

KA] GRONBAEK
RANDALL H. TRIGG

This article discusses experiences and lessons learned from the design of an open hyper-
media system, one that integrates applications and data not “owned" by the hypermedia.
The work was conducted under the auspices of the DeVise project at the computer science
department of Aarhus University, Denmark [5]. The DeVise project is developing general
tools to support experimental system development and cooperative design in a variety of
application areas including large engineering projects. The intensely collaborative, open-
ended work characteristics of such settings make demands beyond the cross linking
traditionally supported by hypermedia. These include a shared database, access from muli-
tiple platforms, portability, extensibility and tailorability. (For a detailed discussion of our

engineering project use setting and its CSCW and hypermedia requirements, see [3, 41.)

FOR A DEXTER-EASED

HYPERMEDIA SYSTEM

No hypermedia system to our knowl
edge meets these requirements on the
platforms we need to support. Having
to build our own, we nonetheless
wanted to benefit from the experience
and expertise of past and present
hypermedia designers. ‘Thus, we
decided to use the Dexter Hypertext
Reference Model [9, 10] (called Dexter
throughout this article) as our plat-
form. Dexter attempts to capture the

best design ideas from a group of

“classic” hypertext systems, in a single
overarching data and process model.
Although these systems have differing

design goals and address a variety of

application areas, Dexter managed to
combine and generalize many of their
best features.

We took the Dexter reference
model as the starting point and turned
it into an objectoriented design and
prototype implementation (called
DeVise hypermedia, or “DHM?), run-
ning on the Apple Macintosh. As a
programming environment, we chose
the Mjolner Beta System supporting
the object-oriented programming lan-
guage BETA [13]. The Mjolner Beta
System includes an object-oriented
database [11], in which our hyperme-
dia structures are stored. Among the

media supported by DHM are text,
graphics, and video, using a styled
text editor, a simple drawing editor,
and a QuickTime movie player,
respectively. DHM also supports link
and atomic component browser com
posites, and a (:Umposite lo capture
screen configurations of open compo-
nents (modeled on the NoteCards
TableTop [18]). In addition to travers
ing links (including multiheaded
ones), users can edit link end points
using a graphical interface. Com
ponents can also be retrieved and pre-
sented via title search. Dexter’s model
of anchoring is extended to include a
distinction between marked and
unmarked anchors. Finally, in contrast
to Dexter, DHM explicitly supports
dangling links.

In short, our attempt to directly
“implement” Dexter was largely suc-
cessful. We were surprised at the
robustness of the resulting design—it
met several of our goals not explicitly
identified in the Dexter paper. At the
same time, we uncovered holes in the
model, areas where further develop-
ment is needed. For some of these, we
now feel prepared to offer proposals
for other hypermedia designers.

This article briefly reviews the

Dexter model before discussing our
experiences in applying it. Our focus
here is on links, anchors, composites
and cross-layer interfaces. For each of
these, we comment on the utility and
applicability of Dexter, identify the
implementation choices made in our
prototype, and make recommenda-
tions for designers of future systems
and standards. We close with research
issues and open questions.

The Dexter Model

The Dexter Hypertext Reference
Model [9, 10] separates a hypertext
system into three layers with well-
defined interfaces (see Figure 1). The
storage layer captures the persistent,
storable objects making up the hyper-
text which consists of a set of compo-
nents. Component is the basic object
provided in the storage layer. As
shown in Figure 2, the component
includes a contents specification, a
general-purpose set of attributes, a pre
sentation specification and a set of
anchors. The atomic component is an
abstraction replacing the widely used
but weakly defined concept of ‘node’
in a hypertext. Composite components
provide a hierarchical structuring
mechanism. The contents of a link

COMMUNICATIONS OF THE ACM Fobruary 1994/ Vol.37, Nos a1

component is a list of specifiers, each
including a presentation specification
as well as component and anchor
identifiers.

The within-component layer corre-
sponds to individual applications. The
applications are responsible, for
example, for supporting content selec-
tions for link anchoring. The interface
between the storage and within-com-
ponent layers is based on the notion
of anchors. Anchors consist of an
identifier that can be referred to by
links and a value that picks out the
anchored part of the material.

The run-time layer is responsible for
handling links, anchors, and compo-
nents at run time. Objects in the run-
time layer include session, managing
interaction with particular hypertexts,
and instantiation, managing interac-
tion with particular components. The

run-time layer provides toolindepen-
dent user interface facilities. The inter-
face between the storage layer and the
runtime layer includes presentation
specifications that determine how
components are presented at run
time. Presentation specifications
might include information on screen
location and size of a presentation
window, as well as a “mode” for pre-
senting a component. Halasz and
Schwartz |9, 10] use the example of an
animation component that can be
opened in either run mode or edit
mode.

Links

Links have traditonally formed the
heart of hypertext systems. Indeed,
the traversable network structures
formed by links distinguish hyper-
text from other means of organizing

Run-time Storage Within-component
layer layer layer

User File structure/ Different types

interface database organization/ of materials/
persistent object storage media

Client Server: support for Individual
distributed multiuser applications
access

Presentation
specifications

0

Anchors

Component
Info

Attributes
Presentation
Anchors

Specification

Contents

Component

Component
Info

Attributes
Presentation
Anchors

Specification

Specifiers

LinkComponent

Figure 1. The Dexter model lay-
ers and interfaces. (Some of the
text appearing in the figure is the
authors'.)

