
Integrating the Web and the World:
Contextual Trails on the Move

Frank Allan Hansen
Niels Olof Bouvin

Bent G. Christensen
Kaj Grønbæk

Depart. of Computer Science
University of Aarhus, Denmark

Torben Bach Pedersen
Depart. of Computer Science
Aalborg University, Denmark

Jevgenij Gagach
Euman Ltd., Denmark

ABSTRACT
This paper presents applications of HyCon, a framework for con-
text aware hypermedia system. The HyCon architecture encom-
passes annotations, links, and guided tours associating locations
and RFID- or Bluetooth-tagged objects with maps, Web pages, and
collections of resources. The user-created annotations, links and
guided tours, are represented as XLink structures, and HyCon in-
troduces the use of XLink for the representation of recorded geo-
graphical paths with annotations and links. The HyCon framework
extends upon earlier location based hypermedia systems by sup-
porting authoring in the field and by providing access to browsing
and searching information through a novel geo-based search (GBS)
interface for the Web. Interface-wise, the HyCon prototype utilizes
SVG on an interface level, for graphics as well as for user interface
widgets on tablet PCs and mobile phones.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]: Hypermedia

Keywords
Context aware Hypermedia, XLink, SVG, Open Hypermedia

1. INTRODUCTION
The ability to access the Web from mobile devices has become
commonplace with Web and WAP browsers found in many mobile
phones and PDAs. Limitations found in these devices provide a
number of challenges, such as limited storage, bandwidth and pro-
cessing power as well as small screens. Much work [4, 7, 14, 20]
have been done to address these limitations and provide a satisfac-
tory user experience. Hand-held devices have some unique advan-
tages compared to more stationary computers: They are mobile, in-
the-field, and they can to an increasing degree determine their own
location with high accuracy. Knowledge of location can be used to
offset the constraints of small user interfaces by automatically pro-
viding the user with localized information. While location-based
information systems for, e.g., tourists, are well known [5], these
systems usually rely on predefining all available information. This
reliance on special purpose authored content is unfortunate, as it

puts the onus of creating content on the maintainers of the system
rather than on its users or the Web in general. Furthermore, users
should certainly be allowed to add their own material and observa-
tions to a system.

We present in this paper applications of the HyCon framework for
context-aware mobile hypermedia. The HyCon architecture en-
compasses user authored annotations, links, and guided tours as-
sociating locations with maps and Web pages. The architecture
provides a general SVG based user interface deployable on a num-
ber of devices ranging from mobile phones to tablet PCs. The sys-
tem uses SVG in a novel way to provide application integration.
The paper also demonstrates the use of location derived addresses
for seeding Web searches—Geo-Based Searching (GBS). GBS is
used to alleviate the problem of relying on specially authored con-
tent found in many location-based information systems. The main
goals in the development of HyCon have been to:

Extend hypermedia to the physical world:hypermedia in the phys-
ical world should allow users to link and tag physical lo-
cations and objects with digital content such as multime-
dia documents and comments similar to traditional hyperme-
dia systems. HyCon aims at going beyond existing mobile
guide, navigation, and browsing systems and support users
in both creating and retrieving hypermedia structures in the
field. An important contribution of this paper is the illus-
tration of support for the classical hypermedia mechanisms
for browsing, searching, annotations, and guided tours in the
physical world, allowing users to link objects in both digital
and physical space.

Support automatic collection of context information:hypermedia in
the physical world necessitates awareness. Information pro-
duced by users should automatically be tagged with context
information allowing later retrieval through either browsing
or searching of the context. Integrating physical sensors into
the hypermedia system and utilizing sensor data can auto-
mate this process. Structuring information by context can
thus be handled “behind the scenes” requiring no explicit
user action.

Support social computing:groups of users may utilize the struc-
turing mechanism as a means of communication. This can
include anything from leaving personal tags as “digital graf-
fiti”, restaurant visitors leaving comments for other visitors
to read, to contractors documenting repair work in the field.



Support heterogeneous mobile devices:investigating techniques sup-
porting hypermedia on a wide variety of heterogeneous mo-
bile devices have been a key concern in the development of
HyCon. We address these issues by presenting novel tech-
niques for using SVG for application integration as well as
a presentation medium for hypermedia structures on devices
with very different network and interface capabilities.

The work in this paper is done within the ContextIT project in-
volving two industrial partners Euman Ltd. and TeleDanmark Ltd.
The research and prototyping activities have resulted in the HyCon
framework (Section 2–3) and a Symbian SVG browser (Section 4).
A number of concepts from the HyCon prototype such as the anno-
tation facilities and the SVG-based client framework will be inte-
grated in the next version of Euman’s “LifePilot”1.

The paper is structured as follows: The HyCon framework is de-
scribed in Section 2. Section 3 describes the prototypes produced
so far and delves into the intricacies of expressing geo-spatial hy-
permedia in XLink. Section 4 describes our use of SVG. Section 5
covers related work, Section 6 describes directions for future work,
and the paper is concluded in Section 7.

2. THE HYCON FRAMEWORK
The HyCon framework and architecture for context-aware mobile
hypermedia was developed to provide a general platform suited for
experiments with hypermedia mechanisms in a context-aware and
mobile environment as described in detail in [3].

The logical layers and infrastructure of the architecture are seen
in Figure 1, where four layers divided into Storage, Server, Ter-
minal, and Sensor. The bottom layer, the Storage layer, handles
persistent storage and retrieval of hypermedia structures produced
in the system. The Server layer includes components handling an-
notation, link, location, and Search functionality. The functional-
ities of these components are offered through services implement-
ing the Service Interface, which is realised as Web Services and
Java servlets. Through these interfaces applications in the Terminal
layer communicate with the services in the Service layer. Applica-
tions in Terminal layer are not limited to a specific platform, but
may be running on a variety of hardware platforms and software
environments (phones, tablets, laptops, Web browsers). The key
property of the HyCon framework is the last layer, the Sensor layer.
This layer is introduced to logically group all sensors deployed to
obtain contextual information. The sensors may be further divided
into two categories:local sensorsandremote sensors.

