
Document Formatting Systems: Survey, Concepts, and Issues

RICHARD FURUTA, JEFFREY SCOFIELD, AND ALAN SHAW

Department of Computer Scwnce, University of Washmgton, Seattle, Washington 98195

Formatting systems are concerned with the physical layout of a document for hard- and
soft-copy media. This paper characterizes the formatting problem and its relation to other
aspects of document processing, describes and evaluates several representative and
seminal systems, and dtscusses some issues and problems relevant to future systems. The
emphasis is on topms related to the specification of document formats; these include the
underlying document and processing models, functions performed by a formatter, the
formatting language and user interface, variety of document objects, the integration of
formatters with other document processing tasks, and implementation questions.

Categories and Subject Descriptors: H.4.1 [Information Systems Applications]: Office
Automatmn--wordprocessing; 1.7.0 [Text Processing]: General; 1.7.1 [Text
Processing]: Text Editing; 1.7.2 [Text Processing]: Document Preparation; K.2
[Computing Milieux]: History of Computing--software

General Terms: Algorithms, Design, Human Factors, Languages

Additional Key Words and Phrases: Formatters, editors, text manipulation

INTRODUCTION

Document preparation involves two prin-
cipal tasks: defining the content and struc-
ture of a document, and generating the
document from specifications of its appear-
ance. The first task is typically called edit-
ing while the second, the subject of this
paper, is known as formatting. More pre-
cisely, formatting is concerned with the lay-
out of document objects on hard-copy me-
dia, usually paper, and various soft-copy
devices, such as video displays.

While text processing, especially editing,
has long been a major application of com-
puters, it is only recently that particular
attention has been given to formatting sys-
tems. The reason for this is a combination
of technology and economics. Because of
increasing costs of manually produced doc-
uments, decreasing costs of computers and

storage, and the availability of high-quality,
computer-controlled printers, typesetters,
and display devices, it has become both
feasible and worthwhile to use computer
formatting systems for a wide variety of
technical, business, and literary documents,
such as letters, memos, invoices, brochures,
reports, papers, and books. Many experi-
mental and commercial systems have been
developed for offices, laboratories, publish-
ers, and, in fact, virtually any enterprise
that uses written documents.

Our aims in this paper are to characterize
the formatting problem and its relation to
other aspects of document processing, to
describe and evaluate several representa-
tive and seminal systems, and to discuss
some issues and problems relevant to future
systems. The emphasis is on topics related
to the specification of document formats;
these include the underlying document and

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notme and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0010-4892/82/0900-0417 $00.75

Computing Surveys, VoI. 14, No. 3, September 1982

418

CONTENTS

• R. Furuta, J. Scofield, and A. Shaw

INTRODUCTION
1 THE FORMATTING PROBLEM

1.1 Object Model of Documents
1.2 E&tmg, Formatting, and Viewing
1.3 Formatting Functions

2. REPRESENTATIVE AND SEMINAL SYS-
TEMS
2.1 The FLrst-Generatmn Formatters
2 2 The First Structured Formatters
2 3 Structured Formatters with Many Objects
2 4 Integrated Editor/Formatters
2.5 Other Systems
2 6 Some Current Developments

3. ISSUES AND CONCEPTS
3 1 Document and Processmg Models
3.2 Formattmg Functmns
3.3 Formatting Language
3 4 Integratmn of Objects
3.5 Integratmn of Document-Processing Functmns
3 6 User Interface
3 7 Implementatmn

4. CONCLUDING REMARKS
ACKNOWLEDGMENTS
REFERENCES

v

processing models, functions performed by
a formatter, the formatting language and
user interface, variety of document objects,
the integration of formatters with other
document processing tasks, and implemen-
tation questions. A number of important
related areas are not covered in any detail;
for example, there is little discussion of font
design, the characteristics of typical output
devices, commercial typesetting programs,
or particular applications such as newspa-
per production.

1. THE FORMATTING PROBLEM

1.1 Object Model of Documents

In order to discuss formatters and their
functions and to distinguish formatting
from other aspects of document prepara-
tion, it is convenient to use an object model
of documents [SHAw80a], somewhat anal-
ogous to that in programming languages.
The model introduces a uniform terminol-
ogy which is useful when comparing and
evaluating various systems and ideas, and
it allows a more precise definition of terms
such as editing, formatting, and viewing.

A document is an object composed of a
hierarchy of more primitive objects. Each
object is an instance of a class that defines
the possible constituents and representa-
tions of the instances. Some typical docu-
ment classes are business letters, papers for
a particular journal or conference, theses,
and programs in a given language; common
lower level classes include such document
components as sections, paragraphs, head-
ings, footnotes, tables, equations, matrices,
figures, polygons, and character fonts.

Objects are further classified as either
abstract or concrete. To each abstract ob-
ject, there corresponds one or more con-
crete objects. An abstract object is denoted
by an identifier and the class to which the
object belongs. One example could be the
identifier "the" in the class word, indicating
the abstract word object "the." Another
abstract object may be the identifier "plus"
in the class operator, denoting the operator
for addition. We sometimes use the term
logical object as an informal synonym for
abstract object.

Concrete objects are defined over one or
more two-dimensionalpage spaces and rep-
resent the possible formatted images of ab-
stract objects. For example, a particular
paragraph of a document, an abstract par-
agraph object, may be represented con-
cretely in many different ways depending
on font, hyphenation conventions, line
length, and other concrete variables.

Example
The extended abstract for this paper
[SHAw80b] has the logical objects (par-
tially) defined and structured as follows:

(ExtendedAbstract) ffi ((Header), (Body),
(References))

(Header) ffi ((Title), (Authors)
(Affiliation))

(Body) -- (Introduction) (Section 1)
(Section 2) (Section 3)

(References) = . . .

(Title) ffi "Document Formatting Systems:
Survey, Concepts, and Issues"

(Extended Abstract) is an instance of the
class of extended abstracts specified for a
particular conference; similarly, (Section 2)
is an instance of the class of sections. The

Computing Surveys, Vol. 14, No. 3, September 1982

notation (A, B, . . . , F) denotes the un-
ordered set of objects A, B, . . . , F; and
A B . . . F means the object sequence A fol-
lowed by B followed by . . . followed by F.
Thus the {Header) consists of the object
sequence {Authors) {Affiliation) and the
object {Title). The two-dimensional rep-
resentations of these abstract objects define
the concrete objects of the document. In
this case, one set of concrete objects ap-
pears in a technical report containing the
extended abstract while another appears in
a conference proceedings.

Document processing consists of execut-
ing various operations to define, manipu-
late, and view abstract and concrete ob-
jects. For this purpose, we distinguish be-
tween ordered and unordered objects.
Many textual objects, such as paragraphs
and words, are normally ordered, implying
that we can speak of the first one, the last
one, the next one, the preceding one, and
so on. On the other hand, there are many
objects that are more naturally treated as
unordered for particular applications; these
may include the elements of a figure or
table, parts of mathematical equations, and
pieces of unrelated text. In the ordered case,
document processing involves working in
order through a sequence of objects. In
contrast, processing a set of unordered ob-
jects allows arbitrary selection of objects
and even interleaving of the operations.

1.2 Editing, Formatting, and Viewing

Within the object model framework, we can
consider the major operations of document
processing as mappings from objects to ob-
jects. Editing operations are defined as
mappings from either abstract to abstract
objects or concrete to concrete objects.
Conventional text editing operations map
logical text objects to logical text objects;
for example, a text insertion or deletion
may be a mapping from strings to strings
or from paragraphs to paragraphs. Also,
editing operations on an already formatted
document produce concrete objects from
concrete objects. An example of this type
of editing is interactively inserting or delet-
ing text from an already formatted para-
graph, thereby mapping concrete para-
graphs to concrete paragraphs; interactive

Document Formatting Systems • • 419

layout operations such as moving formatted
text, tables, or figures around a document
are also in this category.

Mappings from abstract objects to con-
crete objects are defined as formatting op-
erations. Standard examples are transform-
ing a logical character to its representation
in a particular font, producing a two-dimen-
sional word with possible hyphenation from
a logical word, mapping a paragraph into a
sequence of lines, and breaking an abstract
document into pages. In the nontextual do-
main are mappings such as those that trans-
form an abstract directed graph to a line
drawing (e.g., producing flowcharts), oper-
ations for producing two-dimensional
mathematical objects from a possibly one-
dimensional (string) specification of an
expression, and functions for constructing
or laying out a table from a list of its entries.

An important part of an abstract to con-
crete object mapping is the page space do-
main of the concrete object. The con-
straints on page spaces are often the cause
of complex interactions among formatting
operations. For example, a paragraph-to-
lines mapping may cause hyphenation in a
word; and a paragraph-to-lines mapping
may be modified because a section-to-pages
operation leaves a first or last line of a
paragraph on a page by itself (known as a
widow). Different page spaces are possible,
depending on the viewing medium and on
the application. These include a sequence
of identical rectangular areas or boxes,
which correspond to conventional hard-
copy pages; a rectangular box bounded, say,
in the horizontal direction but unbounded
vertically {typically viewed by vertical
scrolling); and boxes that are unbounded in
two or more directions, for example, full,
half, or quarter planes that could be viewed
by displaying small rectangular areas (win-
dows) of the region.

It is useful to distinguish between for-
matting a document and displaying some
part of the resulting concrete object. This
leads to a definition of viewing mappings
that produce hard-copy and soft-copy im-
ages from concrete objects. An example is
a concrete formatted object, defined in
some normalized coordinate system, that
may be viewed on a display screen and on
paper by two different viewing mappings. A

Computing Surveys, VoL 14, No. 3, September 1982

420 • R. Furuta, J. Scofield, and A. Shaw

viewing mapping might also be the result
of either windowing or scrolling some con-
crete object. The separation of formatting
and viewing also permits a device-inde-
pendent treatment of formatting. In the
simplest case, our viewing mappings take
the role of output device drivers.

To summarize, we have divided docu-
ment processing operations into three
types--editing, formatting, and viewing--
depending on the domain and range ob-
jects.

1. Editing:
Abstract objects ~ abstract objects,
Concrete objects --* concrete objects.

2. Formatting:
Abstract objects ~ concrete objects.

3. Viewing:
Concrete objects ---> output devices.

Many other kinds of operations, such as
numbering figures, equations, or pages, cor-
recting spelling, and indexing terms, deal
directly with the objects resulting from
either editing or formatting. Spelling cor-
rection and figure or equation numbering
can be performed with abstract objects and,
consequently, may be done before format-
ting; on the other hand, page numbering
and automatic indexing require the con-
crete objects produced from formatting.
One other important class of operations is
filing. Like most computer systems, docu-
ment-processing systems require facilities
for storing and accessing files of abstract
and concrete objects. While we acknowl-
edge their importance, we, for the most
part, ignore filing issues. We also do not
discuss those applications that involve
mappings from concrete to abstract objects,
such as on-line character or sketch recog-
nition.

1.3 Formatting Functions

Our study of a variety of abstract and cor-
responding concrete objects used in text,
tables, mathematical equations, and figures
has led to the following set of general for-
matting functions. At a more detailed level
than our mapping definition, these func-
tions describe what formatters do.

1. Selection of Primitive Concrete Ob-
jects. The usual selection task is the re-

trieval of particular characters within a
specified font, where a font is a set of con-
crete character objects having the same size
and style. Also included are variably sized
symbols such as summation (~) for an ar-
bitrary expression, special symbols such as
a company logo, and atomic figure ele-
ments, for example, points, lines, curve seg-
ments, and filled-in areas.

2, Horizontal and Vertical Placement of
Objects. Examples of horizontal placement
are operations to indent, tab, flush, and
center. Vertical placement occurs when
skipping lines, starting a new paragraph or
section, and placing equations, figures, and
tables on a page. Some objects, such a s
subscripts, require explicit placement in
both vertical and horizontal directions.

3. Horizontal and Vertical Align-
ment. By object alignment, we mean the
horizontal or vertical placement of an ob-
ject relative to some other object(s). Oper-
ations such as aligning equal signs in equa-
tions, centering a table entry, lining up dec-
imal points, or "prettyprinting" a struc-
tured program fall into this category. Align-
ment can be viewed as a simple form of
constraint satisfaction.

4. Breakup of Abstract Objects into
"Paged" Concrete Objects. This function
includes breakup of objects into lines and
pages, with page header and footnote han-
dling, and is the central task of most text
formatters.

5. Scaling. Objects may be expanded or
reduced in size to fit into an allocated space,
to be compatible with other elements of the
document or to improve their appearance.

These five general functions are often
used in a cooperative and ordered manner.
For example, alignment involves placement
which requires selection of primitive ob-
jects, and the first three functions are per-
formed before page breakup. It would be
desirable to define these functions more
precisely, for example, for systems design
purposes, but much research remains to be
done before this can be accomplished. Some
ideas on how this could be approached have
been given by Guttag and Homing
[GUTT80], where algebraic axioms and
predicate transformers are employed to
specify the design of a display interface. For
our purposes, the object model, formatting

Computing Surveys, Vol. 14, No. 3, September 1982

Intended

Document

Document Formatting Systems

document

Action
Specifying: performed using editor; uses

spec~ficauon language

d e s c r i p t i o n (intermixed text and specifications)

Action
Formatting: performed by formatter

421

Formatter output

Action
Viewing: performed for a particular

output device

V i s i b l e concrete document

Figure 1. Steps in document processing.

definition, and list of formatting functions
provide a useful framework for surveying
past systems and discussing formatting is-
sues and concepts.