Figure 2. Component structure
in the storage layer

A2 oo y 1994/ Vol 37, No.” COMMUNICATIONS OF THE ACM

information. Hypertext systems have
implemented links in several ways,
many of which are unified by Dex-
ter’s notion of link component. In addi-
tion to the typical source/destination
links, Dexter can model multiheaded
links. Furthermore, because links are
components, they can be the end-
points of other links. The Dexter
model supports computed as well as
static links through the use of specifi-
ers. Simple “typing” can be sup-
ported by adding attributes to the
link component. But DHM also sup-
ports full-fledged typing of links due
to its object-oriented component
design.

Though in principle a Dexter link
could have fewer than two end-
points, this is expressly forbidden by
the model’s semantics. In DHM, we
have relaxed this constraint; that is,
“dangling” links having zero or one
endpoint are perfectly legal. This
means we can avoid the modal “start
link/end link” link creation style of
many hypertext interfaces. In
DHM’s user interface (UI) links can
be created in two ways: (1) a “New
Link” operation creating a link hav-
ing one end point based on the cur-
rent selection in the active editor
(Figure 3); in this case no instantia-
tion or link editor is opened. And,
(2) via a new component operation
creating a link with an open instanti-
ation and link editor. In this case the
link has no end points (see the ‘Link
78’ link instantiation in Figure 4).
End points can be added to the link at
any time and as shown in Figure 4,
links can have other links as end
points. In our implementation of
links, we confronted two problems
with Dexter’s model: 1) its aversion
to dangling links, and 2) its notion of
link directionality.

Dangling Links

In spite of Dexter’s explicit aversion
to dangling links, we chose 1o sup-
port them for several reasons: First,
they allow lazy updating and garbage
collection following component and
anchor deletion. This is useful when
the link to be deleted (or modified)
lives on another machine or is cur-
rently locked by another user. A sec-
ond, related situation involves data
objects outside the control of the
hypermedia (for example, files with

component data needing 1w be
moved or deleted). Third, the dan-
gling end point can be “relinked” or
reconnected to another component

byper EITTICN

has been moved or deleted indepen-
dent of the hypermedia (case 3). In
this case the followLink operation
should catch the file system excep-

or anchor without having to rebuild tion and pass it along as a dangling thorized” editing of the surrounding
the entire link (especially useful for exception to the user. text. Currently in DHM, we have
multiheaded links). Finally, danghng In case 4, the data specified by the implemented detection and relink
links can be created intentionally as anchor value becomes invalid when options for case 1.
placeholders when the desired end relevant parts of the component’s
point component or anchor does not contents are modified with editors Link Directionality
vet exist.! The presence of such dan- outside the hypermedia. This situa- The Dexter model includes only
gling links could be monitored by the tion is impossible to detect in general minimal motivation for its notion of
system either on command or auto- during a CreateLinkMarker or a fol- link directionality. We are told that
matically. Users could then be lowLink operation, since the lookup/ each link specifier indicates a direc-
tonality using one of the constants
FROM, TO, BIDIRECT, or NONE,
® & File Edit Hypertexts Anchors Components depending on whether the end point
is to be interpreted as a source, desti-
0] . . . nation, both source and destination
Rdd endpoint »| Destination or neither, respectively. Further-
Face size| ne link , g::t:gn more, _evet"\.-' ~llizl.k‘ ;m‘xst h‘d\."t“ at. least
one TO specifier.” Such directional-
lge_u_lff_}_l???fﬂli{fl_il_[_'_l_-_s Follow Link , ity constants are used to model the
DHM currently provides four | prowse Hypertext Links |- Draw, Movie)))
Browse Component Links Figure 3. Creating a link with one
Text components can be preserreer-rrro-omrerermeorrertts: Styled (defa ﬁﬁgzﬁfgﬁt,""'m- anchoredin
; y selected text
and Simple. The Text component editors support links. Link ""components”
prompted to reconnect “missing” ® @& File Edit Hypertexts Links Anchors Components
lin]\ Cnd IJ()i“lS- mu: Link 78
We imagine four different dan-
gling-link situations arising in an il.l- Intro Recompute | Recompiie
tegrated Dexter-based hypermedia Intro
system: 1) the end point’s component Second endpoint [Present J L Present)|

has been deleted, 2) its anchor has
been deleted, 3) relevant data objects
referred to by the component’s con-
tents are unavailable, and 4) the an-
chor value is invalid. In the first two
cases, the deletion operation modi-
fies the objects so that later calls to
followLink raise exceptions. Compo-
nent deletion is implemented by
clearing the anchors list and compo-
nent contents, and setting a “deleted”
flag. Anchor deletion is carried out
similarly.

Cases 3 and 4 described in the pre-
ceding paragraph usually result from
actions outside the control of the
hypermedia. For example, data ob-
jects making up a component’s con-
tents can become unavailable if the
content is a file identifier, and the file
'An ;mml)'mcl;; 717';::'il'r‘wt‘r7;nt:|liont:6 an exam-
ple from asynchronous collaborative writing:
When checking out parts of a hypertext, the
links should dangle but be reattached when the
structures are returned to the larger hypertext

computation of anchor value may
not raise an exception. An example is
when the anchor value is still legal
but out of date, as a result of “unau-

Inspect anchor
Remove endpoint
Edit direction

Demo: Intro

Face Size

Font [Chicago |

[Devise Hypermedia] v 1.3.1 Demof[

Demo: vals=FcrF———=

DHM currently provides four atomic

Patterns: | Black hd

Text components can be presented ag
and Simple. The Text component edit
appear as rectangles around the anch

Figure 4. Two open link instantia-
tions. Link32 has three end-
points, two in the ‘Intro’ text
component, the third in the
‘Ovals’ component. Link 78 has no
endpoints.