Local sensorsare attached directly or integrated with the equip-
ment on which the sensed information is used. This kind of sensor
can also be described as private sensors, since they only supply
contextual information directly to a single application. Examples
of this type of sensor are: phone cameras, built-in infra red sensors,
built-in sound recorders, and GPS receivers.

Remote sensorsoffer the sensed information through a network
connection. These sensors can also be described as public sensors,
as they are often placed at a fixed location, from where they provide
their contextual information to any (approved) application. Exam-
ples of these sensors are RFID tag readers, and Bluetooth sensors
sweeping the area for nearby Bluetooth units. To avoid misuse of
these public sensors, an authentication mechanism similar to the
1http://www.life-pilot.com/ (in Danish)

Trail ServiceAnnotation Service...

eBag/MediaTrayHyconExplorer...

Data Data Data

Storage Layer

Server Layer

Components

Components

Terminal Layer

Sensor Layer

Data layer

Search

Server communication

Bluetooth communication

Weather

GPS abstraction ...

Profile Location Annotation Link

Service Interfaces

Sensor Interfaces

Infra structure

MySQL

HyperContext
Server Components

Servlets,
Web services

Symbian applications,
Tablet applications,
Web browsers

Sensor abstraction

Data layer

Sensor equipment

Bluetooth ID

Weather

RFID

Sound recorder

CameraGPS unit IR

...

Service Interfaces

Local Sensors Remote Sensors

Figure 1: The HyCon service framework architecture. The
framework is divided into four layers: the Storage layer, the
Server layer, the Terminal layer, and at the top the Sensor layer
providing sensed data for the terminal applications.

one used by most Wireless Lan access point could be deployed e.g.,
filtering by MAC-address, IP number, or IP subnet.

All sensors in the Sensor layer can be accessed from applications
in the Terminal layer through a Sensor interface, which provide an
abstraction for local as well as for remote sensors.

2.1 Data model
The HyCon hypermedia model has been designed to support mod-
eling of context information, annotations, link trails, and general
objects representations. The data model have similarities with ear-
lier hypermedia data models, e.g., the OHSWG data model [18],
but additionally focuses on modeling context information.

The data model is illustrated in Figure 2 using Whitehead’s Con-
tainment Model notation [27]. All objects in the model are de-
scribed as subclasses of the abstractAbstractObject class. In-
stances of its subclasses all share common attributes: they all have
globally unique identifiers (GUIDs), meta-data describing their cre-
ator and modification time-stamps, and a set of property-value pairs.
Instances of theContext class are composites, which can hold
other objects belonging to the same physical or digital context. Ob-
jects from theLocation class represent physical locations and
are used as the primary mechanism for identifying physical loca-
tions in the model. TheAnnotation class represent the data
model’s support for annotations. Annotations can include multi-
media content such as text, images, sound, and video. Annotations
can be associated with any type of object derived from theObject
class. Hence, the model supports the general notion of annotations
annotating other annotations. Links and link trails are modeled by
theLink , Arc , andLocator classes describing XLink [8] based
structures on top of the other objects in the system. The Locator



AbstractObject Property ValueId

Attributes
Object

Context Location Annotation

Body Link

Arc Locator

Href Geotag

1

N

M

1 NM1

N

M

1 1

2

Figure 2: The HyCon framework data model.

objects are used to represent digital resources reachable by a URI
in the model with Arc objects specifying the traversal behavior of
the link. The data model has been generalized to support linking
instances of the genericObject class and thus support easy link-
ing of Locator -type objects as well as classes derived from the
Object class. TheGeoTag class is used to tag elements directly
with URIs (e.g., to tag a location with a descriptive Web page).

3. THE HYCON TABLET PC PROTOTYPE
The HyConExplorer is a terminal layer application prototype. The
prototype is implemented in Java and runs on tablet PCs connected
to the network through WLAN or GPRS connections on cell phones.
The tablet PCs are equipped with cameras for capturing images,
video, and audio. The user’s physical location is registered through
a small Bluetooth-enabled GPS unit (see Figure 3).

The HyConExplorer GUI in use is seen in Figure 4. The interface is
divided into three views, where the map view at the left presents the
hypermedia structures of nearby locations placed as a layer upon a
digital map of the area. A red dot representing the current location
of the user. The hypermedia structures are presented in different
views: at the top right view, the structures are organized in a list
by their name. There is a direct correspondents between the two
views. When a link marker is activated on the map the correspond-
ing representation in the list is highlighted and selected, and vice
versa. This allows the user to choose the most convenient way to
access the hypermedia structures in a given situation. The last view
at the bottom right displays information of the selected structure
e.g., an annotation.

The HyConExplorer also supports presentation on large displays
of material produced or found with the system. A presentation is
created by selecting annotations and adding them to a slideshow
structure. The slideshow can then be displayed in full screen mode
with the HyConExplorer and the tablet can be connected to a pro-
jector as a convenient way to present the collected material.