2. REPRESENTATIVE AND SEMINAL
SYSTEMS

In this section we discuss the history and
evolution of document formatting by inves-
tigating some important original and rep-
resentative systems.

It is useful to define some further termi-
nology to describe the actions involved in
document processing (see Figure 1). We call
the mental image of the document the in-
tended document. This is mapped, by an
editing step which we call specifying, into
a physical form consisting of intermixed
specifications and text called the document
description. The document description
identifies the abstract objects of the docu-
ment. The formatting and viewing map-
pings, as defined in Section 1.2, produce the
formatter output and the visible concrete
document, respectively. The visible con-
crete document is produced on a particular
hard- or soft-copy display medium. Some
formatters provide both a high-level speci-
fication language and also a lower level
language for defining the meanings of new
specifications. This lower level language is
the definition language.

Although editing and formatting systems
have been physically separated and devel-

ope~] individually for some time, formatting
and viewing systems have typically been
tied firmly together. In particular, in many
systems the document description contains
low-level information that requires a spe-
cific output device to be used to view the
visible concrete object. There are two ways
to separate formatting and viewing. The
weaker of the two is provided by a device-
independent description in which the same
document description can be used (without
change) to prepare formatter output for
viewing on different devices. This is done
either by rerunning the formatter after
changing some parameters or by running
different versions of the formatter. A
stronger separation can be found in a few
systems that also produce device-inde-
pendent formatter output. Here, the same
formatter output can be viewed to produce
a visible concrete document on any of a
number of different devices.

In selecting the systems to be discussed,
we tried to pick those original early systems
that were the first to present important
ideas and which affected the designs of later
systems; those systems that underwent a
clear, clean, controlled, evolutionary devel-
opment over the years; and those systems
which to us represent present and future
trends. When other factors were about the
same, we preferred those systems with un-
derstandable, thorough descriptions in the
open literature and those we have actually
used. For purposes of presentation, these

Computing ?,~ys, Vol. 14, No. 3, September 1982

422 • R. Furuta, J. Scofield, and A.

systems have been divided into two groups:
the pure formatters and the integrated ed.
itor / formatters.

Pure formatters accept a document de-
scription, previously prepared by a separate
editing system. The formatter output may
then be viewed, producing the visible con-
crete document. (Others sometimes call the
pure formatters document compilers or
batch-mode formatters.) Although many of
the earliest formatters had an associated
text editor, they are included in this class
because the objects operated on by the
editor and the formatter were logically dis-
joint. The editors in these early systems
were provided out of necessity since gen-
eral-purpose text editors were not common.
This contrasts with the integrated nature
of the editing and the formatting functions
in the second group, the integrated editor/
formatters.

Integrated editor/formatters allow one to
view the visible concrete document while
creating and modifying the document de-
scription, without leaving the editor/for.
matter. In other words, editing, formatting,
and viewing are combined into one unified
system. In the most general form, the user
directly manipulates an exact representa-
tion of the visible concrete document. A
form more closely resembling the pure for-
matters allows occasional viewing of the
visible concrete document, and that only on
request. (Integrated editor/formatters are
also known as document interpreters or as
interactive formatters.)

We describe the pure formatters in the
next three sections, followed by a discussion
of the integrated editor/formatters in Sec-
tion 2.4. We found a few systems which,
while not meeting the criteria for inclusion
in the preceding categories, address unique
problems or present ambitious solutions. A
brief discussion of four of these systems
appears in Section 2.5. Finally, a number of
research laboratories are attempting to pro.
vide systems which combine the best fea-
tures of the pure formatters with the best
features of the integrated editor/format-
ters. Three of these projects are mentioned
in Section 2.6.

2.1. The First-Generation Formatters

The first widely known pure formatters ap-
peared in the 1960s. The available devices

Computing Surveys, Vol. 14, No. 3, September 1982

Shaw

were quite limited: the output device was,
at best, a simple typewriterlike printer, and
the input was, at worst, from punched
cards. The formatting functions provided
were at a quite low, machine-language-like
level of action. Most objects were related to
the lines and pages of the document (the
format of the document). Only a few objects
associated with the document's logical con-
tent were supported: words and sometimes
sentences and paragraphs. The formatting
languages were fixed and nonextensible.
The appearance of the formatting com-
mands seemed quite ad hoc. For example,
it is not always clear which commands took
parameters or how many parameters were
expected. However, defaults were provided
for most unspecified parameters. Addition-
ally, it was not possible to structure the
document, for example, by applying scoping
rules to definitions and collecting related
sequences of commands into single units.

The document descriptions for these
early systems consist of formatting com-
mands and layout specifications intermixed
with the text (i.e., the data). This form
continues to be reflected in recent pure
formatters. Two different styles emerge for
distinguishing commands from text. The
first is to differentiate distinct command
lines and data lines by a particular charac-
ter in column one of the command lines;
the period, as popularized by the RUNOFF
system, seems especially pervasive. The
second style, used in the FORMAT system,
is to precede the command by a reserved
escape character. The end of the command
is marked either by some delimiting char-
acter or, if the commands are of a uniform
length, after the appropriate number of
characters have been encountered. The
early formatters also introduced the use of
reserved characters to signal actions of a
limited scope; for example, "¢" in FOR-
MAT caused the subsequent character to
be capitMized.

2.1.1 RUNOFF

RUNOFF, an early, influential formatter,
appeared in 1964 on the Compatible Time
Sharing System (CTSS) at M.I.T.
[SALT65]. With its separate companion ed-
itor TYPSET, RUNOFF accepted a docu-
ment description prepared on an upper-
case/lowercase typewriterlike device with

Document Formatting Systems

CALL FOR PAPERS

The aim of this conference is to survey the state of the art of computer aids for
document preparauon.

Papers are solicited on

• Picture editing

• Text processing

•Algonthms and software for document preparauon and other related
topics

Detailed abstracts should not exceed five pages; they must be sent before October
31, 1980 to the Program Chairman. Selected authors will be notified by
November 30.

Duration of one presentation will be of either 25 or 45 minutes.

Figure 2. A sample document. Document descriptions specifying this document
are presented in later figures.

• 423

limited capabilities; it produced formatter
output for viewing on the same device. This
early version of RUNOFF had only eigh-
teen primitive, low-level operations, all ori-
ented to formatting the visible concrete
document page. This orientation is espe-
cially apparent from a list of the available
objects and the manipulations which could
be performed: individual lines (center,
break, undent, literal), collections of lines
(set line length, initiate and terminate fill-
ing and justification, indent blocks of lines),
arrangement of lines in vertical space (sin-
gle space, double space, leave blank vertical
space), pages (headers, paper length, begin
new page, print page numbers), and files
(append, that is, switch to the specified file
for the rest of the input). All operations
dealt with the physical format of the doc-
ument; none dealt with the logical content
of the document.

The visible concrete document to be pro-
duced is shown in Figure 2; the appearance
of the input language is illustrated by the
document description shown in Figure 3.
Input lines are in one of two modes, com-
mand or text. It is not possible to change
the meaning of special characters. In par-
ticular, commands cannot be signaled by
any character other than the period. It is
also not possible to modify the actions of
particular commands (e.g., to turn off au-

tomatic breaking of lines). A command pa-
rameter, when present, is an integer or
string literal; no more general expressions
are provided.

Despite its inflexibility, cumbersome na-
ture, limited functionality, and commands
oriented to the output page, the early RUN-
OFF is an important system historically. It
brought text formatting to the attention of
many people. Elements of its design, partic-
ularly the two-mode form of input with
separate text and command lines, have
been adopted by many subsequent systems.
RUNOFF has continued to develop over
the years, increasing both in functionality
and also in the range of objects provided.

2.1.2 FORMAT

FORMAT was developed for use on the
IBM S/360 computer. The first published
descriptions appeared in the late 1960s
[BERN68, BERN69, EHRM71]. As with
RUNOFF, a text editor was provided. Al-
though physically in the same program as
FORMAT, the editing functions were,
again, logically distinct. FORMAT ran in a
batch-processing environment. The docu-
ment description was given entirely in up-
percase on punched cards; characters not
explicitly capitalized were automatically
converted into lowercase. The visible con-

Computing Surveys, Vol. 14, No. 3, September 1982

424 ° R. Furuta, J. Scofield, and A. Shaw

. c e n t e r
CALL FOR PAPERS
.space 2
The aim of t h i s conference is to survey the s t a t e of the a r t of
computer a ids fo r document p r e p a r a t i o n .
. n o j u s t
.space 1
Papers are s o l i c i t e d on
.space 1
. i n d e n t 10
.undent 2
- Picture editing
.space I
.undent 2
- Text process ing
.space 1
.undent 2
- A lgor i thms and sof tware f o r document p r e p a r a t i o n and o ther
r e l a t e d t o p i c s .
. i n d e n t 0
.space 1
. a d j u s t
D e t a i l e d a b s t r a c t s should not exceed f i v e pages; they must be
sent be fore October 31, 1980 to the Program Chairman, S e l e c t e d
authors w i l l be n o t i f i e d by November 30.
.space 1
D u r a t i o n of one p r e s e n t a t i o n w i l l be of e i t h e r 25 or 45 minutes

Figure 3. Document description for RUNOFF to produce the document of Figure 2.
Command lines begin with a period (.). The other hnes are text lines. Since there was no
significant blank character m RUNOFF (unpaddable space character), " .nojust" is invoked
before the itemized listing to prevent extra spaces from being inserted into the lines. Filling
of lines continues. ".adjust" restores justification. " . indent" resets the left margin, " .undent"
decreases the ". indent" for the one line following. The underlined word in the next to last
paragraph would have to be produced by the editor (TYPSET) before runmng RUNOFF
since RUNOFF did not have facilities for underlining.

crete document was viewed on a line printer
with uppercase and lowercase letters.

Again, as with RUNOFF, many com-
mands manipulate concrete page-oriented
physical objects: groups of lines (filling, jus-
tification, defining length) and pages
(breakup, numbering, defining height, mul-
tiple columnation, specifying headers and
footers). Others, however, address more
logical, content-oriented, objects: words
(producing alphabetical listing of words
used), phrases (underlining, centering, cap-
italizing, horizontal spacing between sen-
tences), and paragraphs (indenting, placing
blank lines between paragraphs, eliminat-
ing widows). Unlike the treatment of char-
acters in RUNOFF, FORMAT's operations
may apply to individual characters (speci-
fying case, overprinting). Horizontal spac-
ing commands (tabbing) as well as vertical
spacing commands are also provided.

Figure 4 presents the document of Figure
2 specified for processing by FORMAT.
Three types of commands are present. The
character-level commands are reserved
characters that appear in the text but have
special meanings. Phrase-level commands
are single letters that may be grouped to-
gether. A group of phrase-level commands
is preceded by the escape character ")" and
terminated by a blank. Some phrase-level
commands specify a particular action (e.g.,
terminating the current line), and others
act as toggles (i.e., the first use starts an
action, the next terminates it). The third
type of command, the paragraph-level
command, does not cause immediate for-
matting actions but establishes values for
the general attributes of the document, for
example, the left margin position, the page
length, or the meaning associated with spe-
cial characters.

Computing Surveys, Vol. 14, No. 3, September 1982

Document Formatting Systems • 425

)v
INDENTATION OF COLUMNS ON LEFT AND RIGHT IS (0 , 0) , (B . 0)
PARAGRAPH INDENT IS 0 PRINT POSITIONS
SEPARATION LINES BETWEEN PARAGRAPHS ARE 1
TABS ARE SET AT RELATIVE COLUMN POSITIONS 5
NONTRIVIAL BLANK IS REPRESENTED BY SFECIAL CHARACTER 44 (#)
GO
)Me CALL FOR PAPERS)MCLLP CTHE AIM OF THIS CONFERENCE IS TO SURVEY THE STATE OF
THE ART OF COMPUTER AIDS FOR DOCUMENT PREPARATION.)P CPAPERS ARE SOLICITED ON

)LLH2W1 ##-)T ¢PICTURE EDITING)HLLH2W1 ##-)T ¢TEXT PROCESSING)HLLH2W2 ##-)T
¢ALGORITHMS AND SOFTWARE FOR DOCUMENT PREPARATION AND OTHER RELATED TOPICS.)HP
¢DETAILED ABSTRACTS SHOULD NOT EXCEED FIVE PAGES; THEY)U MUST)U BE SENT BEFOR

E ¢OCTOBER 31, 1980 TO THE CPROGRAM ¢CHAIRMAN. ¢SELECTED AUTHORS WILL BE NOTIFIE
D BY ¢NOVEMBER 30.)P CDURATION OF ONE PRESENTATION WILL BE OF EITHER 25 OR 45 M
INUTES.

Figure 4. Document description for FORMAT to produce the document of Figure 2. The lines following the
")V" until the line containing GO are paragraph-level commands, defining global attributes which hold until
they are reset. Each symbol within the text following the escape symbol ")"and preceding the next blank is a
phrase-level command which has a more limited scope of action. Some, such as ")P", the begin paragraph
command, and ")L", the terminate current line command, have an immediate effect. Others, such as ")M",
center phrase, and ")¢ ", capitalize phrase, serve as toggles. The first appearance turns the action on, the next
turns the action back off. Character-level commands, represented by special symbols (¢, capitalize next
character, and #, significant blank, in this document) affect the next character only. Notice that ¢ is both a
phrase-level and a character-level command. Input is expected to come from cards. Characters are converted to
lower case unless a "capitalize" command is in effect. The end of a line has no special significance within the
input.