COMMUNICATIONS OF THE AcCM February 1994/ Vol 37, No.2 “3

hyper EXEXEN

link semantics of existing hyperme-
dia systems. For example, Interme-
dia links modeled with
BIDIRECT directionality on all spec-
ifiers. This is because the end points
of an Intermedia link are direction-
ally mmterchangeable [6].* In Note-
Cards, on the other hand, links have
a detinite source and destination [8].

This scheme seems insufficient,
however, to model the ways people
interpret link direction in practice.
Consider the following three notions
ot directionality:

are

direction. This
the semantic relationship between
the components represented by the
link. For example, a “supports” link
connecting components A and B has
a direction in which it normally
“reads”; the argument in component
A “supports” the claim in component
B [18, Chap. 4].

e Creation direction. This direction cor-
responds to the order in which the
link end points were created: the
source of the link is the first end
point created while the destination is
the last.

® Traversal direction. This direction
specifies how the link can be tra-
versed. HyperCard links, for exam-
ple, can only be traversed from
source to destination.* NoteCards
links can be traversed in both direc-
tions, although the interface style is
different. When moving from source
to destination, one clicks on the
source anchor’s icon. To move from
destination to source, a menu of
“backlinks” is opened in the destina-
tion component and the appropriate
link 1con is chosen.

® Semantic concerns

These senses of link direction are in
principle orthogonal. For example,
the directions in which one can phys-
ically traverse a link in a particular
system need not depend on the link’s
semantic direction. Nonetheless,
many systems enforce dependencies.

“An anonymous reviewer informs us that the
wording of the constraint should have been, “at
least one TO or BIDIRECT specifier.”

*Intermedia anchor attributes can, however, be
notated with directionality information.

*This is because HyperCard links are imple-
mented as “GO” statements in a script in the
link’s source component. This also means that
links cannot normally be seen from their desti-
nation cards.

In NoteCards, for example, the crea-
tion direction corresponds to the tra-
versal direction.

Selection of creation and traversal
directions in the Ul is supported in
DHM, based in part on the Dexter
proposal for direction attributes on
link specitiers. When creating a link
the user can choose the first
point to be either source, destination
or both (see Figure 3). This corre-
sponds to setting either FROM, TO
or BIDIRECT, respectively, as the
value of the direction attribute on the
corresponding specifier. Similar
choices are available when adding
end points to a link with the add end
point operation. By default, end
points created using new link are
sources and those created with add
end point are destinations.

The direction values recorded in
the specifiers support the user’s
choice of traversal direction. As
shown in Figure 5, the follow link
operation can be invoked with a di-
rection parameter. When following a
link in the forward direction, end-
points with direction value TO or
BIDIRECT are presented. In the
backward direction, end points with
direction value FROM or
BIDIRECT are presented. When
following a link in all directions, all
end points are presented.

As previously described, the Dex-
ter direction values were originally
introduced to model directionality in
existing systems. Designers of sys-
tems based on the model need to

end

make operational interpretations of

the values. This is straightforward
for the TO and FROM values,
though less clear for NONE and
BIDIRECT. In DHM we use
BIDIRECT for endpoints that are
conceived of as both source and des-
tination. Currently, we have not cho-
sen a semantics for the NONE value,
but it could be used to mark end-
points that (temporarily) should not
be presented when following a link.
Such end points would still be acces-
sible, however, through a link instan-
tiation (see Figure 4). Link instantia-
tions also allow the user to change
the direction values of the individual
end points.

Semantic direction is not explicitly
supported in DHM (or in Dexter),
but the general attribute mechanism

BB ooy 199vol 37, Nu.! COMMUMNICATIONS OF THE ACM

that allows creation of different link
types could also support assigning
semantic directions to links.

Anchors

One of Dexter’s major contributions
is its explicit identification of anchors
as the “glue” connecting network
structures to the contents of particu-
lar components. Anchors are a con-
trolled means of referring to the
“within-component” layer. Without
them, links only whole
components.

Dexter’s anchors are defined rela-
tive to a component and have an
identification (id), that is unique
within that component. Link specifi-
ers must identify both the compo-
nent id and the anchor id. Explicit
mention of the ids can be avoided,
however, by use of the resolver func-
tion. Thus the component appearing
at a link’s end point can be computed
dynamically at run time.

The biggest problem with Dexter’s
model of anchors is that they are not
properly related to composites. That
is, although the contents of a com-
posite (a list of baseComponents) is
“visible” (i.e., explicitly represented)
in Dexter, no mention is made of
how anchors should refer to
bascComponents within a parent
composite. In DHM we allow com-
posites to include full-fledged com-
ponents (see the following discussion
on structures), adding further prob-
lems. For example, can an anchor in
the parent composite be tied to an
anchor in one of its components?
That is, can a link “indirect” through
a composite’s anchor, to an enclosed
component’s anchor?

There are other anchor-related
issues not discussed in the Dexter
model. Consider, for example, links
to whole components. Should they
have an empty anchor reference in
the specifier or should there be a
“whole-component” anchor type? In
that case, should all whole-compo-
nent links share a single whole-
component anchor, or should there
be one anchor for each link end-
point? Indeed the general issue of
sharing vs. multiplying anchors is left
open in Dexter. When creating a new
link, should one always try to reuse
any existing applicable anchor? Sup-
pose there is more than one?

connect

DHM extends Dexter’s model of

anchors in several ways. First, we use
dynamic references (“pointers”) in-
stead of anchor ids.” This means that
link specifiers point directly at com-
ponent anchors avoiding the need
for an accessor function. Similar ben-
efits accrue from our block-struc-
tured type definitions. For example,
a component need not include an
explicit reference to its enclosing
hypertext, since the component defi-
nition i1s nested within the definition
of a hypertext. Likewise, an anchor
need not include an explicit refer-
ence to its enclosing component.

