
A GENERAL
PURPOSE FiYl=ERTEXT
A6STRACT The HAM is a transaction-based server

MACHINE
for a hypertext storage system. The seruer
is designed to handle multiple uses in
a networked environment. The storage

BRAID CAMPBELL and JOSEPH M. GOODMAN

system consists of a collection of contexts,
nodes, links, and attributes that make up
a hypertext graph. The versatility of the
HAh4 can be illustrated by showing how
Guide buttons, lntermedia webs, and
NoteCard FileBoxes can be implemented
using its storage model.

The Hypertext Abstract Machine [HAM) is a general-
purpose, transaction-based, multi-user server for a hy-
pertext storage system. The HAM is based on the ab-
stract machine Norm Delisle and Mayer Schwartz used
in their Neptune system developed at Tektronix’ Com-
puter Research Laboratory [l]. Because the HAM is a
low-level storage engine, it provides a general and flexi-
ble model that can be used in several different hyper-
text iapplications. For example, the HAM, combined
with the Neptune user interface, provides a prototype
system for a software engineering environment.

The HAM stores all of the information it manages in
graphs, or databases, on a host machine’s file systems.
Graphs are stored in a centralized area and can be
accessed in a distributed environment. The HAM typi-
cally communicates with an application through a byte
stream protocol [although it may alternately be stati-
cally linked with an application). The application may
or may not run on the same machine as the HAM.

Applications normally communicate with the outside
worl’d through a common user interface. The interface
should be window-based and highly interactive to pro-
vide a suitable environment for a hypertext system.

Figure I shows the typical organization of a system
using the HAM.

0198e ACM OOOI-0782/88/0700-OS56 $1.50

HAM FEATURES
The HAM storage model is based on five objects:
graphs, contexts, nodes, links, and attributes. The HAM
maintains history for these objects, allows selective ac-
cess through a filtering mechanism, and can allow for
access restrictions through a data security mechanism.

HAM Objects
A graph contains contexts, nodes, links, and attributes.
These objects are organized hierarchically and carry
the following descriptions:

A graph is the highest level HAM object. It normally
contains all of the information regarding a general
topic, such as the information for a software project. A
graph contains one or more contexts.

Contexts partition the data within a graph. Contexts
can be used to support configurations, private work-
spaces, and version history trees [6]. Each context has
one parent context and zero or more child contexts.
When a graph is created, a root context begins the tree.
A context which contains zero or more nodes and links
does not depend on information contained in its parent
context.

A node contains arbitrary data that can be stored as
text or as fixed-length binary blocks. A node can be
classified as archived, nonarchived, or append-only.
When an archived node is updated, a new version of

556 Comnzunications of the ACM July 1988 Volume 31 Number 7

the node is created using the new contents. Previous
versions of an archived node can be retrieved. When a
nonarchived node is updated, the previous contents are
replaced by the new contents. When an append-only
node is updated, the new contents are appended to the
previous contents. Append-only nodes are useful for
logging the actions performed by an application. A
node’s contents can be searched for the occurrence of
user-specified regular expressions. The search mecha-
nism allows all versions of a node to be searched.
Nodes are related by links.

A link defines a relationship between a source node
and a destination node and can be followed in either
direction. A cross-context link relates two nodes in dif-
ferent contexts and is useful for sharing data between
two contexts. The generality provided by link attributes
allows application writers to define their own notions
of link types or link end-point attachment schemes.

Attributes can be attached to contexts, nodes, or links.
Attribute values can be strings, integers, floating-point
numbers, or user-defined types. Attribute/value pairs
give semantics to HAM objects. They can represent ap-
plication-specific properties of objects or contain infor-
mation that further describes an object. Attributes are
also used in the predicates that are part of the HAM
filters.

I USER INTERFACE I

I APPLICATION TOOLS I

HOST
FILE SYSTEMS

FIGURE 1. Generic Hypertext System Architecture

Version History
The HAM provides an automatic version history mech-
anism. The version history for a HAM object is updated
each time that object is modified. Because each access
to an object contains a version time, previous versions
of objects can be viewed. The HAM also provides oper-
ations to destroy undesired versions.