No macro facility is provided and it is not
possible to modify the actions of par t icular
commands . I t is possible to redefine the
reserved charac te rs t ha t invoke various
character- level commands . Arguments ,
when present , are literals. No expressions
or var iables are allowed.

T h e t r e a t m e n t of the documen t descrip-
t ion as one long string of charac ters makes
direct correct ion of the descript ion extraor-
dinarily difficult. For example, ending a
word in column 80 of a card requires leaving
column 1 of the next card blank. Therefore ,
one mus t use the associated editor to effect
any changes. Fur ther , the documen t de-
scription is difficult to read as it reflects so
little of the s t ructure of the document .
Some rud imen ta ry features are provided to
help handle some of the more rout ine writ-
ing tasks, in part icular , the paragraph- leve l
c o m m a n d D I C T I O N A R Y which produces
an a lphabet ized list of the words used in
the document . In this paper, features of this
kind are collectively known as writer's
workbench features. (The t e rm "wri ter ' s
workbench" was inspired by E. Ivie ' s
" P r o g r a m m e r ' s Workbench" [IvIE77,
REID80a, CHER81].)

Clearly this is an ear ly system, inflexible
and low level in na ture b y today ' s s tand-
ards; for example, to produce t en b lank
lines, one m u s t en te r ") L L L L L L L L L L L " .
T h e style of input has been designed to use
the entire punched card, no t for readabi l i ty
or ease of entry.

Bu t again, it incorpora tes design fea tures
which show up quite regular ly in la ter sys-
tems. Mos t visible is the embedding of com-
mands within the tex t and the use of an
escape charac te r to signal t h e swi tch f rom
the text to the c o m m a n d mode. T h e use of
reserved charac te rs or strings to init iate
certain fairly short- l ived act ions is c o m m o n
in la ter systems. Also significant is the pro-
vision of c o m m a n d s which manipu la te log-
ical objects (F O R M A T ' s paragraph com-
mand) and c o m m a n d s which provide
wri ter 's workbench features. Bo th of these
ideas are developed substant ia l ly by la ter
pure format ters .

2.2 The First Structured Formatters
T h e late 1960s and ear ly 1970s found the
deve lopment of a new generat ion of for-
ma t t e r s (the first structured formatters)
based on lessons learned f rom using the

Computing Surveys, Vol. 14, No. 3, September 1982

426 • R. Furuta, J. Scofield, and A. Shaw

early first-generation ones. Superficially,
the document description still looked the
same; both of the systems we discuss in this
section are certainly RUNOFF descen-
dants. However, the functions performed
increased both in number and in sophisti-
cation. Ideas were incorporated from other
areas of computer science. Macros provided
a way to collect commonly used sequences
of commands, to define new commands,
and to reflect the logical structure of the
document in the input. Conditional control
statements, general arithmetic expressions,
string and integer variables, and block
structuring were borrowed from program-
ming languages, providing structure in the
input representation of the document.
Writer's workbench features were added to
make the formatters easier to use for the
writer of a document: sections were auto-
matically numbered, tables of contents and
indices were created during formatting of
the document, footnotes were properly
numbered and placed, and so forth. Kaiman
[KAIM68] proposed an early system which
anticipated many of the developments.

It is in these first structured formatters
that we see the idea that document format-
ting is more than just taking a sequence of
words and forming them into lines which
are then moved around on a printed page.
Instead, the document consists of logical
objects (sentences, paragraphs, sections)
and the purpose of the formatter is to allow
the manipulation of these objects.

Low-level primitives were still found in-
termixed with this higher level view of doc-
uments. While higher level commands
could be created from the lower levels by
using the macro definition facility, the
lower level primitives remained visible to
the user. The inability to hide lower level
primitives is still present in current format-
ters.

difference between Another significant " /
the first-generation formatters and the first
structured formatters was the increasing
sophistication of the document processing
environment and of the available output
devices. Providing a means for creating text
input was no longer considered a problem
which needed to be solved by the formatter.
Instead, a general-purpose text editor was
assumed to exist to take over this function.

However, the formatting package still in-
cluded the facilities for handling the differ-
ent output devices. Thus although editing
had been separated from formatting, view-
ing and formatting were still contained in
the same system package.

It is interesting to compare the first struc-
tured formatters with the commercial sys-
tems produced for the VideoComp 1 pho-
totypesetter, originating with PAGE-1
[PmR72] in the middle 1960s. These com-
mercial systems were derived from M. Bar-
nett 's earlier work at M.I.T. [BARN65]. Like
the first structured formatters, PAGE-1
borrowed many ideas from programming
languages. Further, both PAGE-1 and the
first structured formatters provided more
sophisticated features for mapping objects
into page spaces. However, applying similar
ideas in different environments produced
substantially different systems. PAGE-1
was intended for use in commercial type-
setting and emphasized the definition of the
concrete objects needed to control the
typesetter, rather than the abstract objects
useful in document specification.

2.2.1 PUB

PUB was developed at the Stanford Arti-
ficial Intelligence Laboratory, starting in
1971, for use on the PDP-102 computer
[TESL72]. Its designers called it a document
compiler, illustrating the parallel between
translating a document description into for-
matter output and compiling programming
language statements into an executable
form. Initially, the output could be viewed
only on a standard video or hard-copy
terminal, or on a line printer. Many
other viewing devices were subsequently
added.

PUB's commands manipulate the same
kinds of low-level objects as FORMAT:
lines, pages, words, phrases, sentences, and
paragraphs. Several higher level objects are
also provided: columns (multiple columns
of text on a page), footnotes, and sections
and subsections. Sections and subsections

VideoComp is a trademark of Radio Corporation of
America.
2 PDP is a trademark of Digital Equipment Corpora-
tion.

Computing Surveys, VoL 14, No. 3, September 1982

are automatically numbered and contain a
heading that can also be used to generate
a table of contents. Individual characters or
groups of characters can be overprinted to
form new characters. The REQUIRE state-
ment can be used to cause part of the input
to be taken from another file.

PUB's designers made an attempt to
classify the constituent parts of some of the
objects. Paragraphs are defined to consist
of three parts: the "crown," the "vest," and
the "hem." The crown is the first line of the
paragraph, and the vest is the remainder.
The hem is the last line of the vest.

A page in PUB is made up of areas.
Areas are of two types: those which con-
tinue across subsequent pages (type text)
and those which exist on only one page,
truncating their contents when they fill up
(type title). An area must be given a name
and may be positioned arbitrarily on the
page. However, at least one of the areas on
each page must be named text. By default,
a page contains three areas: two of type
title, named "heading" and "footing," and
one of type text, named "text." The last line
of a text area is used only to eliminate
widows, otherwise it is left blank.

The formatting language is similar to
RUNOFF in appearance; Figure 5 provides
an example specification. Some symbols
and sequences of symbols have special
meaning within text lines, but most actions
can be redefined to be associated with a
different control character.

A macro facility is provided which allows
grouping of commands, control characters,
and text. Macros can have arguments and
may be declared to be recursive.

A number of ALGOL-like features are
provided in PUB, most adopted from the
SAIL programming language [VANL73].
Most notable is that of block structuring.
Portions of the manuscript may be grouped
into blocks, bracketed by BEGIN and END
statements. Document parameters set by
declarations within a block revert to their
original values at the termination of the
block. Similarly, macros and variables de-
fined within a block hold only for the du-
ration of the block. Another kind of group-
ing, the clump, also is provided. Clumps are
bracketed by START and END state-
ments. The main difference between a

Document Formatting Systems ° 427

block and a clump is that declarations made
in a clump continue to hold after the clump
is exited• Thus, clumps are used in defining
compound statements which can change
the global environment.
Variables may be defined and used in

other commands. Constants may be string,
decimal, or octal. A number of predefined
variables provide information about the
document being produced. For example,
CHAR denotes the number of characters
printed so far on the current line; LMARG
denotes the current left margin, the value
of which can be changed through assign-
ment; and DATE denotes the present date.
A complete set of arithmetic and logical
operations are available to allow expres-
sions to be formed from variables and con-
stants. Special-purpose operators, such as
the unary "I'", which capitalizes its string
operand, are also defined. An if... then
•.. else statement allows conditional com-
pilation of parts of the manuscript.

Certain identifiers can be declared to be
counters. The value associated with a
counter can be incremented and printed in
any of a number of ordinal number systems.
Use of counters makes it possible to refer
to section numbers and page numbers sym-
bolically within the text. PUB replaces the
symbolic name with the actual section
number or page number.
A special form of macro, called a re-

sponse, is triggered by specified character
sequences in the text, by changes to partic-
ular counters, or by the filling up of an
indicated area. The response can be used to
print page headings, define character se-
quences to mark the beginning of para-
graphs, and to provide 'many other useful
functions.

A document can be divided into arbitrar-
ily named portions which are then pro-
cessed sequentially. Portions are used to
collect the information needed to generate,
for example, a table of contents or a set of
end notes. The SEND command is used to
send text and commands to a portion.
When processing reaches a portion, the por-
tion issues the RECEIVE command to re-
trieve the collected information which is
then processed. Since the RECEIVE com-
mand will optionally sort the collected in-
formation using provided sort keys, pot-

Computing Surveys, Vol. 1~ No. 3, September 1982

428 • R. Furuta, J. Scofield, and A. Shaw

.TURN ON "~", "_", "#"

.SINGLE SPACE

.INDENT 0

.PREFACE 1

.ONCE CENTER
CALL FOR PAPERS

The aim o f t h i s con fe rence is to survey the s t a t e o f the a r t of
computer a ids f o r document p r e p a r a t i o n .

Papers are s o l i c i t e d on
.SKIP 1
.BEGIN INDENT 3, 5, 5 ; PREFACE 1 :

-#Picture ed i t i ng

-#Text processing

-#Algor i thms and software
re la ted top ics
.END
.SKIP 1

fo r document preparat ion and other

De ta i l ed abs t rac ts should not exceed f i v e pages; they
~_must_~ be sent before October 31, 1980 to the Program
Chairman. Se]ected authors w i l l be n o t i f i e d by November 30.

Durat ion of one p r e s e n t a t i o n w i l l be of e i t h e r 25 or 45 minutes.

Figure 5. Document description for PUB to produce the document of Figure 2. PUB uses
Stanford's extended version of the ASCII character set. Command lines start with a period
(.). T e x t l ines do not. T h e period marks a c o m m a n d line, no t t he beginning of a c o m m a n d .
Therefore, multiple commands can be placed on a single line, separated by semicolons ff
necessary to prevent ambiguity, or a single command could span several command lines.
Commands could also be included in the text if surrounded by "{" and ")". Each paragraph
starts with a blank line which causes a paragraph break (technically, the paragraph break
also ends the preceding paragraph). ONCE is a special scoping command which applied to
any command means the scope of the command is the following paragraph. Thus in thin
example, ONCE CENTER means that the next input line should be centered. This is a
specialized scoping rule. More generally, definitions made following a BEGIN are in effect
until the matching END. The # represents a significant blank, the ~__ begins underlining,
the _~ ends it.

t ions m a y also be used to i m p l e m e n t in-
dexes. A special por t ion called F O O T is
defined by the system. Footnote tex t is sent
to F O O T for p l acemen t a t the b o t t o m of
the page.

T h e P U B language is pe rhaps as m u c h a
p rog ramming language as it is a documen t
format t ing language. Cer ta inly the docu-
m e n t fo rmat t ing fea tures are the ones mos t
commonly used. T h e p rog ramming lan-
guage constructs allow implementa t ion of
m a n y addit ional features. However , the im-
p lemen ta t ion of extensions th rough macros
in PUB, as well as in la ter systems, means
t ha t extensions to the format t ing language
add to the available set of c o m m a n d s in-

s tead of replacing lower level c o m m a n d s
with higher level commands . Consequent ly ,
lower level c o m m a n d s m a y in terac t wi th
higher level c o m m a n d s in unexpec ted ways.

One significant contr ibut ion by P U B is
the incorpora t ion of b lock structuring. T h e
documen t specification can more direct ly
represen t the relat ionships be tween ab-
s t rac t objects th rough the use of sequent ia l
and nested blocks. Additionally, the inclu-
sion of p rog ramming language const ructs
adds to the abil i ty to extend the fo rmat t ing
language. T h e extensive group of wri ter ' s
workbench tools which have been devel-
oped using P U B ' s powerful se t of const ructs
is ano the r significant contr ibution.

Computing Surveys, Vol. 14, No. 3, September 1982

2.2.2 NROFF

NROFF is the UNIX 3 operating system's
formatter, intended to produce docu-
ments on various typewriterlike terminals
[OSSA74]. This formatter was developed at
Bell Laboratories during the early to mid-
1970s on the PDP-11, and was derived from
the earlier ROFF [THOM75] which itself
was derived from RUNOFF.

In this section we discuss only "bare
NROFF." The many macro packages, pre-
processors, and postprocessors that have
been developed for use with NROFF and
the closely related TROFF (for phototype-
setters) are discussed in Section 2.3.

