
Mapping physical artifacts to their Web counterparts:
A case study with product catalogs

Gregary Murdoch Nicholas Kushmerick
Computer Science Department, University College Dublin, Ireland

{greg.murdoch, nick}@ucd.ie

ABSTRACT
Many kinds of documents—newspapers, books, product cat-
alogs, directories, etc—exist in both a physical (paper) and
virtual (Web) form. Few approaches to knowledgment man-
agement fully exploit the opportunities afforded by this fact.
Motivated by the goal of seamless integration of physical ar-
tifacts and their Web counterparts, we describe a large-scale
case study of one aspect of this relationship. Based on a
corpus of hundreds of real-world product catalogs, we mea-
sure the effectiveness of hand-held scanner/OCR devices for
the task of automatically retrieving a catalog’s authoritative
Web counterpart (the vendor’s home page). We find that,
despite OCR errors, text fragments scanned from product
catalogs can serve as reasonably effective queries for retriev-
ing the Web counterparts. Furthermore, the effectiveness
of the technique increases with multiple scanned text frag-
ments. Our main technical contribution is a novel machine
learning approach to adaptively merging the retrieved doc-
uments from multiple scans.

1. INTRODUCTION
Many kinds of documents—newspapers, books, product cat-
alogs, directories, invoices, resumes, advertisements, etc—
have both a physical (ie, paper) manifestation as well as a
virtual (Web) form. The full text content of the newspaper
that you read this morning is probably available at the news-
paper’s Web site; the transactions listed on the bank state-
ment you received yesterday are probably available through
your bank’s Web site.

Few approaches to knowledgment management take advan-
tage of the opportunities afforded by this observation. For
example, suppose you fill in an ordering form in a paper
product catalog, and the catalog’s vendor has a Web order
form. What technology could enable one’s writing on a piece
of paper to be automatically converted to the submission of
the Web form?

We are motivated by the goal of enriching the integration be-

tween physical artifacts and their Web counterparts. In this
paper, we focus on one specific aspect of this relationship:
developing technologies to identify the authoritative Web re-
source to which some specific physical artifact corresponds.
Given the ubiquity of electronically produced documents,
and the resilience of the “paper-full office”, we anticipate
that this sort of enabling technology is relevant to a wide
variety of knowledge management applications.

To investigate these issues, we carried out a case study on
a corpus of hundreds of real-world product catalogs. We
assess the effectiveness of off-the-shelf hand-held pen scan-
ner/OCR devices for the task of automatically retrieving a
catalog’s authoritative Web counterpart (the vendor’s home
page). We find that, despite OCR errors, text fragments
scanned from product catalogs can serve as reasonably ef-
fective queries for retrieving the Web counterparts.

The remainder of this paper is organised as follows. First,
we describe our catalog retrieval task and data-set in more
detail (Sec. 2). We then describe experiments for two scan-
ning scenarios: first, we consider the effectiveness of indi-
vidual scanned text fragments in isolation (Sec. 3); second,
we describe a novel machine-learning approach to adap-
tively merging the results from multiple scanned fragments
(Sec. 4). We conclude with a discussion of related work and
future directions (Secs. 5–6).

2. THE CATALOG RETRIEVAL TASK
As depicted in Fig. 1, the specific task we address is that
of identifying the authoritative Web document associated
with a given physical paper product catalog. Specifically,
we assume that the reader has used a pen scanning device to
scan a number of text fragments from the paper catalog, and
she seeks to find the Web home page of the corresponding
company.

We seek to minimise the reader’s effort along two dimen-
sions: the number of text fragments that must be scanned
in order to locate the desired Web document, and the num-
ber of candidate documents that the reader must examine.
Our experiments demonstrate that these two costs trade off
against each other: if the user is willing to scan just one or
two fragments, (s)he will have to wade through a large num-
ber of potential documents before finding the right one. On
the other hand, if she is willing to invest the effort scanning
additional fragments, then the correct document will appear
near the top of the list of suggestions.



Figure 1: Sample pages from a product catalog (upper-left), some scanned text fragments (lower-left), and
the authoritative Web document with which the catalog is associated (upper-right).