3.1 Location-based hypermedia functionality
HyCon adds context-aware support to the classical hypermedia con-
cepts of browsing, searching, and creating and following links,
annotations and guided tours. Using the HyConExplorer system,
users can create links, annotations, and trails of links, which are au-
tomatically tagged with context information sensed from the phys-
ical environment. When moving about in the physical world, these
hypermedia structures are presented to the user, if the user’s con-
text matches that of the structures. Similarly, automatic execution

Figure 3: Context-aware hypermedia on a mobile tablet PC
with camera. The tablet has network connection through a
Bluetooth and GPRS enabled cell phone and reads GPS coor-
dinates from a Bluetooth GPS unit.

of searches through unstructured Web resources for information re-
lating to user’s context may be initiated when parameters change in
the user’s physical context (time, location, etc.). In the following
we describe how context information can be utilized when brows-
ing, searching, and creating hypermedia structures.

3.1.1 Location-based browsing
We have in HyCon experimented with both explicit user controlled
browsing (as found in, e.g., Web browsers) as well as implicit brows-
ing, where the user initiates browsing by moving around. Thus,
the user can engage inindirect representational navigationanddi-
rect physical navigation[13]. Indirect representational navigation
is browsing information related to an area without necessarily be-
ing present, e.g., clicking on a map over a city or studying a list of
museums. Direct physical navigation on the other hand is linked
to time and space, as the information presented to the user is deter-
mined by the user’s whereabouts. This approach has found use in a
number of tourist guide systems, such as GUIDE [5], where infor-
mation presented to the user depends on location (which attractions
are nearby) and time (which of these are open).

Browsing the hypermedia structures through direct physical navi-
gation requires no explicit user intervention—the action takes pla-
ce “behind the scenes”. The mobile client captures contextual in-
formation from the physical environment and sends it to the Hy-
Con server where it is mapped to relevant hypermedia structures.
Hence, instead of browsing through information in the digital space,
users may “bump into” information resources by simply chang-



ing their position in physical time and space. We see this kind of
browsing as an interesting alternative to the common indirect repre-
sentational navigation, especially when dealing with small mobile
devices with limited interfaces and input controls, where traditional
browsing easily becomes tedious.

3.1.2 Geo-based search
The HyConExplorer prototype supports the notion of Geo-based
search (GBS). In essence, GBS is Web searches augmented with
information about the user’s current location. The goal of GBS
is to limit search results to pages covering both a topic of interest
(specified by user supplied key words) and the particular geograph-
ical area the user is located in. This mechanism is especially useful
when using small devices with limited display capabilities and poor
support for browsing through large numbers of search results.

The majority of Web pages related to locations (such as landmarks
or many businesses) are not indexed according to their physical lo-
cation, as proposed by standards such as GeoTags2 and GeoURL3.
However, most such Web sites include their postal addresses and
these addresses are indexed by search engines. The postal ad-
dresses can then later be retrieved as exemplified by Google’s “Search
by Location” service4. Thus, to use existing search engines not
prepared for location-based searches, the search criteria has to be
formulated in a way appropriate for their indexing techniques.

When using GPS sensor equipment, location information acquired
from the sensors is typically encoded as UTM (x,y)-coordinates or
(longitude, latitude)-pairs. Since existing mainstream search en-
gines such as Google do not index pages by these GPS coordinates,
the coordinates have to be transformed to some other information.
We achieve this by mapping the coordinates to postal addresses.
A database of all public postal addresses in Denmark and their
GPS coordinates is freely available from the Danish chart provider
KMS5. Using this database as the basis, mapping raw location in-
formation to textual postal addresses provides much more useful
input to search engines. As discussed in section 5, McCurley [17]
describes several other approaches to determining the geographi-
cal location of Web pages making it possible to support searching
schemes like GBS.

The current implementation of the GBS component uses Google
as the back-end search engine and utilizes the Google Web APIs6.
From the GPS coordinates the names of every street within a fifty
meters radius is determined and optionally combined with user sup-
plied key words to formulate search strings. The matching Web
pages contains the keywords and the postal address printed some-
where in the pages. Currently, we return the first ten search results
for each street name with no further filtering. The search result is
then plotted onto a map over the searched area to intuitively present
the connection between geographical locations and Web pages.

Figure 4(a) illustrates this kind of browsing and searching in the
HyConExplorer prototype. Based on a few search terms and the
captured context information, the context server has located two
roads near the user matching the search. Search hits are marked
as dots on the digital map. When activating a link marker, the link

2http://www.geotags.com/
3http://www.geourl.org/
4http://labs.google.com/location/
5http://www.kms.dk/
6http://www.google.com/apis/

endpoint is presented by a snippet of text. If the endpoint looks
interesting it can be viewed in an external viewer (Web browser,
video player, etc.).

3.1.3 Location-based link trails
The HyCon data model implements a link mechanism based on the
XLink standard [8]. This has resulted in a model supporting2-ary
links linking external Web pages to objects in the link-base and
general extended links (n-ary links) linking a collection of objects
(typically locations) into a single logical trail through the objects.

XLink is a W3C recommendation for an XML based hyperme-
dia format. XLink is a general XML format designed to describe
navigational hypermedia, and to allow expressions of navigational
hypermedia to be inserted into XML documents. While the main
application of XLink is expected to be linking within XML doc-
uments, the standard itself is not limited to address solely XML
locations. XLink supports simple links similar to the links cur-
rently found on the Web (i.e., unidirectional one-ary links), as well
as extended links, which can be bi-directionaln-ary typed links
stored externally to the constituent documents. An extended link
consists of anextended -type link element containing a number
of locator -type child elements designating remote resources (or
resource -type elements holding local resources). XLinkarc -
type elements are used to describe traversal order in a link (i.e.,
from one resource to another).

HyConExplorer supports users leaving trails of information as they
move about in the physical world. Similarly to many tourist guide
systems which features (predefined) guided tours or direction spec-
ifications to points of interest in e.g., larger cities, these user created
trails can viewed and followed by other users present in the same
area. However, combined with the annotation facilities the trail
may serve as personalized impressions of a given area and even
allow users to share their impressions through discussions linked
to point of interests along the trail. Figure 4(b) illustrates a user
browsing through such a trail in the HyConExplorer.