The objects supported by NROFF com-
mands are basically the same as those sup-
ported by PUB: lines, pages, words,
phrases, sentences, and paragraphs. Over-
printing of characters can be used to form
new characters.

Programming-language- l ike features
have been provided but are not as general
as those in PUB. For example, NROFF
provides environments which are similar to
PUB's blocks in that they allow the collec-
tion of certain document parameters. It is
possible to switch to a new environment in
a push-down fashion and later to restore
the previous environment. However, it is
only possible to define three environments
{numbered 0 through 2) and environments
can only be pushed down to a maximum
depth of ten. Additionally, only certain at-
tributes of the documents are actually local
to the environment; many attributes are
global and not affected by environment
switching. Environments are also not
nested: undefined local attributes are given
a default value, not the value of the previ-
ously entered environment. Therefore, the
concept of environment switching is quite
different from PUB's block structuring and
less powerful as well. The same idea is
applied to input files. Input can be obtained
from multiple files, which can be pushed
down upon each other to a maximum depth
of five.

NROFF's substitutes for variables are
called number registers and strings. The
values in number registers and strings can

3 U N I X is a t r ademark of Bell Laboratories .

Document Formatting Systems ° 429

be displayed in the text, modified, used in
expressions (if numeric), or invoked as com-
mands (if strings). Predefined numeric reg-
isters provide system information which
can be included in the text (e.g., the current
page number and the current date).

Macros can be defined and can be recur-
sive. Up to nine parameters can be provided
on macro invocation. Conditional control
statements allow selective inclusion of in-
put text lines. Built-in condition names al-
low testing for such cases as even or odd
page number.

It is as interesting to notice what has not
been explicitly provided in NROFF as it is
to notice what has been'provided. Not de-
fined are facilities for handling page head-
ings, page footings, multiple columns on a
page, or footnotes. Instead, there are more
general mechanisms called traps and diver-
sions, which, when combined with macros,
can be used to implement these facilities.
Traps cause the invocation of a macro at a
given spot on the output page and therefore
can be used to generate page headings and
page footings. Diversions cause formatted
text to be diverted into a macro definition
which can be invoked later as a command,
causing the processed contents to be
treated as input at that point. Essentially,
diversion provides a mechanism for defin-
ing macros containing formatted text as the
body of the macro. Diversion combined
with traps can be used to implement foot-
notes. Adding in page positioning com-
mands allows implementations of multiple
columns on a page.

The formatting language itself consists of
separate commands and text. Two groups
of commands are provided. The first ap-
pears on separate lines and is distinguished
from text by either "." or at the begin-
ning of the line. If is used, a command
which would normally terminate a text line
will not perform the termination. This form
resembles RUNOFF quite closely in ap-
pearance; details may be seen in Figure 6.
The second group of commands are flagged
within a text line with the escape character
"\" . This group provides the same kinds of
functions as do the special characters used
in PUB and FORMAT. User-defined com-
mands of the first form are written as mac-
ros, possibly with parameters. User-defined

Computing Surveys, Vol. 14, No. 3, September 1982

430 • R. Furuta, J. Scofield, a n d A. S h a w

.11 70

.ce 1
CALL FOR PAPERS
.sp 1
The aim of this conference is to survey the state of the art of
computer aids for document preparation.
.sp 1
Papers are s o l i c i t e d on
.sp 1
. in +5
. t i -2
- \ Picture edit ing
.sp 1
. t i -2
- \ Text process ing
.sp 1
. t i -2
- \ A lgo r i t hms and sof tware f o r document p r e p a r a t i o n and o t h e r
r e l a t e d t o p i c s .
. i n
.sp 1
D e t a i l e d a b s t r a c t s should not exceed f i v e pages; they
.u l 1
must
be sent before October 31, 1980 to the Program Chairman.
Selec ted authors w i l l be n o t i f i e d by November 30.
.sp 1
Dura t ion of one p r e s e n t a t i o n w i l l be of e i t h e r 25 or 45
minutes.

Figure 6. Document description for NROFF to produce the document of Figure 2.
Command lines begin with ".", the remaining lines are text hnes. The escape character " \"
is used to give the following character special meaning. "\ ", used here, is an unpaddable
space character (significant blank). ".in +5" increases the current left margin by five
characters; ".m" restores it to its previous value.

With the exception of the " \ " sequence, this simple example could also be processed
successfully by ROFF, NROFF's predecessor. Other mechanisms existed in ROFF to
provide unpaddable spaces.

macros or strings can redefine N R O F F
commands , previously defined macros , o r
previously defined strings by reusing the
name. User-defined c o m m a n d s of the sec-
ond form are s tored as strings and cannot
have parameters .

Bare N R O F F is an ex t remely low-level
and difficult language to use. Pa r t s of the
language s eem unin tended for h u m a n use.
In fact, this is p robab ly the case; m a n y
par ts are used pr imar i ly by the fo rma t t e r ' s
preprocessors .

T h e r e is no denying the i m m ens e popu-
lar i ty of the U N I X document-process ing
system. As becomes clear in the next sec-
tion, this popular i ty is largely due to the
sys tem ' s abil i ty to evolve, providing facili-
t ies to m e e t changing needs and becoming
more powerful and convenient to use.
N R O F F and T R O F F are the bases for this

abil i ty to adapt . The i r flexibility allows the
implementa t ion of m a n y m u c h more usable
document-process ing programs.

2.3 Structured Formatters with Many
Objects

In this section, we discuss three of the mos t
interest ing and influential pure format t ing
sys tems in current use: Scribe, 4 TF_~, 5 and
tha t provided by the mode rn U N I X system.
We call these sys tems "s t ruc tured format-
ters with m a n y objects" in recognit ion of
the increased sophist icat ion and flexibility
of the systems, par t icular ly with respect to
definition of new logical objects within the
document .

4 Scribe is a trademark of Unflogic Ltd.
TEX is a trademark of the American Mathematical

Society.

Computing Surveys, Vol. 14, No. 3, September 1982

Each of these systems has generated
much interest and discussion. Efforts are
being made to prepare computer-system-
independent versions of each: two separate
companies have formed to market different
variants of Scribe; the American Mathe-
matical Society is preparing a portable
PASCAL implementation of TEX; and the
entire UNIX operating system, not just the
formatters, has been converted to run on
several different computers.

The functionality of these systems has
increased substantially from that of the ear-
lier pure formatters. TF~ and the UNIX
formatting system can include complicated
mathematical equations in their docu-
ments. Table specification in UNIX is par-
ticularly easy. Objects can be integrated,
especially in the UNIX system, which al-
lows inclusion of mathematical expressions
in tables and, in a recent addition, inclusion
in text of line drawings which can, in turn,
contain text. Each of these systems can
produce output for a variety of devices;
Scribe provides device-independent de-
scription, TEX produces device-indepen-
dent formatter output.

The philosophies behind the user inter-
faces of these systems differ greatly. The
separation between TEX and Scribe is
greatest, with the UNIX formatting system
falling in between the two. The TF~ user
is viewed as being an author who wants to
position objects exactingly on the printed
page, producing a document with the finest
possible appearance. Consequently, its em-
phasis is on the power and flexibility of the
formatting language. It may be expected
that TEX will become easier to use as new
macro packages and preprocessors are de-
veloped. The Scribe user is viewed as an
author who is more interested in easily
specifying the abstract objects within his
document, leaving the details of the ap-
pearance of objects to an expert who estab-
lishes definitions mapping the author's ob-
jects to the printed page. The emphasis is
on simplicity in the input language and
provision of writer's workbench tools.

Each system includes some interesting
organizational and implementation details.
TEX presents formatting as an optimization
problem. Here, the purpose of line filling is
not to fit text as densely as possible into an

Document Formatting Systems ? 431

area, but to reduce undesirable effects such
as excessive hyphenation and widows.
Scribe makes an at tempt to separate the
content of the document from the format-
ting actions by using a mostly declarative
language. Scribe also allows easy definitions
of new environments through partial mod-
ification of existing environments. All defi-
nitions and global declarations must pre-
cede any text. Changes to the standard
environments are therefore easy to detect
during later modification of the document.
The UNIX system is organized as a set of
small programs which may be connected
together in a variety of configurations. Its
"building block" approach contrasts with
that of TEX and of Scribe which are both
implemented as large, monoli thic pro-
grams.

2.3.1 The UNIX Document-Formatting Tools

The UNIX formatting system is a part of
the larger collection of document-process-
ing tools available within the UNIX oper-
ating system [KERN78]. Figure 7 summa-
rizes the available tools. The formatting
package, which has developed and grown
substantially over the years, consists of the
sibling formatters NROFF and TROFF,
and of a number of macro packages, pre-
processors, and postprocessors. The system
is one of the first with nontrivial capabilities
for formatting text, tables, mathematical
equations, and, recently, line drawings. In-
deed, TEX is the only other modern pure
formatter with comparable formatting ca-
pabilities.

Before discussing the components of the
UNIX formatting system, some general ob-
servations may be in order about the UNIX
programming environment [RITC78]. The
overall aim of this environment is to pro-
vide a powerful set of tools with a simple,
and often extraordinarily terse, command
language syntax. The expected user would
seem to be an experienced professional, a
person with frequent contact with the com-
puter system. The easy interconnection of
processes through the mechanism of pipes,
which connect the output from one process
to the input of another process, encourages
development of systems that consist of a
set of separate programs, each performing

Computing Surveys, VoL 14, No. 3, September 1982

432 • R. Furuta, J. Scofield, and A. Shaw

Editing F o r m ~ i n g

~ ~ fnac,osfor,~'o~f~
phototypesetter

iPI I ' ' [greek [tn~oked bet~ueen the sn-
ty *o]]tc I dicated s teps

sl; :[]J " '

sed: line-oriented text editor

• cat: list file without pagination

• pr" list file and paginate for printing

• typo: detect spelling errors using statistical analysis

• spell: detect and a t tempt to correct spelling errors with dictionary

s dtH: compare files, generate troff commands to place marginal bars when
differences found

orefer: generate bibliographic citations. Refer has its own separate subsystem for
maintaining the bibhography data base file

• tbl: table formatter

eeq~ and aeq~: mathematical equation formatters

• checkeq: make sure tha t equation is syntactically correct before passing it on
to eqn or neqn

• eqnchar, macro package specifying special characters normally unknown in troff
• tro$' and nroH: RUNOFF-like formatters

• ms: macros for partml separation of content from format

• col: convert nroff output to print on devices without reverse scrolling

• greek: convert nroff output to print Greek characters on Teletype 37

• tc" convert troff output to print on Tektromx 4024 DVST terminal

Figure 7. Some of the document-process ing tools avai lable on UNIX, version 7.
(Teletype is a t r ademark of Tele type Corporat ion. Tekt ron ix m a t r ademark of
Tektronix, Inc.)

a single function. The intention is to pro-
vide a set of software tools [KERN76a]:
programs that are continually improved by
much trial, error, discussion, and redesign.
When new requirements develop, the ten-
dency is to produce a new program derived
from the already existing one rather than
to increase the functionality and complex-
ity of the original. Creation of new software
is preferred to modification of old since
modification threatens to introduce weak-
nesses into previously stable parts of the
system. This philosophy is reflected
strongly in the organization of the format-

ting system as a set of distinct preproces-
sors and postprocessors to the central
RUNOFF-like formatters. We also find dif-
ferent programs with similar or identical
input languages producing output reflecting
slightly differing requirements {e.g., EQN
and NEQN for processing mathematical
equations that produce input for TROFF
and NROFF, respectively). We note in
passing that this philosophy also seems to
encourage development of an unusually
wide variety of document analysis pro-
grams, such as programs for gathering sta-
tistics on word frequencies [McMA78].

Computing Surveys, Vol 14, No. 3, September 1982

We shall now discuss several of the doc-
ument-formatting tools available on the
UNIX system. The most commonly used
method for extension of a pure formatting
language has been through macro defini-
tions. We describe one UNIX macro pack-
age, the -ms macros, which makes a low-
level attempt to provide an input language
separating format from content. We also
discuss four TROFF preprocessors: EQN,
which formats mathematical expressions;
TBL, a table formatter; REFER, which
looks up bibliographic references and gen-
erates TROFF commands to produce a
properly formatted citation within the text;
and PIC, which allows string descriptions
of line drawings.

2.3.1.1 T R O F F / N R O F F . In Sect ion
2.2.2 we have discussed the functions avail-
able in NROFF, the UNIX formatter pro-
ducing output for typewriterlike devices.
Now we wish to discuss TROFF [OSSA76],
which prepares output for phototypeset-
ters.

The input languages accepted by TROFF
and NROFF are nearly identical. Thus, all
of the discussion about NROFF also applies
to TROFF. TROFF must support addi-
tional functions since a phototypesetter has
more capabilities than does even the
most sophisticated typewriterlike printer.
However, NROFF typically ignores those
TROFF commands which it cannot carry
out (for example, changing character sizes)
and thus maintains input language compat-
ibility. There are a few commands which
are present only in TROFF or only in
NROFF but, since it is possible to deter-
mine which formatter is being used while
the formatting is going on and conditionally
to include or exclude input lines, it is always
possible to set up an input file which will
be acceptable to both formatters. However,
it will, at times, take quite a bit of work to
set up this t'de. Thus, a weak form of device-
independent description is provided by
these formatters.