To explore these ideas, we constructed a dataset from the
scanned catalogs available from catalogs.google.com. We
picked catalogs randomly, and made the assumption that
OCR errors of a catalog would be independent from how
likely that catalog was to have a website, or how easily re-
trievable that website would be. We downloaded the first ten
scanned pages from each selected catalog, and attempted to
perform OCR on them using a commercial OCR program.
If the catalog passed a threshold of OCR readability then
we accepted it and downloaded and performed OCR on the
remaining pages. If the catalog failed to pass the threshold
then it was rejected and another was selected. This process
was followed until we had selected 295 catalogs from 2000
attempts.

The resulting text from the OCR process was then used as
the basis for simulating the actions of a pen scanning device
on the original catalog. As the page images on catalogs.go-

ogle.com are scanned from the original paper catalogs, we
simulate the use of a pen scanner by running OCR over these
images. Assuming equal sophistication of OCR engines, we
expect to get similar OCR mistakes with the original paper

media and an actual pen scanner.

As described in detail below, the OCR text was processed to
generate simulated scan phrases. Each phrase consisted of
at least two words, possibly with OCR errors, representing
the text which would have been retrieved directly from a
pen scanner from the original catalog. Each scan phrase is
sent to a Web search engine as a query; we used Google in
our experiments. Each phrase was submitted in two ways:
as an unquoted bag of terms, and as a quoted sequence of
terms. The top 20 results from each query were recorded.

Additionally for each catalog, Google provided the catalog
title, and in 96% of the cases the URL of the catalog’s home-
page. In the remaining 14 cases where the URL was missing,
we manually searched the Web to find the authoritative Web
site. In 4 of these cases, the catalog appeared to have no on-
line version; these catalogs were kept in the collection, but
our experiments below will always fail to locate their Web
sites.

To enable large-scale experimentation, we simulated a user



scanning text from the original paper catalogs. This way we
automatically generate a large number of potential queries,
each with any associated scanning errors which might have
been also introduced via use of a pen scanner, and by se-
lecting parts of the OCR text which are prominant, we aim
to pick similar pieces of text as a user would do. To create
a simulated scan for a catalog, we first randomly select one
of the pages, and then select fragments of OCR text in one
of three ways:

ALLCAP: The candidate scans are the sequences of two
or more entirely capitalised words, excluding terms in
a list of 36 stopwords.

INITCAP: Same as ALLCAP, with only the first letter of
each capitalised.

1STLINE: The candidates are the first sentences (up to a
maximum of 10 words) of any paragraph of text con-
taining at least 20 words.

One drawback is that since we do not employ any form of se-
mantic analysis, we have no way of choosing between mean-
ingful phrases and those which, although prominant, are in
themselves semanticly detached from the topic of the cata-
log (eg, “Table of Contents”). Therefore, we also generate
additional scans as follows:

TITLE: A scan for the title of each catalog, if available.

HAND: Manually generated scans.

The titles are not taken from the OCR text output, but
rather from the additional data provided by Google. As
such, TITLE scans have a large advantage over the other
types: they do not suffer from random OCR errors, or com-
plete OCR failure (due, for example, to a title being set in
unusual display font). It should also be noted that many
titles were also found in the HAND scans.

Informally, a random sample of 100 title pages of catalogs
from the entire collection on Google, only 15% were found
to have a scannable title. A fairer analysis of our specific
catalog collection showed that in only 59% of the cases did
the TITLE scan appear anywhere in the OCR output of the
entire catalog. While our experiments show that simulated
TITLE scans are highly effective, we do not believe these
results are useful in practice due to the difficulty of retrieving
them with a pen scanner.

The HAND scans were selected manually with the intent of
helping to identify the original catalog. They were selected
by looking at the image of a randomly selected page from the
catalog, with the OCR output to the side. A piece of text
was selected from the image and the corresponding part of
the OCR text was input. Our experiments show that HAND
scans are more effective than the automatically generated
versions, not suffering from the problem where selected scans
have no semantic relevance. On the other hand, HAND
scans also tend to suffer more from OCR errors for their
length: bad OCR output will confuse the automatic scan
selection algorithms, thus they tend not to be accepted as

ALLCAP INITCAP 1STLINE HAND
Error rate 14% 19% 32% 28%

Table 1: OCR error rates for the different scan
types.