DHM distinguishes three high-
level anchor types which are inde-
pendent of the type of the enclosing
component. Whole-component anchors
support the degenerate case of link
end points not anchored within a
L‘nmp(mcnl's contents.Y

A marked anchor i1s one for which
an object is directly embedded in the
component’s contents. This object is
called a link marker in Dexter. It may
or may not be visible—indeed, some
link markers (e.g., an Emacs “mark”)
may never be made visible as such.
Link markers can be implemented in
a variety of ways depending on the
medium and the application. Visible
icons inserted in text or graphic win-
dows can serve as link markers (e.g.,
NoteCards link icons). But a link
marker can also correspond to what
Meyrowitz [15] calls a “permanent
tie.” Such an object can “track” edit-
ing changes to the component’s con-
tents, including changes to the selec-
tion itself. The instantiation may or
may not choose to make the link
marker visible (see, for example, In-
termedia’s arrow icon registering the
presence of a permanent selection).
DHM supports link markers in text
components by mantaining outlined
regions around the anchored text
selectons (see, for example,
Figure 5). A command-click within
the link marker region invokes a fol-
low on the corresponding marked

*Utilizing an OODB makes our pointers persis-
tent. We nonetheless maintain component and
anchor ids in order to be able to generate trans-
portable interchange formats for the hyperme-
dia structure.

“In DHM, all links with whole-component end-
points in a component share a single whole-
component anchor.

° & File Edit Hypertexts Anchors Components
R Add endpoint »
Face Plain 'I Sizg jie link » EhiC;QD v
Delise Hypermedia| v 1.3

DHM currently provides four

Text components can be pre

and Simple. The Text component editors support |span to span| links.

anchor’s links.

Unmarked anchors have
markers. Normally their
within a component must be com-
puted. Text components in DHM
support a particular kind of un-
marked anchor called keyword an-

link

location

o

chor, resembling the end points of
Hyper'lies text links [17]. As an ex-
ample, consider the situation of cre-
ating a new link shown in Figure 3.
Assume that creating this new link
requires creating a new anchor (as
opposed to reusing an existing one},
and that the anchor is to be a key-
word anchor. In that case, a copy ol
the selected text string “components”
is saved as the anchor’s value. It we
later invoke followlink from this
component (assuming we have not
selected some marked anchor), the
values of all keyword anchors will be
checked against the currently se-
lected text. In particular, if the cur-
rent selection’s text matches the
string “components,” then the link
created earlier in Figure 3 will be
followed.

What sets a marked anchor apart
from an unmarked one is the ability
to retrieve the anchor directly from a
selection in the component’s editor.
If a link marker is currently selected
(or clicked on) in an active instantia-
tion, then the instantiation is able to
directly access the corresponding
marked anchor. This 1s in contrast to
unmarked anchors, where a search is
required. In general, each unmarked
anchor must be asked whether it is
currently “selected” (or perhaps
descriptively, “applicable™).
The operation of following a link
from a marked anchor takes constant
time, whereas following a link from
an unmarked anchor requires in the
worst-case time proportional to the
total number of unmarked anchors

more

COMMUNICATIONS OF THE ACM [cbiuary 1994/ Vol 57 Ne ¢

Follow Link » Forward RF
Backward B
Browse Hypertext Links ﬂ:c w g&n
Browse Component Link -
s: Styled (default)

Link m

Figure 5. FollowlLink invoked
with a direction parameter

in the ('ump(_mm]l.?

Structures

The notion ol structure (usually hi-
erarchical) has been a part of most
hypertext systems since the time of
NLS/Augment in the 1960s [2]. In
KMS, for example, (as well as its an-
cestor Z0G), a hierarchical structur-
ing capability is built in to every node
[1]. Thatis, all nodes (called “frames”
in ZOG/KMS) can act as containers
for other nodes. Usually, however,
hierarchical structuring (and on rare
occasions, nonhierarchical structur-
ing), is supported through separate
mechanisms.

In his article “Retlections on Note-
Cards: Seven Issues for the Next
Generation of Hypermedia Sys-
tems,” Halasz proposed that the com-
posite be elevated to peer status with
atomic nodes and links [7]. Compos-
ites would provide a means of cap-
turing nonlink-based organizations
of information, making structuring
beyond pure networks an explicit
part of hypertext functionality.®
Halasz also argued for the related
notions of computed and virtual
composites. The contents of a com-
puted composite might be, say, the
result of a structural query over the
hypertext returning sets of nodes
and links as “hits.” A virtual compos-
ite 1s created on demand at run time,
but not saved in the database. Later,
in Aquanet [14], the composite idea
was used to capture slot-based struc-

“This can be improved using hash tables and
the like.

YA similar appeal was made by van Dam in his
attack on links as “"GOTO" statements [20].

a5

tures consisting of nodes and rela-
tions, multiheaded variants of links.

Halasz [7] also criticized purely
link-based structures, arguing that
they lack a single node capturing the
overall structure. The Dexter mod-
el's composite addresses this critique.
As an aggregation of base compo-
nents, it acts both as a full-fledged
node in the network, and as con-
tainer for the structure. In particu-
lar, such a composite can contain link
components (in addition to atomic
components and other composites)
and thus capture complex nonhier-
archical network structures (like
Aquanet relations [14]). Further-
more, because of Dexter’s clean sepa-
ration of storage and run-time envi-
ronments, virtual composites are a
simple variant.