HyCon trails are structured as extendedn-ary XLink based links.
The trail structure is a generalization of the XLink based guided
tours implemented in the Xspect system [6]. Each link represent a
trail with location objects designating points of interest along the
trail and arc objects spanning the route between each pair of lo-
cations. Client applications, such as the HyConExplorer, which
implement the full data model and communicate with the HyCon
server through the Web service interface may simply rely on the ob-
jects defined in the linking model when implementing the linking
and trail mechanisms. TheLink , Arc , Locator , andLocation
class objects are identified by their GUID fields and are associated
through object references. However, client applications which do
not implement the data model and communicate with the server
through the CGI interface need to rely on the link structures in
standard XLink format. The conversion from object structures to
XLink files are straightforward. When a link structure has been
computed by one of the server components, atoXML() method
is called for each object. This method generates a generic XML
representation of the objects which is passed through the XSLT
stylesheet filter before the structures are returned to the client. The
stylesheet filter transform the generic XML representation to an
XLink format structure. However, applications using the CGI in-
terface have no direct access to linked objects but have to make
calls through the CGI interface to retrieve these objects. This is
accomplished by creatinghref -attributes in thelocator -type



(a) Geo-based Search. (b) Following a trail.

Figure 4: Browsing and searching in the HyConExplorer prototype.

elements pointing to services capable of returning a representation
of the object. Consider the following link fragment:

<link xlink:type="extended"
xlink:role="http://fahbentor.daimi.au.dk/gt">

<loc xlink:type="locator"
xlink:href="http://fahbentor.daimi.au.dk:15342\
/contextservices/locationservice?op=getLocation&id=59"
xlink:label="id59"/>

<loc xlink:type="locator"
xlink:href="http://fahbentor.daimi.au.dk:15342\
/contextservices/locationservice?op=getLocation&id=93"
xlink:label="id93"/>

...
<arc xlink:type="arc"

xlink:from="id59" xlink:to="id93"/>
...

</link>

The fragment illustrates part of a trail with anarc -type element
connecting twolocator -type elements. The locators’href -
attributes have been computed in the stylesheet to point to the loca-
tion service on the HyCon server. The exact format used for XLink
format trails can be found in the Xspect DTD7.

3.1.4 Location-based annotations
A significant feature of the HyConExplorer which characterize it
from other related systems is the support for “the user as producer”.
Users are enabled to produce and organize digital situated content.
This facilitates advanced documentation of situations or points (or
items) of interest, and a way to share material with others. To assist
the user in creating material, contextual information provided by
sensors is associated with the material. Context information such
as: the user’s location, time of day, name of the user, and type of
the material is associated with the produced content when saved
and structured in the system. This supports social computing by
allowing users to share material by e.g. leaving comments outside
a restaurant about how tasteful the food is, so that other (potential
visitors) passing by may discover this location relevant material.

3.1.5 Usage Patterns of the HyConExplorer
7http://fahbentor.daimi.au.dk/xspect.dtd

Supporting mechanisms for browsing, searching, annotations, and
guided tours give rise to some typical usage patterns.

Figure 5 illustrates a typical pattern for browsing and searching
based on direct physical navigation and the GBS search technique.
As the user, equipped with a mobile terminal (cell phone or tablet
PC) and GPS receiver, walks down a street, the time and her po-
sition are continuously updated in the system. When either has
changed by a certain delta, the system makes an update request
to the HyCon server (Figure 5(a)). The request includes the con-
text parameters captured by the system, the user’s nimbus, and
any additional user specified search terms (see Figure 5(b)). From
the request, the server computes appropriate search terms and re-
trieves search results from the external search engine. These results
together with any matching hypermedia structures (links, annota-
tions, and trails) stored in the server’s database are returned to the
user (see Figure 5(c)).

Figure 5(d)– 5(f) illustrates a typical pattern for creating annota-
tions in the HyConExplorer. The HyConExplorer is updated with
several existing hypermedia objects relating to the user’s current
location acquired from browsing and searching. Link markers on
the map are displayed for objects which can be annotated: loca-
tions, linked documents, annotations, and search results. The user
chooses, however, not to annotate any of the existing objects but
a nearby area. After having photographed the area and entered a
small comment, the annotation data is sent as a request to the con-
text server together with collected context information. The context
server updates the database with the new location and annotation
data and returns the updated structures to the client. The annota-
tion is now associated with context information and can later be
retrieved by other users on the same location.

4. SVG-BASED CLIENT FRAMEWORK
Developing applications for heterogeneous computing platforms
with different abilities poses a number of challenges, not least of
which is that of the user interface. For the HyConExplorer, we have
been developing on phones with a screen resolutions of 176×208
pixels and tablet PCs with a screen resolution of 1024×768 pixels—
more than 21 times the resolution! Clearly, being able to provide a



NimbusGPS(x,y)

?

(a)

1. Context information
and search terms

2. Computed
search terms

3. Search results4. Hypermedia
structures

HyCon server

External
search
engine

(b) (c)

!

(d)

2. Hypermedia
structures

HyCon server

1. Context information,
media, and annotation data

(e) (f)

Figure 5: A typical pattern for context-aware browsing, searching, and annotation of resources.

comparable user experience at such disparity is quite a challenge.
Furthermore, as we expect future versions of the HyConExplorer
to be ported to other mobile devices with dissimilar screen resolu-
tions, a more general solution is needed.