Academy Chicago Publishers The Apothecary
www.academychicago.com www.the-apothecary.com

ALLCAP ACADEIYIY CHICAGO ESSENTIAL FATTY ACIDS
INITCAP New York Biotec Foods
1STLINE His first book Pilgrimage Tales 1 We ve chosen to devote

from the Open Road published this catalog to a
TITLE academy chicago publishers the apothecary
HAND a unique volume from wicker park press the apothecary order certificate

Table 2: Actual examples of the five scan types for
two catalogs.

readily. HAND scans were only generated for 50 of the 300
catalogs.

We took a random sample of examples of each type of scan
and estimated the rate of OCR faults encountered; see Ta-
ble 1. The results for the simulated scans hold intuitively,
with ALLCAP and INITCAP scoring the lowest error rate,
ALLCAP doing better due to larger clearer letters. then
1STLINE performs worst, nearly twice the rate of ALL-
CAP. But where as ALLCAP and INITCAP have similar
query lengths, on average 1STLINE will be at least twice
as long. Giving more room for errors. Here HAND scores
highly even though it has an average query length similar
to ALLCAP and INITCAP, which is consistant with above.
TITLE’s do not have OCR errors, but do not occur in 41%
of the catalogs.

Table 2 shows actual examples of all five scan types.

3. EXPERIMENT 1: INDIVIDUAL SCANS
Our first experiment is designed to measure the effectiveness
of each scan type in isolation. Fig. 2 shows, for each scan
type, the percentage of catalogs for which the correct Web
site is found at position x or better, as a function of x.

More precisely, let C be the set of all paper catalogs, let c ∈
C be a specific catalog, and let site(c) be the authoritative
Web site to which c corresponds. For some given scan type
T , let T (c) be the set of all scans of type T found in catalog c.
For any s ∈ T (c), let r(s) = {rs,1, . . . , rs,20} be the twenty
results returned from Google, and let site(ri) be the Web
site of result ri. Fig. 2 shows the coverage Y (x, T ), which
measures the fraction of the time when we pick a random
catalog and a random scan of type T that we can expect the
correct result to be in position x or better:

Y (x, T ) =
1

|C|
X
c∈C

 
1

U

X
1≤u≤U, s∼T (c)

[[x ≥ min
site(rs,i)=site(c)

i]]

!
,

where [[ρ]] = 1 if ρ is true and 0 otherwise, s ∼ T (c) indicates
that s is drawn randomly from T (c), and we average over
U random scans s in order to produce a stable estimate of
Y (x, T ); in our experiments we use U = 5.

As expected, Fig. 2 shows that the TITLE scans do signif-
icantly better than the other types. The title omniscient
curve is an upper bound on performance that uses the exact
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Figure 2: Coverage of TITLE (top) and other (bot-
tom) scan types, as a function of the number of
scans.

title for a given catalog regardless of whether it is present
in the OCR output or not. The title realistic curve uses the
correct title only if it is possible to retrieve it through OCR.

Note that HAND scans are better than automatically gen-
erated scans. This is to be expected: even though HAND
scans have a more OCR errors per word, they tend to have
a higher semantic relevance. This demonstrates that the
results for our simulated scans serve as a lower bound on
retrieval performance in a real application.

The experiments above treat the scanned text fragments as
unquoted bags of words. We compared this technique with
treating the fragments as quoted sequences of words. As
shown in Fig. 3, the quoted scans produce the correct Web
site at a better rank when it finds the right Web site, but also
finds the right site less often. As intuition would suggest,
quoting the scanned fragments increases their precision, but
also increases the effect of OCR errors. The rest of our
experiments will just treat scans as unquoted bags of words.

4. EXPERIMENT 2: MULTIPLE SCANS
The experiments discussed so far are all concerned with a
single scan. If the user is willing to invest more effort by
scanning additional text fragments, can the authoritative
Web site be retrieved more efficiently?