Though Dexter’s notion of com-
posite is a significant step forward, it
is only one point in a spectrum of
possible designs, each having certain
advantages and meeting certain
needs. Our architecture extends
some of the features of composites to
all components and supports tailor-
ing for particular applications. Users
adding a new component type to our
framework make choices along sev-
eral dimensions:
® Virtual/nonvirtual components. Any
component type (not just composites)
can be made virtual by setting a flag.
Such components resemble normal
components, but are only saved in
the database if pointed at by another
component (say, a link). Virtual com-
ponents resemble objects in a dy-
namic programming environment—
if they are not pointed at, then gar-
bage collection reclaims them. For
example, a virtual component might
be created automatically to display
the results of a user-instigated search
over the components in the hyper-
text. Such a component persists be-
yond the current session only if the
user creates a link to (or from) it, or
adds it to an existing nonvirtual
composite.

o Compuledistatic components. Any
component type (again, not just com-
posites) can be the result of a compu-
tation rather than manually created
by the user. A typical example is a

component created on the basis of

executing a query. An attribute con-
tains the information used to per-

form the computation. The compo-
nent’s contents can later be
recomputed, either on demand or
automatically. Some computed com-
ponents (like browsers) reflect the
contents or structure of parts of the
network. In such cases, recomputa-
tion can be based on periodic checks
of the relevant subnet, or be forced
by changes to the relevant compo-
nents or structures.

® Component contents. Typically, the
contents of a component in a hyper-
media system is not simply a flat set
of enclosed data objects as suggested
by the Dexter model. The contents
are often structured and can include
external data objects or references to
other components. Figure 6 shows an
example of a composite type sup-
porting link browsing in DHM. The
link browsers are implemented as
virtual, computed composites with
contents consisting of lists of refer-
ences to LinkComponents. Though
not anticipated by the Dexter model,
this kind of component was fairly
easy to implement using the frame-
work described.

Integration and Component
Contents

The phenomenon of system devel-
opers “owning the world” is becom-
ing increasingly rare. Today, most
practical computer environments
consist of several third-party applica-
tions, perhaps customized for partic-
ular work settings by local program-
mers or user “tailors”. Unfortu-
nately, the application’s inner work-
ings and structures are rarely open o
the developer trying to integrate
them into a larger environment. The
problem is exacerbated if the en-
vironment includes a variety of
platforms.

In the last few years, researchers
and developers have tried to use
hypermedia to address this integra-
tion problem [6, 12, 15, 16]. They
argue that rather than build a hyper-
media system that includes all the
applications needed in the work
setting, one should employ hyperme-
dia as a linking architecture, “con-
necting” the world rather than “own-
ing” it.

The Dexter reference model
makes certain important contribu-
tions to this effort. At the architec-

46 February 1994/Vol.37, No.! COMMUNICATIONS OF THE ACM

tural level, Dexter distinguishes be-
tween objects belonging to the
hypermedia (both run-time and stor-
age objects), and the “within-compo-
nent layer” belonging to an applica-
tion. In addition to describing the
hypermedia data model, Dexter of-
fers two important concepts that help
cross the boundary: anchors and
presentation specifications (or
“pspecs”). Anchors support linking
to and from points within the con-
tents of an application document.
Pspecs provide a means of storing
information with a Dexter compo-
nent on how to start and configure
the appropriate application.

In this way, Dexter opens the pos-
sibility of integrating third-party
applications into a linked hyperme-
dia environment. But it leaves unad-
dressed at least two important inte-
gration-related questions. First,
Dexter does not distinguish between
components whose contents are
managed (in particular, stored) by
the hypermedia and those whose
contents are managed by third-party
applications.

The second problem involves ap-
plication documents having internal
structure. Such documents can be
integrated as a single unit into the
hypermedia using a component
“wrapper,” but often the document’s
internal structure needs to be “ex-
posed” for link anchoring. Dexter
suggests using composite compo-
nents, but says almost nothing about
how to anchor within the subcompo-
nents of a composite. It also does not
discuss whether or how a composite
component’s structure should model
the internal structure of an applica-
tion document.

Various possibilities for storing
and structuring component contents
discussed in the following
subsections.

dare

Atomic Components

Figure 7 shows two possible relations
between an atomic component and
an anchored data object. In part (a)
of Figure 7, a traditional situation in
which an application and its data ob-
jects are built into the hypermedia
system is shown. DrawComponents
in DHM, for example, encapsulate
lists of graphical objects stored in the
object-oriented database (OODB)

together with the components.

In part (b) of Figure 7, on the
other hand, data objects wrapped by
a component are stored separately
and only referenced by the contents
ot the component. In DHM such a
component/data object relationship
characterizes FileComponents — and
MouvieComponents. FileComponents
are used to wrap arbitrary files in the
file system, using file ids stored in the
component contents. In this way,
DHM supports linking (using
WholeComponent anchors) to docu-
ments created with applications like
Microsoft Word or Excel. The fol-
lowLink operation automatically
launches the appropriate applica-
tions on the files.

MovieComponents “wrap” Quick-
Time movies,” large multimedia data
objects (from five to several hundred
MB) too complex to be easily stored
in the hypermedia’s OODB. Hence,
they are better handled using
MovieFiles referred to by the compo-
nent contents.!” In this case, the
component contents is again a file
identification object.

Typically, an atomic data object
belongs to exactly one atomic compo-
nent. But there are cases in which
two or more components need to
share data. Here the components
could have different types and/or
different sets of anchors. Such multi-
ple “views” can be supported by the
containment style shown in part (b)
of Figure 7. An example is the shar-
ing of movie files across several
hypertexts.

Composite Components

With regard to more complex struc-
tures of components and data ob-
jects, we found Dexter’s notion of
composite too narrow. According to
Dexter, a composite may only con-
tain encapsulated data objects (for
example, see the bottom-left com-
posite in Figure 8). As noted by
Halasz and Schwartz [9] this kind of
composite can model structures like
graphical canvases. For other appli-
cations, however, composites need to
‘-'Quicklirsrm-“‘ by Apple Liompl-.ue: Inc. im[_ch—
ments a format for storing/fcompressing digi-
tized video.