Filters
The HAM provides a filtering mechanism that allows
subsets of HAM objects to be extracted from large
graphs. Filters allow the user to specify visibility predi-
cates, which are expressions relating attributes and
their values. HAM filters only return objects that satisfy

.- ; SPECIX E 1 ISSUE

.N

the predicates. Filters also allow the user to specify a
version time so that earlier versions of a graph can be
examined.

The HAM filters the following items:

l Contexts in a graph
l Nodes in a context
l Links in a context
l Instances of a node in specified contexts
l Instances of a link in specified contexts
l A set of nodes and links in specified contexts based

on a specific link ordering

Data Security
The HAM provides security for the data contained in a
graph through its access control list (ACL) mechanism.
Attaching an ACL to an object is optional. An ACL
entry consists of a user or group name and a set of
permissions. A user is anyone who has access to the
graph. A group is a list of users. The available permis-
sions are access, annotate, update, and destroy.

The permissions associated with an ACL entry are
additive. Access permission allows the user or group to
view the data associated with the object. Annotate per-
mission allows links to be attached to a node. Update
permission allows the user or group to perform nonde-
structive updates on an object. Destroy permission al-
lows the destruction of an object.

HAM OPERATIONS
To provide a consistent, simple interface, HAM opera-
tions are grouped into seven categories. Operations
within a category behave similarly, regardless of the
object on which they operate.

Create operations create new HAM objects. A create
operation takes object-dependent data and returns an
object index and a version time. The object index rep-
resents a unique identifier for the newly created object,
and the version time denotes the time at which the
object was created.

Delete operations mark objects as deleted but retain
historical information. A delete operation takes an ob-
ject index and a version time, and returns a new ver-
sion time. The object index specifies the unique identi-
fier for the object being deleted. The returned version
time represents the time the object was deleted.

Destroy operations free all space required for an object.
The object does not have to be deleted to be destroyed.
A destroy operation takes an object index and a version
time, and returns a new version time. The object index
specifies the unique identifier for the object being de-
stroyed. The returned version time represents the time
the object was destroyed.

Change operations modify data associated with an ex-
isting object. A change operation takes an object index,
a version time, and object-dependent data and returns
a version time. The object index specifies the unique
identifier for the object being modified. The returned
version time represents the time the object was
modified.

]uly 1988 Volume 31 Number 7 Communications of the ACM 057

i SPECIAL 0 1 ISSUE

a-

Get operations retrieve data from existing objects. A
get operation takes an object index and a version time,
and returns the data that existed at the specified time.
The object index specifies a unique identifier for the
object from which data is being retrieved. The version
time is a time range for the data retrieval.

Filter (and linearize) operations selectively retrieve in-
formation from a graph. A filter operation takes a predi-
cate, a version time, and a list of attributes. These oper-
ations return a list of objects that satisfy the predicate
and a list of requested attributes attached to each ob-
ject. The version time specifies the time at which the
filter is to search for the information. Each filter opera-
tion also has unique parameters in addition to those
already specified.

Special operations are those that do not fit into any of
these categories. They include functions such as
searching for strings in node contents, merging con-
texts, and managing transactions.

EXAMPLE HAM APPLICATIONS
Because the HAM is a general-purpose hypertext en-
gine, it can serve many types of hypertext systems. To
illustrate this point we will model three hypertext
structures using the HAM’s storage model: Guide but-
tons, lntermedia webs, and NoteCards FileBoxes.

Guide Buttons
Guide is a hypertext product developed for the Macin-
tosh by OWL International, Inc. of Bellevue, Washing-
ton [3]. It is a tool for writing and reading electronic
documents. Guide uses buttons-special areas on a
screen-to represent links in a document between
the information on the screen and related informa-
tion. When a button is selected, by clicking the
mouse, Guide follows the link to display the
relate’d information.

Replacement buttons replace the button icon displayed
on the screen with the information associated with that
button. Inquiries are sets of two or more mutually ex-
clusive replacement buttons. Reference buttons display
the information associated with the button in a new
window. This window remains visible until the user
returns to the document window. Note buttons display
information associated with the button in a new win-
dow that disappears when the user releases the mouse
button.