TROFF and NROFF have been modified
over the years to support special functions
needed by the various preprocessors. The
documents which TROFF produces can be
typographically very complex. Text, math-
ematical equations, tables, and line draw-
ings can all be specified and combined.

Document Formatting Systems • 433

TROFF and N-ROFF may be considered to
be useful primarily for implementation of
higher level document-specification lan-
guages. Using TROFF directly to set com-
plex documents is more complicated than
almost anyone would wish. Macro packages
and preprocessors are essential for effective
use [KERN76b].

2.3.1.2 The .ms Macro Package. Let us
now look at one of the available NROFF/
TROFF macro packages, the -ms macros
[LESK76b]. Objects supported here are sim-
ple but certainly higher level than those
provided by the bare formatters. They in-
clude indented and unindented paragraphs,
footnotes, section headings, indented out-
lines, and blocks of text which are to be
kept together within a column of text. Com-
mands are provided for changing fonts, for
increasing or decreasing type point size, and
for specifying the number of columns on
the page.

We include one example document de-
scription, specified using the -ms macros, as
Figure 8 (we later show descriptions of this
same document in Scribe, Figure 16, and in
GML, Figure 20). One interesting object
used in the example is a document heading.
It consists of document title, authors'
names and affiliations, and document ab-
stract. The positioning of this object with
respect to neighboring objects varies with
the type of document being produced. In
fact, fields of this object can appear in more
than one place in the final printed docu-
ment. If "released paper format" (.RP) had
been specified at the beginning of the -ms
input file, a separate cover page containing
the document header object and the cur-
rent date would have been generated. The
title and author information would have
been repeated on the first page of the text.
Thus abstract objects can be represented
multiply in the concrete form of the paper
and some abstract objects can be unordered
with respect to their neighbors.

As the example illustrates, N R O F F /
TROFF commands are needed to augment
the -ms macros with even simple text. Set-
ting more complicated text requires that
the values in registers used by macros be
altered by commands in the text. The val-
ues within these registers can be device
dependent, for example, the width of a col-

Computing Surveys, Vol. 14, No. 3, September 1982

434 • R . F u r u t a , J . Sco f ie ld , a n d A . S h a w

.TL
Extended A b s t r a c t
.be
Document Format t ing Systems: Survey, Concepts, and Issues*
.AU
Alan Shaw, Richard Furu ta , and J e f f r e y S c o f i e] d
.AI
Department of Computer Science
U n i v e r s i t y of Washington
S e a t t] e , WA 98195, U.S.A.
.A8
Format t i ng , the f i n a] pa r t o f the document p r e p a r a t i o n process, i s
concerned w i t h the phys i ca]] ayou t o f a document f o r hard and s o f t
copy media Our aims are to c h a r a c t e r i z e the f o r m a t t i n g prob]em
and i t s c e] a t l o n to o the r aspects of document p rocess ing , to
eva lua te severa] r e p r e s e n t a t i v e and semina] systems, and to
desc r ibe some issues and prob]ems re]evan t to f u t u r e systems.
.AE
.FS
*Th is research was suppor ted in pa r t by the Nat iona] Science
Foundat ion under g ran t number HCS-782685.
.FE
.NH
The Format t ing Problem
.PP
In o rder to d iscuss f o rma t t e r s and t h e i r f u n c t i o n s and to
d i s t i n g u i s h f o r m a t t i n g from o the r aspects o f document
p r e p a r a t i o n , i t is conven ien t to use an
. I
ob jec t
.R
model of documents [Shaw 80] , somewhat analogous to t h a t in
programming languages.
.PP
A document is an o b j e c t . . .
.NH
Represen ta t i ve and Seminal Systems
.NH 2
Pure Format ters
.PP
Some t y p i c a l f i r s t gene ra t i on f o r m a t t e r s . . .

Figure 8. A document description using the -ms macros. Thin figure shows input to either NROFF
or TROFF using the -ms macros. The document specified is the first part of the extended abstract for
this paper [SHAwS0b]. The case of commands is significant. Uppercase commands are defined by the
-ms macros. Lowercase commands are NROFF/TROFF commands. The title of the document is
placed between the ".TL" and the " A U " commands. The NROFF/TROFF command ".br" (break)
was necessary to separate the text "Extended Abstract" from the rest of the title. Authors' names,
between ".AU" and ".AI", and authors' address, between ".AI" and ".AB", follow. The text between
".AB" and ".AE" is the paper's abstract. The title, authors' names, authors' address, and abstract will
be placed on the first page of the text, formatted properly based on conventions established within
the macro package. For example, the tztle will be centered and underlined when the formatter is
NROFF, centered and written in a larger point size in boldface when the formatter is TROFF. The
footnote, located between ".FS" and ".FE", could not be placed in the header since the header
information m treated specially. ".NH" defines a section heachng which will be numbered ("1." and
"2." in tlus example), ".NH 2" a subsection heading, also numbered (2.1. here), and so on. " .PP"
defines the beginning of a paragraph. Text following ".I" is set in italics. ".R" restores the normal
(roman) font.

Computing Surveys, Vol 14, No 3, September 1982

Document Formatting Systems * 435

vT

2~ (t t) + g t t
- - c o

Figure 9. A sample mathemat ica l equat ion
[KNUT79C, p. 91]. Figure 10 shows specification of this
equation in EQN. Figure 18 shows this equation spec-
flied in TEX.

.EQ
1 over (2 pi) int from (- inf} to (sqrt y)
left (sum from kffil to n sin sup 2 x sub k (t) right)
left { f{t) + g(t) right) dt
.EN

Figure 10. The equation of Figure 9 specified m EQN. Text enclosed in
brackets, " (" and ")" , is grouped and syntactmally treated as if it were a
single umt. "sub" means subscript, "sup" means superscript, "left (" and
"right)" bracket a group which is surrounded by parentheses large enough to
enclose the group's contents. Notice that EQN will automatically set function
names, for example "sin," in a roman font instead of m the italic font used for
the other textual material in the finished equatmn.

umn or the spacing between lines of text.
Some separation of format from content
has been achieved, but the separation is not
complete.

With UNIX macros, the entire underly-
ing implementation language remains visi-
ble during formatting. Indeed, use of the
underlying language may be necessary to
achieve certain effects. The syntax of the
newly defined commands is fLxed by the
semantics imposed by the formatter on
macro invocations. Further, since macro
commands are implemented by grouping
commands from the base formatting lan-
guage, the commands which can be imple-
mented are limited by the functionality of
the formatter itself. Another approach,
which may be used to provide additional
commands, is to create a "filter" program,
one through which the input passes before
reaching the base formatter. While still lim-
ited by the functionality of the base for-
matter, this approach allows definition of a
syntax appropriate for the problem being
solved, and allows hiding of parts of the
base formatting language. This is the ap-
proach used with great success by the var-
ious NROFF/TROFF preprocessors.

2.3.1.3 EQN. EQN, a TROFF prepro-
cessor (and the related NEQN, an NROFF
preprocessor) provide a high-level declara-
tive language for specifying mathematical

equations within TROFF-prepared docu-
ments [KERN75].

Objects specified using the language are
viewed as being enclosed in rectangular
boxes. The language specifies the relation-
ships between boxes. Thus, larger boxes are
built from smaller boxes. An equation spec-
ification in EQN is quite aural in form. An
EQN specification of the equation shown in
Figure 9 is presented in Figure 10. As this
example shows, the EQN specification is
close to what would be recited by a person
reading the equation from left to right.

The equation specification is delimited
by the .EQ and .EN commands. Equations
can also be specified within a text line if
surrounded by defined delimiter characters.
Reserved words are used within the speci-
fication to indicate relative positioning of
the object-containing boxes, to specify sym-
bols not present on the keyboard, and to
identify parts of the equation requiring dif-
ferent typographic settings. Spacing of the
equation description is not significant ex-
cept where necessary to delimit a reserved
word. Reserved words can be defined or
redefined by the user through a limited
macro definition facility.

EQN equations axe easily included in ta-
bles and in text. It is possible to use TROFF
strings within an equation specification, but
not TROFF commands. However, this is

Computing Surveys, Vol. 14, No. 3, September 1982

436 • R. Furuta, J. Scofield, and A.

not really a limitation since the EQN lan-
guage can be used to specify almost any
desired equation.

The language is defined by a context-free
grammar and implemented using a corn-
prier-compiler. Some of the benefits of this
approach are discussed in Section 3.3.

2.3.1.4 TBL. TBL, the UNIX system's
table preprocessor, defines a simple, nonex-
tensible, declarative language which allows
specification of fairly complex tables
[LESK76a]. The TBL language specifies rec-
tangular tables with entries which may be
numeric or textual (either short phrases or
formatted blocks of text, possibly including
mathematical equations). Any entry within
the table may be enclosed with a box or
separated from adjacent objects with either
horizontal or vertical rules (these rules may
be either double or single). In fact, the table
itself may be enclosed with a box. Adjacent
table entries (again, either horizontally or
vertically) may be merged to form a single,
larger entry. Certain low.level font and type
size changes may be specified within this
language.

The model of tables used in this system
is an object which consists of a sequence of
rows which are divided into columns. Row
templates are used to describe the position-
ing of entries within the columns (or, as
mentioned, within a sequence of the adja-
cent boxes defined by the row and column
divisions). The templates used now differ
from those in the original version of TBL,
which used column templates.

The table of Figure 11 is specified by
Figure 12. Table definitions in the TBL
language consist of a line of global options,
a sequence of line templates (also called the
table format), and a sequence of lines defin-
ing the rows of the table. Blocks of text to
be formatted over several lines can be in-
cluded within the table as in

Column 1 information (~ T (
A mult'fline block of text to be
formatted by TROFF and
placed in the table as the second column
T} (B Column 3 information

Columns are separated by the tab charac-
ter, represented by ~B. Table entries can
include N R O F F / T R O F F commands. EQN
equation specifications may also be in-

Shaw

AT&T Common Stock
Year Price Dividend
1971 41-54 $2.60

2 41-54 2.70
3 46-55 2.87
4 40-53 3.24
5 45--52 3.40
6 51-59 .95"

* (first quarter only)

Figure 11. A sample table [L~sK76a, p. 7]. Figure 12
shows specification of this table in TBL. Figure 19
shows this table specified in TEX.

cluded. Either EQN or TBL can be run first
without altering the results, although effi-
ciency considerations dictate that TBL be
run before EQN. This flexibility is possible
since TBL acts by generating N R O F F /
TROFF commands and macros; the actual
calculation of the values needed for format-
ting the table is delayed until N R O F F /
TROFF is invoked. Most N R O F F / T R O F F
commands work properly within the TBL
definition, but some formatting commands
that alter environmental attributes used by
TBL will have unforeseen effects. With this
exception, text and mathematical equations
have been integrated with tables.

2.3.1.5 REFER. The function of the
N R O F F / T R O F F preprocessor R E F E R
[LESK78] is to retrieve a particular citation
from a centrally maintained bibliography
database given an imprecise form of the
citation. When the citation is found, strings
are generated which N R O F F / T R O F F
macros (for example, -ms) use to print the
complete reference and to insert the appro-
priate citation into the text. By default,
citations are numeric. The -ms macros
place the references in footnotes; the cita-
tion itself is the superscripted number that
refers to the footnote. The appearance of
the citation can be changed by redefining
the macros. Also, some R E F E R options
allow other citation and reference formats
to be specified. R E F E R options can indi-
cate that references are to be collected, not
alphabetized, and then listed at the end of
the text. Citations can be numeric, can con-
sist of the senior author's last name and the
date, or can consist of the first n initials of

Computing Surveys, Vo|. 14, No 3, September 1982

.TS
a11box ;
c s $
c c c
n n n.
AT&T Common S t o c k
Y e a r ~) P r i c e ~ D i v i d e n d
1 9 7 1 ~) 4 1 - 5 4 ~ $ 2 . 6 0
Z ~ 4 1 - 5 4 (~ 2 . 7 0
3 (~ 4 6 - 5 5 ~ Z . 87
4 (~ 4 0 - 5 3 ~ 3 . Z4
5 ~ 4 5 - 5 2 ~ 3 . 4 0
6 ~ 5 1 - 5 9 ~ . 9 5 "
.TE
* (f i r s t q u a r t e r o n l y)

Figure 12. Document description for TBL to pro-
duce the table of Figure 11 [LESK76a, p. 7]. The table
begins with the ".TS" command and ends with the
".TE" command. Note that the final hne is outside the
body of the table itself. Global options, specified by
keywords, are declared once, at the beginning of the
table definition, between the ".TS" command, which
marks the beginning of the table, and the terminating
";". The global option "allbox," used here, causes each
entry in the table, and the table itself, to be enclosed
within a box. Other global options can, for example,
cause the table either to be centered within the avail-
able horizontal space or to expand in width to fill the
available space.

Row templates, which follow the global options and
are terminated with a ".", consmt of codes which
represent characteristics of column entries within the
row. A single line of codes m given for each row m the
table, one code per column. When there are more rows
in the table than templates, the last template gwen
holds for the remaining rows. Templates used here
specify that an entry Is to be centered within a field
(c), that the previous entry in the row should span
into the current field (s), and that numbers are to be
ahgned at their decimal points (n). Left justification,
right jnstificatlon, vertical spanning, and centering of
blocks of left adjusted text can also be speofied. Tem-
plates can also indicate that horizontal and vertical
lines be drawn between entries, alter the font used,
and so on. New templates can be defined m the middle
of a table, changing the table's format.