"In the current version of DHM, we support
only one movie per MovieFile (and thus, one
per component).

byper EXTIER

© @& File Edit Hypertexts Links Anchors Components

]

= Demo: Component links 61 ———

Links for component: Intro
Link23 [Recompute]
Link26 intro
Link29 | |L_Editiing]
Link32 Font
Link41 [Make current |
L?“k‘” [Present link } -
LinkSt e
L Delete link]
fferent va
Show component
I] port| span
xt.

refer to external data objects or other
components. In the following para-
graphs we discuss examples of such
composite types.

Composites ‘‘containing” compo-
nents. We first consider composites
that refer to other components as
shown in Figure 8. One example is
the TableTopComposite used to save
configurations of components pre-
sented together on the screen [19].
The contents of a TableTop-
Composite in DHM is a list of “point-
ers” to components of arbitrary type
(including links and other compos-
ites); the composite does not directly
contain or wrap the data objects.
Another example is a search compos-
ite. Here the contents is a list of com-
ponents (again of arbitrary type) re-
sulting from a title search or a query
over component attributes. In DHM,
such search composites are imple-
mented as virtuals (see the discussion
on structures).

Figure 9 shows a slightly different
kind of composite also used to group
components. In this case, the com-
posite is both virtual and has contents
restricted to certain component
types. The VirtualLinkComposite
shown in Figure 9 is used in DHM to
implement a variety of link browsers.
VirtualLinkComposites are “com-
puted” composites; their creation
requires collecting a set of links for
an entire hypertext, a specific com-
ponent, or a specific anchor, de-
pending on the kind of link browser.

When appropriate, restricting the
component types pointed at by a
composite allows customization of
the composite’s interface. For exam-
ple, the VirtualLinkComposite inter-
face supports inspecting individual
link specifiers. A nontyped compos-

Figure 6. A link browser compos-
ite in DHM; lists all links to and
from the ‘Introduction’ node.

(a) (b)

Figure 7. Datais either partofan
atomic component’'s contents or
referenced by it. Dotted arrows
denote references out of the
hypermedia structure (e.g., file
structures).

Figure 8. A composite refering to
components of arbitrary type.
Solid arrows denote internal
pointers to hypermedia compo-
nents.

COMMUNICATIONS OF THE A€M Fchruary 1994/ Vol 37, No.2 41

hyper EXEXER

Figure 9. A virtual composite re-
stricted to refer to LinkCom-
ponents. Shading indicates that
the composite is virtual.

Figure 10. Typed composite with
nested components points at
encapsulated data objects

Figure 11. A composite with
structured contents

oy
-

ite would require run-time checking
of the types of contained objects.
Encapsulated data objects. Up 1o
this point we have focused on com-
posites referring o other compo-
nents. We now turn to composites
referring directly to data objects. In
Figure 10, the data objects depicted
as triangles are encapsulated in a
“container” object (drawn as a rec-
tangle). In this case, the internal
structure of the rectangular object is
visible to the hypermedia system.
Hence the composite and its nested
components can refer both to the
enclosing object and to its internal
structure. !
An example of such a composite is
used to represent modules in the
Mjglner Beta pmgmmming environ-
ment [13]. Mjglner supports fine-
grained modularization of programs
using atomic modules called ‘frag-
ments’ contained in parent ‘fragment
groups.” Each fragment group is
stored in a file. To represent such
structures in DHM, we use a Frag-
mentGroupComposite whose con-
tents includes a reference to a frag-
group file and a hst ol
references o atomic FragmentCom-
ponents, declared inside the block
structure of the FragmentGroup-
Composite. The nested structure of
the ‘real world’ data objects (frag-
and groups) is
mapped directly onto the nested
structure of the representing compo-

ment

ments fragment

nents. Hence, we can link both to the
composite and to the nested atomic

A nested component is one whose definition
lies within the block structure of the parent
component and thus can only be seen in the
context of the parent component. (The block
structure of DHM’s object-oriented component
definitions is similar to the block structure
found in procedural programming languages
like Pascal.)

components representing individual
fragments.

We provide anchors at the Frag
mentGroupComposite level to com-
ments made at the group level, and
at the
level to comments and source code

FragmentGroupComposite

belonging to individual fragments.

Structured composites. An Aquanet
relation [14], is an example of a hy-
permedia composite with structured
contents. A fundamental feature of
an Aquanet relation is that it resem-
bles a multiheaded link with named
end points.

We suggest implementing such
relations as composites with contents
consisting of a keyed table ot compo-
nent references (see Figure 11). Such
a composite can refer to basic objects
(atomic components) as well as to
other relations (structured composite
components). In addition, instantia-
tions of such composites can support
link-like “end-point” presentation.
Here “end points” refers to the com-
ponents pointed at by the compos-
ite’s encapsulated structure.

summary

The preceding examples show the
need to support a broad view of com-
ponent contents when developing
open Dexter-based hypermedia sys-
tems. Integrating components of the
storage layer with data objects of the
within-component layer is one im-
portant aspect (as illustrated by the
difference between a Draw-
Component and a MovieCom-
ponent). Another is the internal inte-
components and
composites as illustrated by the cases
of TableTopComposite and Virtual-
LinkComposite. Table I summarizes
the discussion in this section along

gration of

three dimensions.