Scalable Vector Graphics (SVG) [12] has since its recommenda-
tion been a technology in rapid growth. It is a very comprehensive
standard for vector graphics. In addition, through the SVG Tiny
and SVG Mobile standards, it is also realistic to support resolution
independent graphics on hand-held devices. While rich in drawing
primitives, SVG also supports an event model well suited for script-
ing. This facilitates the development of user interface primitives
directly in SVG. Developing user interfaces in SVG has a number
of advantages: SVG is resolution independent; it can provide a rich
interface; and it fits well in a XML production line.

4.1 The Symbian SVG Browser
A special effort has been put into creating an SVG-based “browser”
for the Symbian operating system, with Nokia 7650 and 3650 ter-
minals. We have extended the tools currently available on the Sym-
bian platform with support forSVG scripting, e.g., displaying a
picture when the cursor moves over an SVG item,server communi-
cation, andlocal file management, i.e., with the advanced features
typically found in a PC Web browser with an SVG plugin. This
allows us to create a complete client application using only SVG
with embedded scripts.

Figure 6 shows the following three screenshots from the Mobile
SVG Browser, from left to right: 1) the overview map with in-
dication of the user location (red dot) and two location-based an-
notations (green dots), 2) the screen for making a location-based
annotation, and 3) the picture (of the participating school children)

contained in the location-based annotations. Note that each screen
only contains the most central information and functionality for the
given purpose.

The architecture of our mobile SVG browser is seen in Figure 7.
The box surrounding the top of the figure indicates the functional-
ity available in a PC-based browser and SVG plug-in. The central
entity is the SVG DOM tree (the parsed version of the SVG docu-
ment) (seen in the middle of Figure 7) which contains the relevant
data for display to the user, as well as other data (more on this be-
low). The SVG DOM tree is rendered on the screen by the SVG
plug-in (in the middle top half of Figure 7). We use the BitFlash
SVG plug-in8, which is one of only two SVG viewers currently
available for the Symbian OS. The SVG plug-in provides function-
ality for parsing and viewing the SVG document, as well as read-
ing and manipulating the SVG DOM tree. As the BitFlash viewer
does not yet support scripting, we have invented our own scripting
mechanism, termedpseudo-scripting. Here, we use polymorphic
DLLs written in C++ and compiled for the Symbian platform to
perform the scripting tasks, allowing us to dynamically manipu-
late the DOM tree and thus achieve the benefits of embedded SVG
scripting. The scripts and SVG viewer can issue requests via the
Request dispatcher to a number of runtime services (upper left part
of Figure 7). These include a Data Retriever services for getting
and sending data over HTTP, a File Management service for ma-
nipulating local files on the terminal, and one or more services for
supporting multimedia tools, e.g., JPEG or WMA manipulation.
Finally, a number ofcomponents(bottom right) handle external de-
vices, of such as GPS units, cameras, etc. The components com-
municate with other applications on the terminal using the DOM

8http://www.bitflash.com/



tree, as explained below.

An SVG Web service/application is then implemented by providing
functionality for creating one or more SVG documents in the server
layer (exemplified by Plain.SVG in Figure 7) and sending the SVG
document to the terminal layer, as well as a number of “pseudo-
scripts” on the terminal layer (bottom left in Figure 7) to handle
the (dynamic) aspects of the application logic on the terminal. The
application logic on the terminal layer is (logically) divided into
three parts. First, theContext Handlermanages the context of the
user and the terminal. The location context can be provided in sev-
eral ways, of which we have implemented three: an external Blue-
tooth GPS unit for outdoor positioning, an “Internet Positioning”
that can convert typed-in addresses into locations using an Internet
service, and a barcode-based service that can convert scanned bar-
codes into locations. Additionally, context information about the
time, e.g., time and calendar and the weather is available. Second,
theTools Handlerhandles external or built-in devices that are used
as explicit tools by the user (rather than providing implicit con-
text). Here, we have implemented support for a digital camera and
a sound recorder (both built into the 7650 and 3650). Third, theap-
plication specific logicanalyzes the context and figures out which
tools are available on the given terminal, in order to customize the
user interface. Also, algorithms and decision logic specific to the
actual applications reside here.

4.2 Using SVG for application integration
Communication between the individual parts of the application logic
is done by manipulating the DOM tree and dispatching or receiving
the corresponding DOM events. For example, a GPS receiver cre-
ates an SVG element in the current SVG document with attributes
to represent the geographical coordinates of the GPS receiver and
modifies the attribute when a new coordinate is obtained. It then
creates a DOM event and propagates it to the DOM tree. Any ser-
vice can register for receiving this event and thus be notified when-
ever the coordinate attributes of the GPS SVG element changes. On
the other hand, a camera, e.g., in the mobile phone, will produce a
whole new SVG document, which can then be displayed.

The structure of the SVG DOM tree presented in Figure 8 is as fol-
lows. Under the SVG document root element, we have four major
types of elements. First, we have adefinition layerthat contains
definitions that pertain to the whole document or the application
the document is part of. This includes style definitions as well
as location-based definitions such as the geographical window the
user is interested in. Second, we have the actualdocument contents
layer that contains information to be displayed to the user such as
background maps, road information, points of interest, etc. Third,
the GUI componentslayer defines the controls and widgets to be
used in the user interface, e.g., buttons, radio buttons, text fields,
menus, and pop-up lists. Fourth, theExternal active objectslayer

Figure 6: Mobile SVG Browser Screenshots

... R
eq

u
es

t 
d

is
p

at
ch

er

Multi-
media
tools

REQUEST
EXTERNAL

DATA

REQUEST
NEW

DOCUMENT
Viewer

BitFlash SVG
Plugin

Mobile SVG Browser

Plain.SVG

File
manag
ement

Data
retrie-

ver
over

HTTP

...