To model Guide, the HAM equates a document with
a node. The various button relationships are modeled
as links. Link attributes determine which type of but-
ton the link represents. The application uses these link
attributes to determine which type of window to open
when a button is selected.

Figure 2 shows an example of a note button. The
Document Browser contains the text being examined;
the icon within the browser represents the note button.
The Note Browser contains the note associated with the

Guide is a trademark of OWL International. Inc.

Macintosh is a trademark of Apple Computer. Inc.

note button. The Button Attribute Browser s:hows the
attributes associated with the link representing the note
button, as well as the value of the LinkType attribute.

The button type is stored in the link attribute Link-
Type; its value is Replacement, Inquiry, Reference,
or Note. All buttons also maintain the link attributes
Name and DocumentLocation. Name represents the name
associated with the button, and DocumentLocation de-
fines the location relative to the beginning of the docu-
ment where the button was created. The value of
DocumentLocation corresponds to Guide’s location of its
button icon. Guide considers the information associated
with a button to be an atomic entity. Therefore, the
other end of the link representing the button can point
to the entire node that contains the button’s informa-
tion.

All buttons also maintain the link
attributes Name and Document-

DocumeniLocation
l35 .--A

FIGURE 2. Possible Representation for a Guide Note Button

If a replacement button is part of an inquiry, the
value of LinkType is set to Inquiry. A link that repre-
sents part of an inquiry also has an attribute named
Grouping, which contains the identification of a special
node. This node contains the identification of all links
(replacement buttons) that make up the inquiry.

Figure 3 shows the HAM storage model for an in-
quiry named Example Inquiry. The Storage Repre-
sentation window shows the nodes and links. involved
in the inquiry. In this example, the links have the same
name as their destination nodes. The node Example

FIGURE 3. Inquiry Storage Representation

858 Communications of the ACM]uly 1988 Volume Cl Number 7

[]

LI Th. fhtt Rsfsrenc. MPnua,
I

FIGURE 4. Mail Web

HAM Applications is the document node. The
nodes Guide Buttons, Intermedia Webs, and
NoteCards FileBoxes contain the information as-
sociated with the replacement buttons that make up
the inquiry. The node Example Inquiry contains
the names of the replacement buttons in the inquiry; its
contents are shown in the Example Inquiry browser.
The Button Attribute Browser displays the attributes
attached to one of the links involved in the inquiry and
shows that the value of the Grouping attribute is Exam-
ple Inquiry.

I
Source
Offset

; SPECIAL
D ISSUE

a*

Intermedia Webs
Intermedia, the system developed at the Institute for
Research in Information and Scholarship at Brown Uni-
versity [2], [7], is one of the newer and more innovative
hypertext systems.

The basic hypertext concepts in Intermedia are very
similar to those found in the HAM. Intermedia uses the
term web to refer to a database that contains both refer-
ences to a set of documents and the links associated
with those documents [5]. A block is the piece of a
document to which a link is anchored and can be any
legitimate selection in the application. The attributes
provided by the HAM allow the flexibility to efficiently
model these relationships.

To model an Intermedia web, the HAM represents a
web as a collection of nodes and links. A document is
represented as a node. An lntermedia link is equivalent
to a HAM link. Blocks are determined by using link
attributes to define the anchor selections for both the
source and destination ends of each link.

UNIX manual pages’ provide a convenient example
of how the HAM can model Intermedia webs. The man-
ual page for the mail command is used to create a small
web of information.

UNIX is a registered trademark of AT&T Bell Laboratories.

’ Excerpts from the UNIX Programmer’s Manual, Berkeley Distribution. are
used for purposes of illustration.