To explore this issue, we describe two approaches to com-
bining the search engine results from multiple scans into a
single ranked list of results. In each approach, we selected n
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Figure 3: A comparison of quoted and unquoted
search queries.

scans randomly from either our three simulated scan types
or from the HAND scans. Each scanned fragment si pro-
duces a list of 20 results rsi,1, . . . , rsi,20, and we merge them
into a new ranked list R1, . . . , R20n. We report below the
coverage versus search position, as above, but instead of re-
porting the entire graph, we plot n versus the search position
between 1 and 20n at which we first achieve 50% coverage
over the catalogs. We choose 50% as that is approximately
the highest coverage achieved by the title realistic approach
in Fig. 2.

Each additional scan phrase adds to the likelihood of find-
ing the correct result, but also adds 20 positions onto the
total range. So the challenge is to have each additional scan
phrase add more to the overall accuracy than it looses due
to the lengthening of the list.

4.1 Method 1: Naive merging
Our first approach merges the results from the scan phrases
according to a simple weighting scheme. The simplest scheme
would be to simply aggregate the lists so that there would
be n ties for the first position, n ties for second, etc. We
found that this simple scheme was ineffective, so we report
results for the following weighted merging schema.

Consider a result rsi,j from a scan si of type T . We gen-
erate the final ranked list by assigning a score to rsi,j as
follows: score(T, j) = 1− (1− pos(j)) · (1− typerank(T, j)),
where 0 < pos(j) = (21 − j)/20 ≤ 1 is a score based
on the original position j in the search results for scan
type T . typerank(T, j) is score based on the chance that
a scan of type T has the correct position at rank j or bet-
ter: typerank(T, j) = prob(T, j)/

P
T ′ prob(T ′, j), where

prob(T, j) is the frequency (over a set of training data) that
a scan phrase of type T at position j or higher is correct.

As shown in Fig. 4, this naive approach performs quite
badly: to have a 50% chance of finding the authoritative
Web site, more than 100 sample documents must be in-
spected before finding the correct one, even with many scanned
fragments. This is mainly due to the fact that a high pro-
portion of the scanned fragments fail to find the correct site
at any place in their 20 positions. This leads to numerous
bad results being placed ahead of possibly good ones. To see
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Figure 4: Comparison of the naive, learning and
omniscient merging algorithms.

this in more detail, consider the simple unweighted merging
strategy. Each additional scan phrase si generates 20 results
{rsi,1, . . . , rsi,20}. If we have interleaved n scan phrases, we
will now have a ranked list {R1, . . . , R20n} where each rsi,j

will be in positions {R1+n(j−1), . . . , Rnj} As can been seen,
as we increase n we reduce the ranking of all results not orig-
inally ranked near the start, and since a large proportion of
our correct results come from this region, the results degrade
as new scans are added. In the case where the correct result
is regularly near the start this will perform well. but in the
case where the correct result is at a further position m, its
new position will be in the vicinity of nm in the new ranked
list, thus increases with n. So we need a way of promoting
good results without merging parts of every scan phrase we
add.

4.2 Method 2: Learning to identify good scans
While the previous approach does not perform well, there
is good reason to be optimistic: intuitively, in a sufficiently
large set of scanned fragments, there should be at least one
“good” fragment (ie, a fragment whose query results yield
the authoritative Web site near the start).

For example, consider an omniscient merging strategy that,
given a group of scans, automatically “knows” which scan
sm has the authoritative Web site positioned earliest in its
results. Then we can generate an upper bound on the cover-
age of the merged results by reserving positions {R1, . . . , R20}
for sm, instead of interleaving sm with any other results.
Fig. 4 shows that this omniscient approach performs remark-
ably well, and instead of suffering from our previous problem
where additional scan phrases decrease coverage, there is a
steady improvement as the number of scans increases.

Of course, the omniscient algorithm is not feasible in prac-
tice, but can we approach its performance? To answer this
question, we adopted a machine learning approach in which
we trained a classifier to recognise whether a set of results
was likely to contain the correct result. To the extent that
we can perform this classification task well, we can approach
the performance of the omniscient algorithm. Given the
problems with interleaved merging of results, here we treat
the 20 results from each scan atomically: the results for scan
si, {rsi,1, . . . , rsi,20}, are added as a single block to the final

merged list. We will use our classifier to calculate for each
si the probability Pi that the scan si contains the site(c)
at any position in its results. Our scans will then be sorted
in order of these probabilities and concatenated to form the
final merged list.