SVG Parser

SVG DOM tree

Scripts
(Polymorphic DLLs)

SVG Web Service

Script
N...

Components
(Polymorphic DLLs)

GPS
comp.

Camera
comp.

Script
1

Figure 7: Architecture of the Mobile SVG Browser.

contains information from the devices in the sensor layer. Here, we
have so far implemented support for a Bluetooth GPS receiver, a
digital camera, and a sound recorder. This layer contains informa-
tion that is more or less “internal”, i.e., not necessarily displayed
to the user, to the applications running on the terminal. For exam-
ple, the GPS receiver component will define elements containing
the geographical coordinates of the receiver in both UTM and (lon-
gitude,latitude) formats. This information can then be accessed by
other components and the application logic.

To our knowledge, the fourth layer illustrates anovel way of using
SVG, namely to integrate“internal” application logic and compo-
nents, i.e., functionality that is not directly connected to the GUI.
The application logic/components need only know what informa-
tion in the SVG DOM tree is relevant for them, and then 1) update
the DOM tree and dispatch a DOM event if they want to update
the information, and 2) register to receive the relevant DOM events
when others update the information. For example, the Bluetooth
GPS component may define SVG elements for its coordinates as
described above. Whenever the coordinates change by more than
a few meters, the component will change the coordinates in the
SVG DOM tree and dispatch the corresponding DOM event. This
event will then automatically be forwarded to other components
and/or parts of the application logic that have subscribed to this
event. This could include a background service fetching a new
background map from an Internet service when the user moves out-
side the current map, and a service that uses the Geo-based search
described above to provide content about the users’ surroundings.

The advantages of using SVG/DOM as the integration mechanism
are that they are W3C standards and thus independent of the ter-
minal platform (OS, programming language, terminal hardware),
while at the same time providing advanced mechanisms such as



SVG document root element

Definition layer (container)

Geographical window definition

Styles definition

Document contents

Background maps

Road information, points of interest, etc.

GUI components (container)

Buttons, radio buttons, text fields

Compound GUI components (menu panes, popup lists)

Menu item 1 (list item 1)

Menu item N (list item N)

External active objects (container)

GPS receiver

Camera

Sound recorder

Figure 8: Structure of SVG DOM Tree.

event handling that are normally only available within specific pro-
gramming languages such as Java. Thus, multi-platform services
are much easier to create. Additionally, the individual components
and parts of the application logic need not be aware of each other,
e.g., the application logic just needs to know what the current loca-
tion is, but not how the location is obtained.

5. RELATED WORK
The notion of computers responding according to their users’ im-
plicit stated context is an intriguing and challenging one. The idea
of utilizing location in computing systems was advocated by Mark
Weiser [26], and the concept was further developed by Schilitet al.
[19] and Dey [9, 10]. Dey states that there are three types of
context-aware application support: presentation of information and
services, automatic execution of services, and tagging of context
to information to support later retrieval. The HyConExplorer de-
scribed in this paper illustrates all three modes of operation, indeed
it allows its users to freely annotate and link while in the field.

Context-aware systems have taken advantages of context in differ-
ent ways. Location is a predominant feature used by guide systems
such as the Cyberguide [1], the Touring Machine [11], PARCTab
[25], or GUIDE [5]. These systems differ in scope (e.g., PARCTab
was for indoor use), interface ranging from PDAs (PARCTab) over
tablet PCs (GUIDE) to Augmented Reality goggles (the Touring
Machine). Common is the ability to provide the user with situated
information related to the user’s current surroundings. Location
may be determined through GPS (the Touring Machine), WiFi ac-
cess points (GUIDE), or infrared broadcast (PARCTab). An early
example of a Web based context aware system was Mobisaic [22]—
a modified Mosaic Web browser which could parse dynamically
updated local environment variables (containing e.g., the user’s lo-
cation) in URLs, allowing the user to access Web pages generated
to e.g., reflect the surroundings.

These systems are however largely concerned with situatedbrows-
ing of information rather than situatedauthoring, which has been

an aim of HyCon. While the HyConExplorer presented herein pre-
dominantly relies on location as contextual information (as do most
context aware systems), there are different aspects of context, such
as “digital context” (e.g., the nearest printer or most suitable dis-
play). For a deeper investigation of this topic, see [3]. At this
point, HyCon supports, in addition to location, the use of RFID
and Bluetooth tagged objects for authentication purposes.

Mobile phones have in recent years turned into “smart phones”,
featuring applications such as WAP or Web browsers, email clients,
digital cameras, and Bluetooth. This kind of functionality creates
a new venue for the development of context-aware applications.
Apart from ordinary digital communication such as text and mul-
timedia messaging, this has opened up for a merging of the mo-
bile phone with the Web, few places seen clearer than in the so-
called “Moblog”. Blogs (Web log) are the widespread phenomena
of online journals. The combination of mobile phones and blogs
yields the moblog, where the maintainer can add content from a
mobile phone, so impressions and pictures can be added while on
the move, and thus creating situated content. Lacking is the auto-
matic addition of location, which is left for the maintainer to do.
In addition to moblog, another variant is that of “blogmapping”9,
an endeavor to encode location (using a special XML name space)
into blog entries, thus allowing users to map locations with annota-
tions. Blogging naturally lends itself to social computing, where a
group of users may e.g., collaborate to map all worthwhile clubs or
restaurants in an urban area.

The coupling with online material with location has also resulted in
systems such as the World-Wide Media eXchange (WWMX) [21],
where users can tag images with metadata such as geographical
location, time, and owner. The location tagging can be automated,
providing the user is using a GPS receiver. The images can then
later be shared with others and browsed based on location.

