp34-44

[Jelliffe1998] Jelliffe R, The XML and SGML Cookbook: Recipes For
Structured Information, Prentice Hall 1998

32

[Johnes2001] Johnes C, Sizing Up software, Scientific American, xx(x),
Dec 1998.
Available online at:
http://www.sciam.com/1998/1298issue/1298jones.html
Accessed October 15 2001

[Krug2000] Krug S, Don’t Make Me Think, Que, 2000

[Lehman1985] Lehman MM, Program Evolution, Academic Press, 1985

[Lehman1999] Lehman MM, Software System Maintenance and Evolu-
tion in an Era of Reuse, COTS and Component Based
Systems, IEEE International Conference on Software
Maintenance, Oxford, England, August 30 - September
3, 1999,

[Lowe1999a] Lowe D, Hall W, Hypermedia And The Web: An Engi-
neering Approach, Wiley, 1999, p200

[Lowe1999b] ibid, pp509,510

[Mendes2001] Mendes E, Mosley N, Counsell S, Web Metrics-
Estimating Design and Authoring Effort, IEEE Multime-
dia 8(1) Jan-Mar 2001, pp50-57

[Murugesan1999] Murugesan S et al., Web Engineering: A New Discipline
for Development of Web-based Systems, Online Proc.
1st International Conference on Software Engineering
Workshop on Web Engineering,
http://fistserv.macarthur.uws.edu.au/san/icse99-
WebE/ICSE99-WebE-Proc/San.doc

[Nakayama2000] Nakayama T, Kato H, Yamane Y, Discovering the Gap
Between Web Site Designers’ Expectations and Users
Behavior, In Proc. 9th International World Wide Web
Conference (WWW9), Amsterdam May 15-19 2000,
Available online at: http://www9.org/w9cdrom/start.html

[Nelson1965] Nelson T, A File Structure for the Complex, the Chang-
ing, and the Indeterminate, 20th National Conference,
ACM, 1965

33

[Nielsen2000] Nielsen J, Designing Web Usability: The Practice of Sim-
plicity, New Riders Publishing, 2000, pp10-15

[Nielsen2001] Nielsen J, Available online: http://www.useit.com/ Ac-
cessed October 1 2001

[Oftel2001] The Office of Telecommunications Oftel), Consumers?
use of Internet Oftel residential survey Q6 August 2001,
Available Online at:
http://www.oftel.gov.uk/publications/research/2001/
q6intr1101.htm, Published november 4 2001, Accessed
November 18 2001

[Parnas1972] Parnas, DL, On the Criteria To Be Used in Decompos-
ing Systems into Modules, CACM 15(12), December 1972
pp1053 - 1058

[Pitkow1995] Pitkow JE, Summary of WWW Characterizations, In
Proc. 7th WWW Conference, 1998

[Powell1998a] Powell TA, et al, Web Site Engineering: Beyond Web
Page Design, Prentice Hall, 1998

[Powell1998b] ibid, pp16,17

[Powell1998c] ibid, pp25-49

[Pressman2000] Pressman, RS, Software Engineering: A Practi-
tioner’s Approach (European Adaptation), (Fifth Edi-
tion), McGraw-Hill, 2000

[Pressman2000a] ibid, pp813-842

[Pressman2000b] Pressman, RS, What a Tangled Web We Weave, IEEE
Software, 17(1), Jan 2000, pp18-21

[Pressman2000c] Pressman, RS, Software Engineering: A Practi-
tioner’s Approach (European Adaptation), (Fifth Edi-
tion), McGraw-Hill, 2000, pp813-842

34

[Ricca2000a] Ricca F, Tonella P, Web Site Analysis: Structure and
Evolution, In Proc. 2nd International Workshop on Web
Site Evolution, WSE 2000, Zürich, Switzerland, 2000

[Ricca2000b] Ricca F, Tonella P, Visualisation of Web Site History, In
Proc. 2nd International Workshop onWeb Site Evolution,
WSE 2000, Zürich, Switzerland, 2000

[RISE2001] University of Durham, Research Institute
in Software Evolution, Available online at:
http://www.dur.ac.uk/CSM/, Accessed November
23 2001

[Schwabe1995] Schwabe D, Rossi G, The Object Oriented Hypermedia
Design Model, CACM 38(8) August 1995, pp45-46

[Somerville1989] Somerville I, Software Engineering - Third Edition,
Addison-Wesley 1989

[Stephens2001a] Stephens D, What Is Software?, Unpublished Paper Uni-
versity of Hull, 2001

[Stephens2001b] Stephens D, What Is A Document?, Unpublished Paper,
University of Hull, 2001

[Stross1996] Stross C, The Web Architect’s Handbook, Addison-
Wesley, Harlow UK, 1996, p180

[W3C2001] World Wide Web Consortium, Online at
http://www.w3c.org, Accessed October 30 2001

[Warren1999] Warren P, Boldyreff C, Munro M, The Evolution of Web-
sites, in Proc. International Workshop on Program Com-
prehension IWPC99, Pittsburgh PA, USA, IEEE Com-
puter Press 1999 Submitted November 2001

[Warren2001a] Warren P, Gaskell C, Boldyreff C Preparing the Ground
for Website Metrics Research,
In Proc. Third International Workshop on Web Site Evo-
lution WSE 2001,
Florence, Italy, November, 2001

35

[Warren2001b] Warren P, The Evolution of Websites, PhD Thesis, Uni-
versity of Durham, Submitted November 2001

[WebE2001] Murugesan S ed., WebE Home Page, Available Online at:
http://fistserv.macarthur.uws.edu.au/san/WebEhome/
Accessed November 16 2001

[White1996] White B, Web Document Engineering, Available Online
at: http://www5conf.inria.fr/fich html/slides/tutorials/
T14/all.htm, Accessed November 10 2001

[Wirth1971] Wirth, N, Program Development by Stepwise Refinement,
CACM, 14(4), April 1971, pp221-227

[Wirth1977] What Can We Do About the Unnecessary Diversity of
Notation for Syntactic Definitions, CACM 20(11) Nov
1977, pp822-823.

[Zelnick1998] Zelnick N, Nifty Technology and Nonconformance. The
Web in Crisis, Computer, 31(10) October 1998, pp115-
116,119

36