We anticipate that this approach will reduce the problem
with the naive approach in which coverage decreased with
additional scans. To illustrate, suppose we for have two
scans, s1 and s2, where P1 = 0.6 and P2 = 0.4, which
we merge into R = rs1,1, . . . , rs1,20, rs2,1, . . . , rs2,20. Then
PR40 = 0.76 where PR40 is the probability R contains site(c)
within its first 40 positions. Let us assume sa and sb refer
to the two currently highest ranked scans in R. Now sup-
pose we add another m scans s3, . . . , sm+2. For each scan
si, 3 ≤ i ≤ m + 2, if Pi > Pa then Pi will replace Pa and
PR40 will as a result increase, otherwise if Pi > Pb then Pi

will replace Pb and again PR40 will increase. Otherwise si

will be placed at some point further down in R having no
effect on PR40 . So by adding more scans PR40 may increase
if a better scan is found, but it will never decrease. So un-
like in the case of interleaved merging, the accuracy of our
new ranked list is not adversely affected by the inclusion of
‘bad’ scans. The limitation is that as the top 20 elements of
R always come from a single scan, we cannot improve the
performance of the best single scan.

We used the C4.5 learning algorithm [9] to generate the
classifiers. We identified a number of features for training.

scan type: the type of scan feature which created this scan
phrase;

num under20: total number of results Google found (or
20, whichever is smaller);

num total: total number of results Google found;

pairwise sim =
P

1≤j<20[[site(rsi,j) = site(rsi,j+1)]], where
si is the scan whose results are being classified;

pairwise sim2 =
P

1≤j 6=k≤20[[site(rsi,j) = site(rsi,k)]];

freq add: sum of the TF-IDF 1 frequencies of each individ-
ual term in our text fragment;

freq prod: product of the TF-IDF frequencies;

freq lowest: minimum of the TF-IDF frequencies; and

freq highest: maximum of the TF-IDF frequencies.

The features num under20 and num total, give a mea-
sure of how general versus how specific the results are. The
features pairwise sim and pairwise sim2 give a measure
of how likely the results have found one site especially more
relevant. The TF-IDF (with the IDF value being generated

1TF-IDF is a standard information retrieval approach to
assigning weights terms in text documents. The TF-IDF
weight of a term t in a document d is the ratio of the fre-
quency of t in d, dividing by the frequency of t in a large
corpus of documents (eg, the entire Web) to which d be-
longs. The intent is that a document’s high-weight terms
will reflect its semantic content.



from a large corpus of random Web documents) give a mea-
sure of whether the terms in the query are specialised or
generic.

For feature selection, we simply generated every combina-
tion of features from the above features, learning classi-
fiers for each, and picked the one which performed best.
This happened to be the one using features num under20,
pairwise sim, pairwise sim2, freq add, freq prod,
freq lowest and freq highest. We were pleased to dis-
cover that the classifier ignores scan type; in a real-world
application, this would suggest that the user does not need
to associate a scan type with each fragment.

In our evaluation, we used three-fold cross-validation. That
is, we randomly partition the catalogs into three sets S1,
S2, and S3, and then report the average accuracy over three
separate learning tasks: training on S1 ∪ S2 and testing on
S3, training on S1 ∪ S3 and testing on S2, and training on
S2 ∪ S3 and testing on S1.

For each test set, we take n random scan phrases from the
three simulated types and from HAND, and then calculate
our scan phrase features. Using these and our classifier we
assign a probability of ‘goodness’ to each scan phrase, and
then merge them according to this probability. Due to the
random nature of selecting scan phrases, we average over
twenty repetitions of this procedure. The learned classifier
has an accuracy of 84% (precision 68%, recall 41%).

Our results are shown in Fig. 4. We conclude that the learn-
ing approach is significantly better than the naive method.
On average, after 20 scans, the correct site is found in the
top 6% of the 400 results, compared to 34% for the naive
method. Furthermore, we solved the problem of additional
scans degrading performance.