Commercially, some systems have explored the combination of lo-
cation, annotation, and mobile phones, e.g.,TagandScan10. Tagand-
Scan users can annotate a location (determined from their current
(mobile phone) cell) with text, image, and a category (e.g., restau-
rant), and publish this annotation to the general public or just share
it with their friends. Using cell information for location has the ad-
vantages of not requiring a GPS receiver—on the other hand, it is
not supported by all telephone companies and is much less precise.

As described in Section 3.1, there are a number of initiatives advo-
cating the use of geo-tagging Web pages. Should these approaches
become widespread, they will fit nicely within our system as we
would be able to bypass the process of transforming locations into
addresses. McCurley [17] describes several approaches to deter-
mining the geographical location of Web pages. In a sense, we are
interested in the opposite—we alreadyhavea location and desire
related Web pages. Given that we rely solely on nearby addresses,
this is a much simpler approach, given the ability of translating lo-
cations into addresses.

Our approach is similar to the Google Search by Location service,
as both allow the user to search for Web pages given an address.
However, whereas the Google approach requires the user to actu-
ally know (and enter) the address, GBS allows the user to search
for “here”. Our implementation only works for Danish addresses,

9http://www.blogmapper.com/
10http://www.tagandscan.com/



and Google currently supports solely American addresses, but if
Google at a future point added Danish addresses to its database, it
would fit very well indeed with our system.

We are by no means the first to investigate SVG on small devices,
as evidenced by SVG Tiny and SVG Mobile. Technical aspects
apart, there still remains the challenge of adapting SVG content to
smaller screen. This has been considered in [16]. Standard SVG
applications can do scripting of user interface logic through e.g.,
JavaScript, as in [6]. In contrast, we extend the use of SVG to
location-based services on mobile terminals and additionally use
SVG as a foundation for device and application integration.

The current Euman system [15] integrates location-based context
information in onephysical database, based on a sophisticated model
of the road network, i.e., atightly coupled, data warehouse-likein-
tegration approach. Trails in the current Euman system can thus
only be recorded for objects moving solely within the road net-
work, such as cars. In contrast, the HyCon system utilizes hyper-
text constructs to achieve aloosely coupledintegration approach
that allows seamless integration of context information residing in
external sources. Additionally, trails in the HyCon system are not
confined to the road network, but can be defined over any 2D area,
e.g., in a field or a park.

6. FUTURE WORK
The HyConExplorer is, in its current state, quite specific to Den-
mark. It relies on a Danish map service and can only translate
GPS coordinates into Danish addresses. As noted by McCurley
[17], generalized address encoding is not a simple matter, and much
less so is recognizing addresses globally, as schemes vary tremen-
dously. This is however an area, where an bottom-up approach
seems most appropriate—rather than attempting to create an all-
encompassing solution, it is better to solve the problem gradually.
The crucial component with regards to internationalization of the
HyConExplorer is the “GPS position to address” resolver. This re-
solver relies on a database mapping positions to addresses. If such
a database exists for a given locale, our approach works, especially
as each locale presumably will encode addresses according to local
practice, which will also be used on the relevant, local Web pages.

Currently, the GBS search blindly returns the first 10 matches—a
clear area for future work would to explore more advanced forms
of filtering.

Another line of future work will focus on developing a general ap-
proach for more or less automaticallyadaptingSVG-based user in-
terfaces to the characteristics of a given terminal device. It should
be clear that one cannot simply take a user interface for one device,
resize it, and expect it to work on another platform. Not only do
different screen resolutions have consequences, there are also dif-
ferent modes of interaction to consider—viz. the availability of a
mouse, the number of buttons, etc. We have come some part of the
way in this paper by using the HyCon framework on two very di-
verse types of terminals. However, a general solution is left for fu-
ture work. Automatic adaption of SVG-based user interfaces could
relieve the application developer of much of the (currently needed)
tedious work associated with deploying mobile applications on he-
terogeneous terminals.

7. CONCLUSION
We have in this paper described the HyConExplorer application,
which provides location-based annotations, links, and guided tours

for Web pages and information produced by users on the move.
The architecture includes interfaces for a Sensor layer, which en-
capsulates GPS and other sensors.

HyCon features a novel use of XLinks for representing recorded
geographical paths with annotations and links. The HyConExp-
lorer support serendipity, allowing users to “bump into” informa-
tion from the Web by moving about in the World, and make paths
with multimedia annotations as well as linking relevant informa-
tion. This information can be shared among users.

We have shown how a SVG based user interface provides a new
way of distributing GUI objects as SVG elements such that the GUI
easily adapts to devices ranging from mobile phones to tablet PCs.
To support the SVG GUI on mobile phones, we have developed a
SVG browser for Symbian OS, which provides the necessary sup-
port for scripting to provide an interactive GUI. The browser also
utilizes SVG in a novel way to provide application integration.

One of the powerful features of the HyConExplorer is the real-
time geo-based searches (GBS) via Google collecting hits within a
specified nimbus around the user’s GPS position. HyConExplorer
is currently undergoing testing by school kids conducting project
work on subjects related to areas of the city ofÅrhus.

We see many prospects of further development of these location
based hypermedia technologies. The HyConExplorer and frame-
work will be further developed and utilized e.g., in the recently
started project on Interactive School Environments under the Cen-
ter for Interactive Spaces11.

Acknowledgments
The work has been funded by the Danish National Center of IT re-
search through project #333, ContextIT. ContextIT is associated the
Center for Pervasive Computing12. We wish to thank all of our col-
leagues in the ContextIT project including the companies Euman13

and TDC Innovationlab14. Finally, we wish to thank architect Gun-
ner Kramp for his modification of the prototype tablet PC.