FILES:

lusrlepoollmaill*
-Imbox
-/.mailrc
ItmplRW
/usr/lib/Mall.help’
/usr/liblMail.rc
Message’

post office
your old mall
file giving lnltlal mall commands
temporary for edltor escape
help files
aystem inltlallzation file
temporary for editing messages

SEE ALSO

Source Extent

fmt(l), newallases(l), aliases(S),

malladdr(7), sendmall(8)

‘The Mall Reference Manual

Owner Baxlnga
Updated July 20, lQ87
Created June 8, 1987

Destlnatlon Offset 122
Destinatlon Extent 7

L

NAME
binmail - send or receive mall among users

SYNOPSIS
/blnlmall [+] [-I] [person] . . .
/bin/mail [+] [4] -f fife

DESCRIPTION
Note: This is the old version 7 UNIX
system mall program. The defauft mall
command Is described In mail(l), and
Its binary Is In the directory lusrlucb.

FIGURE 5. Defining a Block

]uly 1988 Volume 31 Number 7 Communications of the ACM 859

i spzclw 1 1 ISSUE

.w
Each document (manual page) is represented as a

HAM node. The web is defined by attaching an attri-
bute named Web to each link. The value of this attrib-
ute contains the name of the web to which the link
belon,gs. A link filter is applied using the predicate “Web
= mall” to let users view a map of the web. This filter
returns only those nodes that are part of mail.

Figure 4 shows the mail web defined by creating
links :from the mail command to commands in the
manual page’s “SEE ALSO” section.

To define a block, the HAM uses the attribute
pairs !5ourceOffset/SourceExtent and DestinationOffset/
DestinationExtent. A block is determined by the value
of the attribute pair attached to the link. For example,
the source block of a link is represented by the attri-
butes SourceOffset and SourceExtent. The values of these
attributes are integers that contain the byte offset from
the beginning of the node and the length of the block.

NoteCards FileBoxes
NoteCards is a general-purpose idea-processing hyper-
text system developed at Xerox PARC [4]. NoteCards
supports the concept of FileBoxes. Every notecard must
be stored in one or more FileBoxes. A FileBc’x which is
arranged as a directed acyclic graph, can contain note-
cards and other FileBoxes.

FileBoxes can be represented in the HAM using
nodes, links, and attributes. Both FileBoxes and note-
cards are equivalent to nodes. The model uses a node
attribute to determine whether a node is a FileBox or a
notecard. Links show which notecards (or FileBoxes)
are in a particular FileBox. Link attributes determine
which links refer to other FileBoxes and notecards.
This model allows nodes to reside in more than one
FileBox. The example shown in Figure 6 helps to clar-
ify the NoteCards FileBox model.

The FileBox named Hypertext 87 contains all of

;.. ;;.:, :;. .: .:,.:: ;.:. ,r:r;r;;jes~~~~~~~~~~~~,~~I~~~~~~~~~~~~
‘.: .:, . . .> .: :..,:.: :.: > .7. ..,..,..., .:.::, ,:;., 1.. y.: y>y .::.::.: :.: ..: 1.:

Because the Hypertext Abstract Machine
is designed as a general-purpose engine,
it can be used as a base engine for other
hypertext systems.

I 1 Example HAM Applications

Narne
Owner
Updated
Created
NodeType

I :, :;:; .A....
N#f$cjjfa&
.;,.,.,.,. > ,.;,.,. .,. .,.,.;,.,.,.

Name
Owner
Updated
Created

1 NodeType (FileBox

FIGURE 6. NoteCards Representation

Each block is defined by the offset and extent attri- the FileBoxes and notecards that make up this article.
butes. The offset provides an insertion point for the As shown in the Features NoteCard Attribute
block, and the extent determines the end point of the Browser, the Features node is a FileBox. \Yhen a user
block. browses this node, the NoteCards-like application ex-

Figure 6 shows the value of the SourceOffset and amines the nodeType attribute, determines that the
SourceExtent attributes attached to link BinMail. The node is a FileBox, and opens a new FileBox browser.
highlighted area shows the block these attributes The contents of the Features node are links to all of
defin’e. the FileBoxes and notecards that it contains. It should

660 Communications of the ACM]uly 1988 Volume 31 Number 7

be noted that References is contained in both File-
Boxes.

The Conclusion NoteCard Attribute Browser
shows that the Conclusion node is a NoteCard.
When a user browses this node, the application exam-
ines the nodeType attribute, determines that the node is
a NoteCard, and opens a NoteCard browser.