The remainder of this table definition is data to be
entered rote the table using the formats defined by the
templates. Extra columns in the text are Ignored. Rows
are entered one at a time with columns separated by
the tab character, represented as ~ in this figure.
Vertical and horizontal rulings between individual en-
tries and rows, and vertical spanning may also be
specified at this time, if desLred.

the last name. Authors' names can be
printed in the references with last name
first or first name last.

The input document contains imprecise
citations consisting of a sequence of key
words and authors' names. A citation of the

Document Formatting Systems • 437

report defining R E F E R could look like this:

.[
Lesk inverted indices UNIX 1978
.]

REFER would find the complete citation
in its database and generate the appropri-
ate strings to allow the N R O F F / T R O F F
macros to place a complete reference and
proper citation into the text. A separate
language is used within the database to
specify entries, as shown in Figure 13.

REFER is particularly interesting for two
reasons. First, it serves a purpose quite
different from the other N R O F F / T R O F F
preprocessors. The other preprocessors all
provide languages for describing new ob-
jects simply. R E F E R provides what we
have called a "writer's workbench" tool.
Second, the implementation is of interest.
The central bibliography available at Bell
Laboratories contains over 4000 entries.
Searching this large central database for
references would be prohibitively expensive
without an efficient means. Inverted indices
provide this efficiency. Briefly, an inverted
file [KNtJT75], which contains the inverted
indices, is like a book index: the values of
the attributes within the records are the
lookup keys, and keys point to the records
in which they are contained. The Bell Lab-
oratories implementation uses a precom-
puted hash table for quick retrieval of the
lookup keys.

2.3.1.6 PIC. A recent addition to the
UNIX document-processing system is
the picture specification language PIC
[KERN81a, KERN82]. This one-dimensional
string language, implemented as a TROFF
preprocessor, provides a way to specify line
drawings, possibly with enclosed text, equa-
tions, or other TROFF specified material,
within typeset documents. Thus PIC adds
an important class of figure objects to those
expressible within the UNIX system and
partially integrates the other mathematical
and text objects with these figure objects.

PIC's primitive objects are the box, line,
arrow, circle, ellipse, arc, and B-spline.
Heavy reliance on associating symbolic
names with objects, on describing positions
relative to other objects, and on default
values for object size, orientation, and other
attributes, allows a simple, flexible, and

Computing Surveys, Vol. 14, No. 3, September 1982

438 R. Furuta, J. Scofield, and A. Shaw

%T Document Format t ing Systems: Survey, Concepts,
[Extended A b s t r a c t]
%A A. C. Shaw
%A R. Furuta
%A J. S c o f i e l d
%R TechnJca] Report 80 -10-02
%D October 1980
%I Department of Computer Science, U n i v e r s i t y of Washington
ZC Seattle, WA

and Issues

Figure 13. A REFER database entry. Each field of the entry is flagged by a two-
symbol code: the character %, followed by a letter indicating what the field is (for
example, "A" for author, "T" for title). See the references for a full listing of this
entry [SHAw80b].

Edit Format
Document Document

.PS
e l l i p s e " S t a r t " ; arrow
Bl :box ° 'Edi t " "Document"; arrow
BZ:bOx "Format" "Document"; arrow
E Z : e l] i p s e "End"
arc -) cw from top o f B1 to top of E2
arc -~ cw from bottom of B2 to bottom of B1
.PE

Figure 14. An example using the PIC language. Specifications in PIC
consist of the name of a prnnitlve object (elhpse, box, and arc in this
example), followed by optional specification of object attributes. Text
contained in quotes is displayed, centered inside the object. Specifications
are either written one per line or separated by semicolons. By default, the
figure is assumed to grow from left to right. Names followed by a colon
label the following object, allowing symbolic references to the location of
the object. The position of the objects could also have been specified
without labels by using ordinal values. For example, the first arc could
have been described as

arc - > cw from top of 1st box to top of last ellipse

The two arcs specified here are drawn in a clockwise fashion (cw) and
contain an arrowhead(->).

high-level descr ip t ion o f figures. I t is, how-
ever, possible to specify the concre te at t r i -
bu tes of the ob jec t in an exact, low-level
manner . Objec t s m a y be scaled, t rans la ted ,
or p laced wi th respec t to an ident if ied po in t
in a figure. Invisible ob jec t s can be used to
help in specifying figures. A m a c r o facil i ty
is provided, al lowing c rea t ion o f a h i e r a r c h y
of figure objects . Addi t ional ly , ob jec t s can
be col lected t o g e t h e r in to a block (syntac-

Computing Surveys, Vol. 14, No 3, September 1982

t ical ly r ep r e sen t ed by del imi t ing a sequence
of specif icat ions wi th "[" and "]" brackets) .
T h e b lock m a y t h e n be m a n i p u l a t e d as a
single object . F igure 14 p resen t s an exam-
ple.

T h e a p p r o a c h t aken to p ic ture specifica-
t ion is s imilar to, b u t a t a h igher level than ,
t h a t used in t he L a w r e n c e L i v e r m o r e sys-
tem, d iscussed in Sec t ion 2.5.2. I D E A L , an-
o t h e r T R O F F p rep roces so r for f igure de-

scriptions using quite a different approach,
is discussed in Section 2.5.3.

2.3.1.7 Discussion of the UNIX Sys-
tem. By any standards, the UNIX format-
ting system is a successful one. An informal
evaluation conducted for Physical Review
Letters compared UNIX composition to the
typewriter composition method already in
use at the journal for articles with a mod-
erate amount of mathematical and tabular
text [LESK77]. UNIX reduced the keyboard
time needed to prepare the articles, aver-
aging 2.4 times as fast as typewriter com-
position. Further, total estimated composi-
tion costs per page decreased by one third
with UNIX.

As previously indicated, a large part of
the success of this system is its unique
ability to change incrementally to meet
more sophisticated demands. Paradoxi-
cally, the system's highly modular design
has also discouraged integration between
different types of objects and between the
languages used to describe these objects.
Section 3.7.2 continues this point.

2.3.2 Scribe

We find a different approach to document
processing in Scribe, developed in the late
1970s by B. Reid at Carnegie-Mellon Uni-
versity [REIDS0a, REID80b, REID80C,
REID81]. In the pure formatters already
discussed, the user of the system retains
most of the responsibility for the appear-
ance of the final printed document. In
Scribe, this responsibility is given to the
formatter. The emphasis in the document
description language is on the logical con-
tent of the document, not on its physical
format. Formatting details are determined
by the system, varying for individual types
of documents and for different output de-
vices. Other systems permit their users to
specify the logical structure of the docu-
ment, most generally through use of com-
mands defined using the system's macro
facility, but the user can also specify the
concrete form of the document directly
through the low-level positioning com-
mands which remain available for use. The
Scribe user is required to specify the logical
structure of the document. For the most
part, lower level positioning commands
have not been provided.

Document Formatting Systems ° 439

One result of this philosophy is that the
object types which the Scribe system can
handle are limited to those which can cur-
rently be described completely by their con-
tent, without resorting to use of concrete
object positioning commands. In essence,
this means that Scribe currently is re-
stricted to fairly simple textual objects.
There are no facilities, for example, for line
drawings, complex tables, and complicated
mathematical expressions. TEX and the
UNIX document formatting system at-
tempt to allow any object to be specified,
although perhaps with great difficulty. Un-
like these, Scribe contents itself with the
easy specification of objects sufficient to
provide many, but certainly not all, of the
commonly needed document types.

Another result of this strong separation
of content from format is that document
descriptions stated using Scribe are highly
portable. Not only can the same document
description be used at different computer
sites, but the same document description
can be used to produce visible concrete
documents for viewing on different devices;
the necessary details are supplied by the
Scribe system.

2.3.2.1 Environments and Commands.
Declaring a Scribe document to be of a
particular type (e.g., article, letter, thesis)
specifies the attributes of the global envi-
ronment for the document. An environment
encloses document text, which itself may
include a sequence of nested environments
(e.g., italic phrase, or section heading). An-
other way of describing an environment is
as a partial definition of the concrete attri-
butes for the logical object it contains (e.g.,
left margin, or typeface). Unspecified attri-
butes are generally inherited from the sur-
rounding environment. Formatting, then,
involves applying the environment attri-
butes to the text contained within the en-
vironment. The definitions of the attributes
of the environments provided for each in-
dividual document type are contained in
the central Scribe database. The person
responsible for maintaining the Scribe da-
tabase at a particular site may add new
document types to the database or remove
old ones. Similarly, environment definitions
in existing document types can be added,
deleted, or modified. Importantly, this

Computing Surveys, Vol. 14, No. 3, September 1982

440 • R. Furuta, J. Scofield, and A. Shaw

@Style(indent fO,spacingf l ,spread=l)
@Heading(CALL FOR PAPERS)

The a im o f t h i s c o n f e r e n c e i s t o s u r v e y t h e s t a t e o f t h e a r t o f
computer a ids f o r document p r e p a r a t i o n .

Papers are s o l i c i t e d on
@Begin(Itemize)
Picture edi t ing

Text processing

Algorithms and software for
topics
@End(Itemize)

document p r e p a r a t i o n and o the r r e l a t e d

D e t a i l e d abs t rac t s should not exceed f i v e pages; they @i(must) be
sent be fore October 31, 1980 to the Program Chairman. Se lec ted
authors w i l l be n o t i f i e d by November 30.

Dura t ion of one p r e s e n t a t i o n w i l l be o f e i t h e r 25 or 45 minutes.

Figure 15. Document description for Scribe to produce the document of Figure 2. Environ-
ment and command keywords are preceded by the escape character @, which cannot be
changed, and are optionally followed by delnnited arguments or delLmlted text. The delimiters
can be just about any matched pair of brackets. The positron of keywords on the input line is
not significant. Paragraphs are flagged with a blank line. The @ Style command modifies global
attributes of the document. If a @ Style command is included, it must appear at the beginning
of the input file before any text is encountered. Here, the " indent" argument specifies how
much a paragraph should be indented, "spacingffil" means the document should be single
spaced, "spread" indicates how many blank lines should be left between paragraphs. The "@]"
environment contmns a text strmg to be itahclzed. An equivalent way to specify any en-
vironment with delimited string argument is to use @Begin and B E n d command brackets.
Thus the italicized string "@i(must)" could equivalently have been specified as
"@Begin(i)must@End(i)".

means that the particular environments
which are available within a particular doc-
ument depend on the type of the document;
different document types may provide dif-
ferent environments.

Text within an environment may be sim-
ply a string of characters, a paragraph con-
taining a sequence of sentences, or a se-
quence of paragraphs. Text objects are
available within all environments since
these objects are defined internally by the
Scribe compiler, not in the database.

A number of low-level features for crea-
tion of new objects are available, such as
overprinting of characters and a macro fa-
cility. However, these features are not
meant for the general user and are not
described in the basic language tutorial
[REIDS0b].

We present two examples of Scribe input.
Figure 15 presents the same document al-
ready presented for the other pure format-

Computing Surveys, Vol. 14, No. 3, September 1982

ters. Figure 16 is included to give an idea of
how Scribe would be used to specify a more
generally needed document type.

Keywords, preceded by the reserved es-
cape symbol @ and followed, optionally, by
a delimited argument, name either environ-
ments or commands. Environments have
been discussed above. Commands differ
from environments in three major ways.
First, they are generally associated with a
point in the document rather than with a
region of the document. They may also
associate information with that point in the
document. For example, the command
"@Label(LabelName)" marks a particular
location in the document, saving the section
number and output page number for re-
trieval in other parts of the document. Sec-
ond, the actions associated with commands
are hard-wired into the Scribe system. The
actions cannot be modified as can the list
of attributes associated with environments.

Document Formatting Systems • 441

@Make(art icle)
@Center(Extended Abstract)
@Heading(Document Formatting Systems: Survey, Concepts, and Issues@foot<This
research was supported in part by
the National Science Foundation under grant number MCS-7826285.>)
@Center(Alan Shaw, Richard Furuta, and Je f f rey Scof ie ld)
@Center(Department of Computer Science
Univers i ty of Washington
Sea t t l e , Washington 98195, U .S .A .)

@PrefaceSection(Abstract)

Formatting. the f i n a l part of the document preparat ion process, ts
concerned wtth the physical layout of a document fo r hard and soft
copy media Our aims are to character ize the formatt ing problem
and i t s re la t ion to other aspects of document processin 9, to evaluate
several representat ive and seminal systems, and to describe some
issues and problems relevant to fu ture systems.

@Section(The Formatting Problem)

In o rder to discuss formatters and thei r functions and to distinguish
formatt ing from other aspects of document preparat ion, t t is
convenient to use an ~ t (o b j e c t) model of documents@Ctte(ShawHodel),
somewhat analogous to that tn programming languages.

A document is an object composed of a hierarchy of more p r i m i t i v e
objects

@Section(Representative and Seminal Systems)

eSubSection(Pure Formatters)

Some typ ica l f t r s t generation f o r m a t t e r s . . .

Figure 16. A sectioned document specified in Scribe. This figure presents the same document segment as tha t
specified in Figure 8. Documents of type "article" may be divided into numbered sections to three levels. (The
first two, Section and SubSection, are shown here.) This example document consists of a title, authors ' names
and address, an abstract, and portions of the first few sections of the document. "~Ci te (ShawModel)" refers to
an entry in the bibliographic database for this document. In the printed document, a citation to the reference
will be placed in the text at this point. Scribe will automatically generate a list of references and a table of
contents for this document.