11http://www.interactivespaces.net/
12http://www.pervasive.dk/
13http://www.euman.com/
14http://www.innovationlab.net/



8. REFERENCES
[1] G. D. Abowd. Software engineering issues for ubiquitous

computing. InProceedings of the 21st international
conference on Software engineering, pages 75–84. IEEE
Computer Society Press, 1999.

[2] K. M. Anderson, S. Moulthrop, and J. Blustein, editors.
Proceedings of the 13th ACM Hypertext Conference, College
Park, Maryland, USA, June 2002. ACM Press.

[3] N. O. Bouvin, B. G. Christensen, K. Grønbæk, and F. A.
Hansen. HyCon: A framework for context-aware mobile
hypermedia.The New Review of Hypermedia and
Multimedia, 9, 2003.

[4] Y. Chen, W.-Y. Ma, and H.-J. Zhang. Detecting Web page
structure for adaptive viewing on small form factor devices.
In Proceedings of the 12th International World Wide Web
Conference[24], pages 225–233.

[5] K. Cheverst, K. Mitchell, and N. Davies. The role of adaptive
hypermedia in a context-aware tourist GUIDE.
Communications of the ACM, 45(5):47–51, 2002.

[6] B. G. Christensen, F. A. Hansen, and N. O. Bouvin. Xspect:
bridging open hypermedia and XLink. InProceedings of the
12th International World Wide Web Conference[24], pages
490–499.

[7] O. de Bruijn, R. Spence, and M. Y. Chong. RSVP browser:
Web browsing on small screen devices.Personal and
Ubiquitous Computing, 6(4):245–252, 2002.

[8] S. DeRose, E. Maler, D. Orchard, and B. Trafford (editors).
XML Linking Language (XLink). W3C Recommendation 27
June 2001, W3C, June 2001.
http://www.w3.org/TR/xlink/ .

[9] A. K. Dey. Understanding and using context.Personal and
Ubiquitous Computing, 5(1):4–7, 2001.

[10] A. K. Dey, D. Salber, and G. D. Abowd. A conceptual
framework and a toolkit for supporting the rapid prototyping
of context-aware applications.HCI Journal, 16(2-4):97–166,
2001.

[11] S. Feiner, B. MacIntyre, T. Ḧollerer, and T. Webster. A
Touring Machine: Prototyping 3D mobile augmented reality
systems for exploring the urban environment.Personal
Technologies, 1(4):208–217, 1997.

[12] J. Ferraiolo, J. Fujisawa, and D. Jackson. Scalable Vector
Graphics (SVG) 1.1. W3C recommendation, W3C, Jan.
2003.http://www.w3.org/TR/SVG11/ .

[13] K. Grønbæk, P. P. Vestergaard, and P. Ørbæk. Towards
geo-spatial hypermedia: Concepts and prototype
implementation. In Anderson et al. [2], pages 117–126.

[14] S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm. DOM-based
content extraction of HTML documents. InProceedings of
the 12th International World Wide Web Conference[24],
pages 207–214.

[15] C. Hage, C. S. Jensen, T. B. Pedersen, L. Speicys, and
I. Timko. Integrated data management for mobile services in
the real world. InProceedings of 29th International
Conference on Very Large Data Bases, pages 1019–1030.
Morgan Kaufmann, 2003.

[16] K. Marriott, B. Meyer, and L. Tardif. Fast and efficient
client-side adaptivity for svg. InProceedings of the 11th

International World Wide Web Conference[23], pages
496–507.

[17] K. S. McCurley. Geospatial Mapping and Navigation of the
Web. InProceedings of the 10th International World Wide
Web Conference, pages 221–229, Hong Kong, May 2001.
W3C.

[18] S. Reich, U. K. Wiil, P. J. N̈urnberg, H. C. Davis,
K. Grønbæk, K. M. Anderson, D. E. Millard, and J. Haake.
Addressing interoperability in open hypermedia: the design
of the open hypermedia protocol.The New Review of
Hypermedia and Multimedia, 5:207–248, 1999.

[19] B. N. Schilit, N. I. Adams, and R. Want. Context-aware
computing applications. InProceedings of the Workshop on
Mobile Computing Systems and Applications, pages 85–90,
Santa Cruz, CA, USA, Dec. 1994. IEEE Computer Society.

[20] J. Steinberg and J. Pasquale. A Web middleware architecture
for dynamic customization of content for wireless clients. In
Proceedings of the 11th International World Wide Web
Conference[23], pages 639–650.

[21] K. Toyama, R. Logan, and A. Roseway. Geographic location
tags on digital images. InProceedings of the eleventh ACM
international conference on Multimedia, pages 156–166.
ACM Press, 2003.

[22] G. M. Voelker and B. N. Bershad. Mobisaic, an information
system for a mobile wireless computing environment &
engineering. InProceedings of the Workshop on Mobile
Computing Systems and Applications, pages 85–90, Santa
Cruz, CA, USA, Dec. 1994. IEEE Computer Society.

[23] W3C.Proceedings of the 11th International World Wide Web
Conference, Honolulu, USA, May 2002.

[24] W3C.Proceedings of the 12th International World Wide Web
Conference, Budapest, Hungary, May 2003. ACM Press.

[25] R. Want, B. Schilit, A. Norman, R. Gold, D. Goldberg,
K. Petersen, J. Ellis, and M. Weiser. An overview of the
PARCTab ubiquitous computing experiment.IEEE Personal
Communications, 2(6):28–43, 1995.

[26] M. Weiser. The computer for the 21st century.Scientific
American, 265(3):66–75, Feb. 1991.

[27] E. J. Whitehead, Jr. Uniform comparison of data models
using containment modeling. In Anderson et al. [2], pages
182–191.