Table 1. Three aspects of component contents

Structure of Contents
® Atomic

e Unstructured collection
e Structured collection

¢ Data objects
~ within component
— outside component

— sorted list ¢ Components
— keyed table — restricted types
— tree — unrestricted

Type/Location of Contents Definition of Contents

48 February 1994/ Vol 37 No.! COMMUNICATIONS OF THE acM

Conclusion

The Dexter-based hypermedia de-
velopment in the DeVise project at
Aarhus University was the founda-
tion for this work, which has lead to
clarifications and extensions to the
Dexter model. The topics discussed
in this article concern integration is-
sues and the design of central object
classes like links, anchors, and com-
posites.

Our work on Dexter-based hyper-
media contributes to the Esprit 111
project, EuroCODE, aimed at devel-
oping a CSCW Open Development
Environment, a so-called “CSCW
shell.” One of the EuroCODE activi-
ties mvolves extending our Dexter-
based hypermedia architecture to
support cooperation via long-term
transactions, flexible locking and
event notifications. The open, exten-
sible architecture we are developing
comprises an object-oriented frame-
work for developing multiuser hy-
permedia applications [3]. 3

Acknowledgments

This work has been supported by
the Danish Research Programme for
Informatics, grant number
5.26.18.19. Our thanks also go to the
members of the DeVise project at
Aarhus University.

References

1. Akscyn, R., McCracken, ., and

- Yoder, E. KMS: A distributed hyper-
media system for managing knowl-
edge in organizations. Commun. ACM
31,7 (July 1988), 820-835.

2. Engelbart, D.C. Authorship provi-
sions in AUGMENT. In Proceedings of
the 1984 COMPCON Conference,
COMPCON "84 Digest (San Francisco,
Feb. 1984), pp. 465472,

3. Grgnbxk, K., Hem, J.A., Madsen,
O.L. and Sloth, L. Cooperative hy-
permedia systems: A Dexter-based
architecture. Commun. ACM 37, 2
(Feb. 1994).

4. Grenbak, K., Kyng, M., and Mogen-
sen, P. CSCW challenges: Coopera-
tive design in engineering projects.
Commun. ACM 36, 6 (June 1993), 67—
77.

5. Granbak, K. Knudsen, J.1..
Tools and techniques for experimen-
tal system development. In Proceed-
ings of the Nordic Workshop on Program
ming Environment Research, K. Systa, P
Kellomiiki, and R. Mikinen, Eds.
(Tampere, Finland, Jan. 8—10, 1992).

and

10.

11.

12.

3.

14.

15.

6.

17.

18.

19.

. Haan, B.J., Kahn, P, Riley, V.A,

Coombs, J.H. and Meyrowitz, N.K
IRIS Hypermedia Services. Commaun
ACM 35,1 (Jan. 1992), pp. 36-51

. Halasz, F. Reflections on NoteCards:

Seven issues for the next generation
ot hypermedia systems. Commun
ACM 31,7 (July 1988), 836-852.

- Halasz, F., Moran, ‘I, and Trigg, R

NoteCards in a nutshell. In Proceed-
ings of the CHI '87 Conference, (To-
ronto, Canada, Apr. 1987), pp. 45—
52,

. Halasz, F.and Schwartz, M. The Dex-

ter hypertext reference model. In
Proceedings of the Hypertext Standardiza-
tion Workshop (Gaithersburg, Md.,
Jan. 1990), pp. 95-133.

Halasz, F. and Schwartz, M. The Dex-
ter hypertext reference model. K.
Gregnbak and R. ‘Irigg, Eds., Com-
mun. ACM 37, 2 (Feb. 1994).

Hem, J.A., Madsen, O.L., Mgller,
K.]., Ndgrgaard, C., and Sloth, L.. Ob-
ject oriented database interface. De-
liverable D5.2, ESPRIT project 5305
EuroCoOp IT Support for Distributed
Cooperative Work, Dec. 1991,
Kacmar, C.]. and Leggeu,].J.
PROXHY: A process-oriented exten-
sible hypertext architecture. ACM
Trans. Inf. Sys. 9, 4 (Oct. 1991), 399-
419.

Madsen, O.1.., Mgller-Pedersen, B,
and Nygaard, K. Object-Oriented Pro-
gramming in the BETA Programming
Language. Addison-Wesley, Reading,
Mass., 1993,

Marshall, C.C., Halasz, F.G., Rogers,
R.A. and Janssen, W.C. Aquanet: A
hypertext tool to hold your knowl-
edge in place. In Proceedings of Hyper-
text 91, ACM New York, Dec. 1991,
pp- 261-275.

Meyrowitz, N. The Missing Link:
Why we're all doing hypertext wrong.
In The Society of Text, E. Barreu, Ed.
MI'l" Press, Cambridge Mass. 1989,
pp. 107-114.

Pearl, A. Sun’s link service: A proto-
col for open linking. In Proceedings of
the Hypertext 89 Conference (Pitts-
burgh, Pa., Nov. 1989), pp. 137-146.
Shneiderman, B. User interface de-
sign for the HyperTIES electronic
encyclopedia. In Proceedings of the
Hypertext °87 Conference, (Chapel Hill,
N.C., Nov. 1987), pp. 189-194.
Trigg, R. A network-based approach
to text handling for the on-line scien-
tific community. Ph.D. dissertation.
University of Maryland (University
MicroFilms No. 8429934), College
Park, Md. 1983,

Trigg, R. Guided tours and tabletops:
T'ools for communicating in a hyper-
text environment. ACM Trans. Off.

COMMUMNICATIONS OF THE ACM [chruary 1994/ Vol 30 N .

Inf. Systo 6.4 (Oct. 1988), 398—414.

20. van Dam, A. Hypertext '87: Keynote
Address. Commun. ACM 31, 7 (July
1988), 887-895.