CONCLUSION
Because the Hypertext Abstract Machine is designed as
a general-purpose hypertext engine, it can be used as a
base engine for other hypertext systems. Most current
hypertext systems emphasize the application and user
interface layers. While these layers are very important
an appropriate storage model is essential. We believe
the HAM provides such a model.

Although the HAM is not a panacea for hypertext
data storage problems, it is an important first step. As
new hypertext applications are developed, we will
learn more about the data representation problems hy-
pertext presents. If a storage model standard develops
from this work, it may lead to the development of a
standard terminology and base engine that could
improve immeasurably the progress of hypertext
technology.

Acknowledgments. We wish to thank Norm Delisle and
Mayer Schwartz of the Tektronix Computer Research
Laboratory for their helpful comments. We would also
like to thank Victor Riley and Lee Thomas for their
contributions to the HAM project. Lastly, we would like
to thank Amy River0 and Rich Davenport for their edit-
ing and illustration assistance.

JOURNAL
OF THE

ASSOClATlON
FOR

COMPUTING
MACHlNERY

Subscriptions $15,00/year
for ACM members;

$fS.OO/year for nonmembers.

(Members please include
member #)

; SPECIAL D 1 ISSUE

ati
REFERENCES

1. Deli&, N. and Schwartz. M. Neptune: A hypertext system for CAD
applications. In Proceedings ACM SIGMCJD ‘86 (Washington. D.C..
May XI-30,1966).132-142.

2. Garrett. N., Smith, K., and Meyrowitz. N. Intermedia: Issues, strate-
gies, and tactics in the design of a hypermedia document system. In
Proceedings of the Conference on Computer Supported Cooperative Work
(Austin. Tex., December 3-5.1986). 163-174.

3. Guide: Hypertext for the Macintosh Manual. OWL International. Inc.,
Bellevue, Wash., 1966.

4. Halasz. F.. Moran, T., and Trigg. R. N&Cards in a nutshell. In
CHI + Cl Conference Proceedings (Toronto, Ontario. Canada.
April 5-9, 1967). 45-52.

5. Meyrowitz, N. Intermedia: The architecture and construction of an
object-oriented hypermedia system and applications framework.
In OOPSLA ‘86 Proceedings (Portland. Or.. Sept. 29-Oct. 2. 19661,
166-201.

6. Schwartz. M. and Deli&. N. Contexts-A partitioning concept for
hypertext. ACM Trans. on Office Information Systems 5. 2 (April 19871,
168-166.

7. Yankelovich. N.. Meyrowitz. N.. and van Dam, A. Reading and writ-
ing the electronic book. Computer 18. 10 [Oct. 1965). 15-30.

CR Categories and Subject Descriptors: H.2.6 [Database Manage-
ment]: Database Machines; H.3.4 [Information Storage and Retrieval]:
Systems and Software; K.6.3 [Management of Computing and Informa-
tion Systems]: Software Management

General Terms: Design, Management
Additional Key Words and Phrases: Abstract machines, hypertext

systems

Authors’ Present Addresses: Brad Campbell, CASE Division, Mentor
Graphics Corp.. 6500 SW. Creekside Place, Beaverton, OR 97005; Joseph
M. Goodman, Quantitative Technology Corp., 6700 S.W. Creekside
Place, Suite D. Beaverton, OR 97005.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish, requires a fee and/or specific permission.

An excellent source to
information on computer theory
and research in..
l Algorithm & complexity theory
l Artificial intelligence
l Combinatorics & graph theory
l Computer organization & design
l Systems modeling & analysis
l Database theory & structures
l Distributed computing
l Formal languages
l Computational models
l Numerical analysis
l Operating systems and research
l Programming languages &

related methodology
l Computational theory

Published four times a year
(ISSN 0004-5411)

Write for an order form and your
ACM Publications Catalog to:

Catherine YUnqUe,

ACM,
11 West 42nd Street,
New York, NY 10036

July 1988 Volume 31 Number 7 Communications of the ACM 661