4.3 Improving on Title
We investigated whether we could use these approaches to
improve performance of the TITLE scans. To this end we
ran the same ranked experiments from Sec. 3 with our ran-
dom selection of scans always including one TITLE scan
where available. Firstly we tried the interleaved ranking
approach, and we suffered from the same problem as we en-
countered before. Namely with the majority of results in
new scans being ‘bad’ by interleaved scanning we increas-
ingly marginalise and good results not highly ranked to be-
gin with.

Since we already have a good result first (the TITLE) we will
get less noticeable gain from merging in an atomic manner,
But the inclusion of one scan of higher quality serves as a
boost to all the results. Our results here are still provisional,
so we have not included them with this paper.

5. RELATED WORK
This task of mapping scanned text fragments to authori-
tative Web sites is a mixture between a database merging
problem and a search problem. We have separate ranked
lists for each individual scan, and the goal is to merge them
into a single ranked list. There are many approaches to ag-
gregating ranked lists (eg, [4, 3]). These solutions mainly
involve merging ranked lists from independent sources to

ensure adequate performance. Since our problem involves
merging ranked lists from highly dependant sources, and we
are not looking for a better ranking of results of a broad
type but for improving the ranking of a specific Web site,
these strategies do not map well to our task.

This case study also involves issues of document analysis /
recognition. There is a large body of work concerning OCR
and scanning technology in general (eg, [2] or the annual
Electronic Imaging conferences[6]), but we know of no prior
work that focuses on this kind of task.

The challenge of linking paper and digital media has received
substantial attention in the ubiquitous computing and hu-
man computer interaction literature (eg, [5, 1, 7, 8, 11, 10]),
but none of this work appears to be directly relevant to our
task. For instance, in the efforts to link physical and Web
artifacts [5, 1, 7], it is assumed that an explicit link between
a physical object and its digital equivalent is stored in, for
example, digitally enhanced ‘paper’. While such enhance-
ments may be realized in some situations, part of the reason
paper is still so commonly employed is due to its cheapness
and resilience, so there will continue to be a need to map
ordinary paper artifacts to their Web counterpars. To the
best of our knowledge, no one is currently working on ranked
merging of results to locate a specific Web site.

6. DISCUSSION
Paper has been used extensively for centuries, so it is hardly
surprising that the recent and growing surge in digital me-
dia has supplemented paper rather than replaced it. The
fact that we have the option of either a paper or Web in-
stantiation of most documents is beneficial from the user’s
perspective: they each have distinct advantages, and peo-
ple have their own preferences. Motivated by the vision of
seamless integration across the two media, our goal is to
develop technology so that the two media can be used inter-
changeably. Unfortunately, current knowledge management
and ubiquitous computing technologies do not support this
vision adequately.

An important enabling technology is the ability to locate the
authoritative Web document that is equivalent to a given
physical artifact. To investigate this issue, we performed a
case study on a sample of 295 catalogs electronically scanned
from their original paper catalogs. We simulated a variety of
scenarios in which a user has a physical paper catalog and a
pen scanning device, and uses scanned fragments of text as
queries to a Web search engine in order to retrieve the cat-
alog’s authoritative Web site. Since our goal is to minimise
the effort required to perform this task, we measured the re-
trieval effectiveness as a function of the number of scanned
text fragments, and we investigated several techniques for
combining these.

We are currently improving the effectiveness of our tech-
niques in several ways. One obvious possibility for reduc-
ing the required number of scans by reintroducing both the
quoted and unquoted versions. Another possibility would
be to identify, for our classifier, features across separate
scan phrases from the same catalog. We also intend to ad-
dress the more challenging task of finding the exact resource
(rather than just the root) of the authoritative Web site to



which the paper catalog corresponds.

Ultimately, our goal is to develop techniques so that the pa-
per catalog can be used as a medium for interacting with
the actual Web service. For example, we are developing a
tool that will enable a person with access to an on-line e-
commerce Website, to automatically select and add items
to their shopping cart, using the PDA and pen scanner as
an input device. To this end we are attempting to design
a system that can use an generic model of an e-commerce
website to learn how to interact with an unseen specific e-
commerce website. We are also considering applications re-
lated to organisational workflow processes, such as filling out
an expense claim form based on a data from a combination
of paper and Web sources.
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