CR Categories and Subject Descrip-
tors: .1 [Data Structures]: Hypertext,
H.1.2 [Models and Principles]: User/
Machine Systems—human information pro
cessing; H.2.1 [Database Management|:
Logical Design—Ahypertext; H.3.2. [Infor-
mation Storage and Retrieval]: Informa-
tion slmug'c hypertext; H.4.2 [Informa-
tion Systems Applications]: Types of
Systems—hypermedia; H.5.1. [Multimedia
Information Systems]: Hypertext Navi-
gation and Maps; 1.7.2 [Document Prepa-
ration|: Hypertext/Hypermedia.

General Terms: Design

Additional Key Words and Phrases:
Composites, dangling links, Dexter
model, hypermedia, hypertext, open hy-
permedia

About the Authors:

KAJ GRONBZEK is assistant professor at
the Computer Science department, Aar-
hus University, Denmark. Current re-
scarch interests include cooperative de-
sign, computer-supported cooperative
work, development and use of hyperme-
dia technology, and system development
with focus on object-oriented tools and
techniques. Authors’ Present Address:
Computer Science Department, Aarhus
University, Bld. 540, Ny Munkegade;
DK-8000 Aarhus C, Denmark; email:
kgronbak@daimi.aau.dk

RANDALL H. TRIGG 15 & member of
the research stafl at Xerox Palo Alto Re-
search Center. Current research interests
include participatory design, the design
and evolution of wailorable computer sys-
tems, hypermedia, computer-supported
cooperative work, and connections be-
tween social science and system design.
Authors’ Present Address: Xerox Palo
Alto Research Center, 3333 Coyote Hill
Road, Palo Alto, CA 94304; email: trigg(@
PATC.XETOX.Ccom

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advantage

the ACM copyright notice and the title of the publi

cation and its date appear, and notice is give that
copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission

© ACM 0002-0782/94/0200 $3 .50

KaA] GRONBAEK
RANDALL H. TRIGG

This article discusses experiences and lessons learned from the design of an open hyper-
media system, one that integrates applications and data not "owned"” by the hypermedia.
The work was conducted under the auspices of the DeVise project at the computer science
department of Aarhus University, Denmark [51. The DeVise project is developing general
tools to support experimental system development and cooperative design in a variety of
application areas including large engineering projects. The intensely collaborative, open-
ended work characteristics of such settings make demands beyond the cross linking
traditionally supported by hypermedia. These include a shared database, access from mul-
tipie platforms, portability, extensibility and tatlorabllity. (For a detailed discussion of our
engineering project use setting and Its CSCW and hypermedia requirements, see (3, 41.)

FOR A DEXTER-BASED
HYPERMEDIA SYSTEM

Mo hypermedia system to our knowl-
edge meets these requirements on the
platforms we need to support. Having
to build our own, we nonetheless
wanted to benefit from the experience
and expertise of past and present
hypermedia designers. Thus, we
decided to use the Dexter Hypertexi
Reference Model [9, 10] (called Dexter
throughout this article) as our plat-
form. Dexter attempts to capture the
best design ideas from a group of
“classic” hypertext systems, in a single
overarching data and process model.
Although these systems have differing
design goals and address a variety of
application areas, Dexter managed to
combine and generalize many of their
best features.

We took the Dexter reference
model as the starting point and turned
it into an object-oriented design and
prototype implementation (called
DeVise hypermedia, or “DHM"), run-
ning on the Apple Macintosh. As a
programming environment, we chose
the Mjolner Beta System supporting
the object-oriented programming lan-
guage BETA [13]. The Mjolner Beta
System includes an object-oriented
database [11], in which our hyperme-
dia structures are stored. Among the

media supported by DHM are text,
graphics, and video, using a styled
text editor, a simple drawing editor,
and a Quicklime movie player,
respectively. DHM also supports link
and atomic component browser com-
posites, and a composite to capture
screen configurations of open compo-
nents (modeled on the NoteCards
TableTop [18]). In addition to travers-
ing links (including multiheaded
ones}, users can edit link end points
using a graphical interface. Com-
ponents can also be retrieved and pre-
sented via title search. Dexter’s model
of anchoring is extended to include a
distinction between marked and
unmarked anchors. Finally, in contrast
to Dexter, DHM explicitly supports
dangling links.

In short, our attempt to directly
“implement” Dexter was largely suc-
cessful. We were surprised at the
robustness of the resulting design—it
met several of our goals not explicitly
identified in the Dexter paper. At the
same time, we uncovered holes in the
model, areas where further develop-
ment is needed. For some of these, we
now feel prepared to offer proposals
for other hypermedia designers.

This article briefly reviews the

Dexter model before discussing our
experiences in applying it. Our focus
here is on links, anchors, composites
and cross-layer interfaces. For each of
these, we comment on the utility and
applicability of Dexter, identify the
implementation choices made in our
prototype, and make recommenda-
tions for designers of future systems
and standards. We close with research
issues and open questions.

The Dexter Model

The Dexter Hypertext Reference
Model [9, 10] separates a hypertext
system into three layers with well-
defined interfaces (see Figure 1). The
storage layer captures the persistent,
storable objects making up the hyper-
text which consists of a sel of compo-
nents. Component is the basic object
provided in the storage layer. As
shown in Figure 2, the component
includes a contents specification, a
general-purpose set of attributes, a pre-
sentation specification and a set of
anchors. The alomic component is an
abstraction replacing the widely used
but weakly defined concept of ‘node’
in a hypertext. Composite components
provide a hierarchical structuring
mechanism. The contents of a link

OF TME AcM Fcbruary 1994/Vol .37, No.2 "