And third, many of the commands are pro-
cedural in nature. The environment mech-
anism is declarative.

A particularly useful feature of the Scribe
system is its facility for defining and mod-
ifying environment definitions. These
changes may be either global or local in
scope. Global changes can only be specified
at the beginning of the document specifi-
cation, before any document text is encoun-
tered. The @Define command is used to
define a new environment globally. For ex-
ample, the command

@Define(Unfilled, Justificationffino)

defines a new environment, named Un-

filled, in which text is not justified. More
usefully, @Define can be used to create
new environments defined by analogy to
existing environments: "The environment
I want to specify is exactly the same as this
existing environment except for these
changes " For example, the Quotation
environment, used for displaying large quo-
tations, narrows both its margins. The com-
mand

@Define (QuoteButFullRightffiQuotation,
RightMarginffi+0)

provides a new environment, named
QuoteButFullRight, with the same attri-

Computing Surveys, Vol, 14, No. 3, September 1982

442 • R. Furuta, J. Scofield, and A. Shaw

butes as Quotation except for the right
margin, which is not narrowed. Similarly,
existing environments can be globally al-
tered through the @Modify command
which allows new values to be specified for
attributes of an existing environment. The
command

@Modify(Itemize,RightMargin=0)

would change the RightMargin attribute
associated with the itemize environment in
every place in which the environment was
used within the document.

Local changes to an environment are
made using the @Begin command. For ex-
ample,

@Begin (quotation,RightMarginffi0)

changes the RightMargin attribute for this
use of Quotation only. Unfortunately, local
environment changes can introduce subtle
output device dependencies into the docu-
ment description since many environmen-
tal attributes are defined in extremely de-
vice-dependent ways. We return to this sub-
ject again in Section 3.2.3.

2.3.2.2 Writer's Workbench Features.
A major factor in the popularity of the
Scribe system is its large number of writer's
workbench tools. Many of these tools were
also found in PUB and a few in the UNIX
system. Scribe has a mechanism for collect-
ing text during the processing of a docu-
ment and then treating this derived text as
input to the formatter at the end of the run.
This mechanism is used, for example, to
generate a table of contents or an index.
Objects such as sections of a document,
footnotes, or elements in an itemized list
can be numbered automatically. A cross-
reference facility allows symbolic reference
to page numbers or section numbers of
objects within the document. Scribe pro-
rides page layout aids which assist in plac-
ing footnotes and which will move a figure
forward until enough blank space is found
on a page to insert it. Similar aids are also
available in most of the other pure format-
ters discussed. Additionally, individual doc-
ument types may include useful options.
For example, selecting the "Draft" option
can cause diagnostic information related to
the document description to be included
within the visible concrete document.

A bibliography management facility is
available. No central bibliography database
is provided; each user maintains a personal
bibliography containing specifications for a
set of references. The form of entries in this
database quite closely resembles that used
in R E F E R (see Section 2.3.1.5 and Figure
13). In Scribe, the user defines a unique
identifier for each entry in the bibliography.
Citations within a document use this iden-
tifier to select the desired reference. The
Scribe system fills in the text of the actual
citation in an appropriate format for the
document type. At the end of the docu-
ment, a list of references is generated, also
in an appropriate format for the document
type. Citations and references can be gen-
erated in a number of different formats,
such as those of the Communications of the
A CM and Information Processing Letters.
Unlike REFER, Scribe completely regen-
erates its internal bibliographic lookup ta-
bles each time they are needed.

Finally, Scribe includes some basic facil-
ities for managing large documents. Large
documents can be broken up into a number
of different computer files and ordered into
a tree structure. Global definitions made in
the root apply to all nodes. Any subtree can
be formatted separately without requiring
that the entire document be processed.
Auxiliary files are updated so page num-
bers, figure numbers, and cross references,
for example, in other parts of the document
will be correct the next time they are pro-
cessed. This feature not only aids the indi-
vidual author who is working on a large
document, but also aids groups of authors
who are each working on separate sections
of a document. We discuss these facilities
further in Section 3.5.2.

2.3.3

TEX was developed by D. Knuth of Stan-
ford University in the late 1970s to pro-
vide high-quality typesetting of books con-
taining much mathematical material
[KNuv79a]. The system concentrates on
the arrangement of objects in the visible
concrete document. New and interesting
algorithms have been developed for break-
ing paragraphs into lines, for collecting lines
into pages, and for hyphenation--for the

Computing Surveys, Vol. 14, No. 3, September 1982

tasks, in other words, which are normally
performed automatically by a formatter.
The specification language allows the
description of extremely complex textual,
tabular, and mathematical concrete
objects.

The specification language appears to
emphasize the expression of this wide range
of objects rather than ease of use. Some
ideas have been borrowed from other sys-
tems; most notably, the math mode lan-
guage resembles EQN. However, the spec-
ification languages are more unified in TEX
than in the UNIX system. In particular,
features of TF_~'s math mode language,
such as ellipses, are used in nonmathemat-
ical specifications more often than are fea-
tures of EQN. On the other hand, the as-
sessment by one of the implementors of the
UNIX document-processing system is that
TROFF is more powerful than TEX
[KERNSlb], since TEX does not provide
page layout mechanisms as general as
TROFF's traps, which can associate a
macro invocation with a position on the
output page. Another difference is that
TEX does not include primitives for speci-
fying line drawings as do the newer versions
of TROFF [KERNSlc].

2.3.3.1 The Boxes and Glue Model.
Concrete objects are modeled as two-di-
mensional boxes connected to each other
by glue. Boxes define the size of the object
they contain and provide a reference point
which is used to align the box with other
boxes, either horizontally or vertically.
Aligning two boxes produces an enclosing
box. Typical box contents are characters,
words, lines, paragraphs, and pages. Glue
provides space between boxes. Glue has a
natural size and may be stretched or com-
pressed according to given constraints. Line
justification may be thought of as pulling
the objects on the ends of the line apart, or
pushing them together, until the desired
width has been reached. Since the glue put
between sentences has more stretchability
than the normal glue placed between words,
line justification will cause more space to
be added between sentences than between
words. Similarly, a phrase can be centered
within a line by placing glue of infinite
stretchability at both ends of the phrase.

Document Formatting Systems • 443

2.3.3.2 The Formatting Language. The
formatting language uses control sequences
preceded by a special escape character, usu-
ally \. Other characters also have special
meaning, but all special characters can be
redefined, including the escape character.
Specifications are grouped if surrounded by
set brackets, { and }. Definitions made
within a group persist only until the end of
the group, unless they are defined to be
global. Thus one common use of groups is
to specify a change with limited scope, say,
a switch to an italic font. Because a group
is treated as a unit, groups are also often
used as arguments to commands. Both of
these uses may be seen in the text example
presented in Figure 17.

A separate math mode is provided for
specification of mathematical equations.
In-line mathematical equation specifica-
tions are delimited by the character $. Dis-
played mathematical specifications are de-
limited by $$. Figure 18 shows a specifica-
tion for the displayed equation previously
presented in Figure 9.

TEX's math mode language is similar to
EQN's. The primary difference beween the
languages is that TEX uses no reserved
words; escape sequences are used instead.
Special symbols are used, however, to spec-
ify some operations such as superscripting,
invoked by T, and subscripting, invoked by
$. Overall, TEX math mode and EQN seem
quite close in their abilities to specify com-
plicated equations. However, using TF~
math mode requires more knowledge of
typographic conventions than does EQN.
In the example, the TEX math mode user
must remember to type "\sin" since typo-
graphic convention indicates that function
names are to be set in a different typeface
from variable names.

A macro facility is included which allows
definition of new commands. TEX macro
definitions are somewhat unusual when
compared to those of other formatting sys-
tems in that they offer a limited facility for
defining new command syntaxes, similar to
that provided in PUB by the response
macros. As with the other systems, the
body of the TEX macro definition includes
a sequence of formatting language specifi-
cations that defines the macro's action.
However, a definition also includes a pa-

Computing Surveys, Vol. 14, No. 3, September 1982

. ~.~:~=~7'~ . .~:~.~. %.~:

444 • R. Furuta, J. Scofield, and A. Shaw

\ i npu t basic % def ines the standard macros, format t ing parameters
\parsk ip 1Opt
\par indent Opt ~ no indenta t ion
\ d e f \ y s k i p { \ v s k i p 3 p t }
\ de f \ t ex t i nden t#1 (kno inden t

\hbox to 19pt{ \hskipOpt pluslOOOpt minus lO00pt#l } \ t }
\de f \hang{ \hang indent19pt }
\ h s i z e 4in
\ c t r l i n e { \ b f CALL FOR PAPERS}
\vsk ip 24pt
The aim of th i s conference is to survey the s ta te of the a r t of
computer aids fo r document prepara t ion .

Papers a r e s o l i c i t e d on
{ \ p a r s k i p Opt
\ p a n \ y s k i p \ t e x t i n d e n t ($ \ b u l l e t $ } \ h a n g P i c t u r e e d i t i n g
\ p a r \ y s k i p \ t e x t i n d e n t { $ \ b u]] e t S } \ h a n g Text p r o c e s s i n g
\ p a r \ y s k i p \ t e x t i n d e n t ($ \ b u l l e t $ } \ h a n g A] g o r i t h m s and s o f t w a r e f o r
document p r e p a r a t i o n and o t h e r r e l a t e d t o p i c s }

Deta i led abst racts should not exceed f i ve pages; they { \ s l must} be
sent before October 31, 1980 to the Program Chairman. S e l e c t e d
authors w i l l be n o t i f i e d by November 30.

Dura t ion of one p r e s e n t a t i o n w i l l be of e i t h e r 25 or 45 minu tes .

\ v f i l l % f i l l out res t of page wi th space
\end

Figure 17. Document description m ~ X specifying the document of Figure 2. Text following
a percent sign (%) is commentary and Is ignored by TEX. The first seven lines of the
specification establish macros and formatting parameters. "\parskip" defines the space which
is to be left between paragraphs and "\parindent" the indentation at the beginning of each
paragraph. The definitions of" \ yskip", "\textindent ", and" \hang" are adapted from Appendix
E of the TEX reference manual [KNuT79c, p. 165]. "\yskip" will leave a small amount of
vertical space. "\textindent" and "\hang" will be used in specifying lists of items flagged with
a bullet in the left margin. "\hsize" establishes the document's hne width.

The text of the document begins with line nine. Notice the difference in line nine in syntax
between a group used as an argument to a command or macro, in this case as argument to
"\ctrline" which centers the argument on the line, and a group used to limit the scope of a
formatting parameter, here " \bf" which switches to a bold face font. "\vskip" specifies vertical
blank space. "\noindent" inhibits indentation of the first line of the following paragraph. A
blank fine terminates the preceding paragraph, contributing its lines to the current page; the
"\par" command could have been used instead. Notice that the measurements expressed in
these specifications are stated in points (a point is 0.013837 inch) and therefore are highly
oriented to the visible concrete document.

r a m e t e r p a t t e r n w i t h e m b e d d e d a r g u m e n t
p l a c e h o l d e r s . W h e n t h e m a c r o is i n v o k e d ,
t o k e n s in t h e i n v o c a t i o n s t r i ng a r e m a t c h e d
a g a i n s t t o k e n s in t h e p a r a m e t e r p a t t e r n .
T o k e n s c o r r e s p o n d i n g to t h e e m b e d d e d a r -
g u m e n t p l a c e h o l d e r s a r e s u b s t i t u t e d in to
t h e de f i n i t i on ' s b o d y , w h i c h is t h e n eva lu -
a t ed .

T h i s m a c r o fac i l i ty is a p o w e r f u l t oo l for
s imp l i fy ing a n d e x t e n d i n g t h e spec i f i c a t i on
l anguage . I n d e e d , m u c h o f t h e " b a s i c " lan-
g u a g e is i m p l e m e n t e d w i t h i n a m a c r o p a c k -

age, a s m a y b e n o t e d in t h e e x a m p l e o f
F i g u r e 17. T h e A m e r i c a n M a t h e m a t i c a l So-
c i e t y h a s s p o n s o r e d c r e a t i o n o f a n o t h e r
m a c r o p a c k a g e , ca l l ed AM$-TF_~, 6 d e s i g n e d
to m a k e spe c i f i c a t i on o f m a t h e m a t i c a l pa -
p e r s in T E X e a s i e r [SPiv80] .

T a b l e s a r e h a n d l e d as tex t . T w o com-
m a n d s o f p a r t i c u l a r use in de f in ing t a b l e s
a r e " \ h a l i g n " a n d " \ v a l i g n " . T h e g r o u p fol-

,~M$-TEX is a trademark of the American Mathe-
matical Society.

Computing Surveys, Vol 14, No 3, September 1982

Document Formatting Systems

$$ {I \over 2\pi} \ in t \ l imi tswi tch&{- \ in f ty)e{ \sqr t y}
\bigglp \sum${kfl}*fl \sin*2 xCk(t) \biggrp
\biglp f (t)+g(t) \b igrp\ ,d t $$

Figure 18. The equatmn of Figure 9 specified in TEX [K~ZUT79C, p. 149].
This specification is extremely similar in form to that in EQN. See Figure 10
and the text for discussion. "\limitswitch" causes the linnts to be placed above
and below the integral sign. By default (in this example, the default would
have been used if the specification had been ".. \int~ {-\infty}... "), limits
are placed to the right of the integral sign. "\blgglp" and "\biggrp" are
particular parenthesis characters somewhat larger than "\biglp" and "\bigrp",
which themselves are shghtly larger than the standard left and fight paren-
thesis. Spaces have been added to improve readability, but only those sepa-
rating control sequences from subsequent letters are actually required.

* 445

lowing a "\halign" contains, first, a (hori-
zontal, hence the "h") row template, and
then a sequence of row entries to be speci-
fied using the template. See Figure 19
for an example table specification. The
"\valign" command performs much the
same function except that a {vertical) col-
umn template is given and specifications
are by column, not by row.

Again, the division of a TEX table speci-
fication into two parts, template and en-
tries, is similar to the UNIX specification.
Use of the formatting language to specify
table templates rather than special char-
acters, as in TBL, means that TEX's lan-
guage is more general. However, TEX's ta-
ble specifications are quite a bit more com-
plex than are TBL table specifications, and
the TBL language is easier to use. Once
again, macro packages will undoubtedly be
developed to make TEX table specification
much simpler.

2.3.3.3 Line and Page Breakup. Among
the most important contributions of TEX
are its concrete document model and the
algorithms used in the system's imple-
mentation. The TEX reference manual
[KNUT79c] includes a description of the
hyphenation routine, a list of the modes
TEX gets into while processing a document,
and a brief discussion of the methods used
for breaking paragraphs into lines and for
making lists of lines into pages. This last
topic has been described in more detail in
a later paper [KsuTS1]. In essence,
tries to determine the "best" way to break
each paragraph into fines, using a dynamic
programming algorithm, where "best"
means the way with the least hyphenation

and with the glue settings that result in the
least amount of "badness." The badness of
a glue setting is high if the glue has to be
stretched or compressed to a point close to
its limits. The badness associated with a
particular point can be affected manually
by specifying a "penalty" for a break occur-
ring at the point. If the penalty is negative,
then the break is favored; if positive, then
the break is discouraged. A similar algo-
rithm is used in placing lists of lines onto
pages. Here, TEX tries to avoid ending a
page with a hyphenated line and tries to
avoid isolated lines on the top or the bottom
of a page.

2.4 Integrated Editor/Formatters

In this section we discuss those systems
which combine the features of an interac-
tive text editor with those of a document
formatter, a group which we call the inte-
grated editor/formatters. We do not discuss
those systems which are primarily editors
with a few formatting functions included.
EMACS [STAL80, STALS1] is one of the
more complicated systems of this kind.

These systems are divisible into two
broad categories. In the first, represented
here by QUIDS, the objects used in for-
matting have been integrated with those
used in editing, but the editing and format-
ting functions have not been integrated.
Only occasional viewing of the visible con-
crete document is permitted. In the second,
both objects and functions have been inte-
grated. Editing changes are shown directly
on a representation of a visible concrete
document. We describe four systems ex-
hibiting this kind of integration: Bravo,

Computing Surveys, Vol. 14, No. 3, September 1982

446 • R. Furuta, J. Scofield, and A. Shaw

$$\vbox{\tabskip Opt
\def\ l {kvrule height 9.25pt depth 3pt}
k d e f \ . { \ h s k i p - l O p t p]us lO000000000pt}
\hru le
\hbox to 150pt{ \ I \ .AT&T CoMor: S t o c k \ . k l }
\hru le
\halign to 150pt{#\tabskJp Opt plus lOOpt
®\hfi11#®#®\ctr{#}®#®\hfi11#®#\tabskip Optkcr
\ l ® \ - Y e a r \ . k h f i 1 1 ® \ l ® \ . P r i c e \ - ® k l ® k . D i v i d e n d \ . \ h f i l 1@\1 \ c r
\noallgn{khrule}
\1 ®1971®\ I ®41 - -54@\ I ®$ \$$2 .60@\ [\cr \noa] i gn{\hru] e}
\ I @2®\ I ®41--54@\1 @2.70@\1 \c r \noa] ign{ \h ru] e}
\ I @3®\ I @46--55@\ I @2.87@\1 \cr\noal ign{kh rule}
\1 ®4®k [® 4 0 - - 5 3 ® \ I @3.24@\ I \c r \noal ign{\h rule}
\ I ® 5 ® \ I ®45- -52@\ I @3.40 ® \ I \c r \noal J gn{kh rul e}
\ l ® 6 ® \ l ® 5 1 - - 5 9 @ \ l @ . 9 5 \ s p o s e ' @ \ l \ c r \ n o a] ign{khcule}}
\vskip 3pt
\hbox{* (f i r s t quarter only)}}$$

Figure 19. Document description for TEX to produce the table of Figure 11 [KNUT79C, p.
108]. The designer of this table has decided that the table is to be 150 points wide (slightly
under 2.1 inches). The table specification may be divided into four major parts. The first
three lines provide some overall definitions of parameters and macros available within the
specification. The next three lines specify the major heading of the table. The next eleven
lines specify the body of the table. The final two lines specify the text which is to appear
beneath the table as a footnote to the rightmost number in the last row of the table.

The group making up the table body contains two parts. The first defines a template
which will be used in placing the seven column entries which make up each row (the bars
adjacent to the three columns, specified as " \ l " , are considered to be separate column
entries). Specifications for column entries are separated by the alignment tab, ®. The
template ends with the fLrst "\cr". Row specifications follow, each ended with " \cr" . Row
entries are separated by the ®. In essence, entries are substi tuted into the template,
externally replacing the corresponding #. The " \noal ign{\hrule}" which follows each row
entry specifies the horizontal bar separating the rows in the visible concrete document.

Star, and Smalltalk, all developed by Xe-
rox, and the Wang Word Processor. The
use of multiple viewing windows and high-
quality graphics devices by the Xerox sys-
tems is also of interest.

Two general observations may be made
comparing the integrated editor/formatters
to the pure formatters. The first is that the
integrated editor/formatters tend to be
more configuration dependent than do the
pure formatters. The range of devices used
by the different systems is quite wide, rang-
ing from standard CRT terminals to bit-
mapped displays with associated graphical
input devices. Unlike the recent pure for-
matters, each system's design seems to be
heavily influenced by the environment in
which it operates. The second observation
is that the sophistication of the objects used
in these systems is less than that of those
used in the pure formatters, especially
when compared to those in the group we
Computing Surveys, Vol. 14, No. 3, September 1982

called the "pure formatters with many ob-
jects." None of the integrated editor/for-
matters provides objects at the abstract
level used in Scribe or allows the careful
control over the appearance of the visible
concrete document provided by TEX. How-
ever, integrated editor/formatters are being
developed which use these kinds of abstract
and concrete objects. They are discussed in
Section 2.6.

2.4.1 QUIDS

One of the first published descriptions of a
system which combined editing functions
with formatting functions in a unified
manner was that of QUIDS {QUick Inter-
active Documentation System), designed
and implemented in the mid-1970s at the
University of London [COuL76]. QUIDS'
editing functions are oriented to document
text rather than to computer program text.

Consequently, the basic editing unit is the
paragraph, not the line. Additionally, the
system allows incremental viewing of the
visible concrete document on request dur-
ing preparation of the document descrip-
tion. The system integrates functions to
edit, format, view, file, and print docu-
ments. However, the complexity of the ob-
ject types permitted is quite limited. The
system can only be used for very simple
textual objects; no mathematics, line draw-
ings, or other more complex objects can be
represented or manipulated.

The model of the document employed
within QUIDS is a sequence of abstract
objects: paragraphs, tables, section and sub-
section headings, and associated titles.
Most of these objects are logically ordered
into a tree and assigned numbers based on
the path from the root of the tree: section
headings are numbered 0, 1, 2, 3 ; sub-
section headings 1.0, 1.1, . . . ; and para-
graphs 1.0.1, 1.0.2, and so on. These num-
bers are used within the system to identify
the particular objects. Other objects repre-
sent nonsequential text, for example, page
headings and footnotes. Low-level format-
ting parameters, such as those establishing
the width of the margins, are also specified
by commands and stored within the inter-
nal form of the document.

The system uses a standard CRT termi-
nal as the interactive device. The QUIDS
language consists of commands divided into
three groups. Initially, the user is in ")"
mode (")" is the prompt displayed in this
mode). The user types commands to edit
an existing document {positioning within
the document), file or print the document,
or select one of the other modes. In "*"
mode, commands can be entered to specify
parameters for global options controlling
the formatting of the document; for exam-
ple, whether or not a title is printed at the
top of each output page. In the mode,
the user enters a command to select one of
the abstract object types (e.g., paragraph or
section heading) and then enters the docu-
ment text associated with the object. The
..... mode commands also specify the low-
level formatting parameters mentioned
above.

As might be noted from this discussion,
commands are not selected from menus
displayed on the screen. The user must

Document Formatting Systems • 447

remember what commands are possible and
in which mode they may be used. Addition-
ally, it is clear that a more sophisticated
hardware configuration with a pointing de-
vice could be used to advantage. Signifi-
cantly, the user does not manipulate a di-
rect representation of the final document,
but instead alters a logical representation
of the document. Views of the final docu-
ment are only presented when requested.

This simple, limited system has com-
bined the editing and formatting functions
and integrated the objects manipulated by
each of these functions. However, a distinct
separation of commands relating to each of
these functions has also been retained; in
particular, the " ' " mode provides format-
ting commands and the ")" mode provides
editing commands. Unfortunately, the for-
matting commands provided in this system
are low-level in nature and oriented to the
visible concrete document. The editing
commands, however, operate at a higher
level, representing the document as a struc-
tured set of ordered abstract objects. This
separation contrasts strikingly to the ap-
proach taken in the Xerox systems, dis-
cussed below, in which editing and format-
ting have been more completely integrated.

2.4.2 Alto, Bravo, and Star

The Xerox Alto is a personal computer/
workstation developed in 1973 [THAC79]. It
includes an 8.5 by ll-inch bit-mapped dis-
play with a resolution of about 70 pixels per
inch, a typewriter keyboard, and a position-
ing device called the mouse. Over the years,
a number of important and influential doc-
ument preparation systems have been de-
veloped which take advantage of the special
input/output capabilities of this worksta-
tion.

One of the most influential of these sys-
tems is the integrated text editor/formatter
Bravo [LAMP78]. This editor/formatter
cleanly combines editing, formatting, view-
ing, filing, and production of hard-copy text
documents. An option allows direct editing
of an exact representation of the visible
concrete document; the results of editing
on the appearance of the visible concrete
document are reflected immediately in the
display. Multiple display windows are used
to allow simultaneous manipulation of dif-

Computing Surveys, Vol. 14, No. 3, September 1982

448 • R. Furuta, J. Scofield, and A. Shaw

ferent documents or of different parts of
the same document.

A limited number of object types are
provided: characters, words, lines, para-
graphs, and documents. Editing operations
act either on individual objects or on a
sequence of objects of one of these types.
Objects are selected by positioning a cursor
which is controlled by the mouse. Associ-
ated with character and paragraph objects
are concrete attributes called looks. Looks
are formatting properties that define the
appearance of the object. Thus, character
looks describe the character's font, its size,
and its baseline (to allow superscripting and
subscripting). Paragraph looks describe the
shape of the text in the paragraph, for ex-
ample, the margins, the space between
lines, if the paragraph is justified or cen-
tered, and the default character looks for
characters within the paragraph. Looks are
not always visible; only their side effects,
the visible concrete objects, are normally
seen. Looks can be modified; modification
of an object's looks alters the appearance
or positioning of the object on the display.

An interesting idea, which is used in
many commercial systems but has been
implemented quite generally in Bravo, is
the partial specification of document types
using forms (templates). Forms are docu-
ment skeletons with appropriate looks,
headings, and other components already in
place, and with textual indicators describ-
ing those fields that must be provided by
the user. Forms are particularly useful for
standard document types, such as business
letters, interoffice memos, and technical re-
ports, where much of the formatting infor-
mation and some of the components (e.g.,
headers) are predefined. Creating a docu-
ment of a particular type simply involves
replacing the fields in the template with the
actual document text; the retained looks in
the form assure the proper formatting.

Bravo only provides for manipulation of
simple text. Mathematical expressions, fig-
ures, and footnotes are not included, but
there is provision for paging, page headers
and footers, and up to two columns. There
is little structuring of the objects in the
text: looks are associated only with partic-
ular objects and are not related to each
other. Thus making uniform changes to a

document is difficult. In particular, chang-
ing the appearance of concrete objects as-
sociated with a particular abstract object
type involves individual modification of
each instance of the abstract object type. It
is not generally possible, for instance, to
change the font of all section headings in a
document with one command; one must do
each change individually.

Documents can contain more than just
simple text, however, since a number of
drawing packages are available that allow
creation of figures to be merged into Bravo
documents. Markup [NEWM78] adds both
freehand drawings and figures constructed
with straight lines. It can also be used to
add text to drawings produced by other
packages. Draw [BAUD78] is used for draw-
ings which require precise placement of
curves, as well as lines and text, within a
figure.

Alto, Bravo, Markup, Draw, and other
research systems developed in Xerox labo-
ratories have provided the experimental
basis for a number of commercial products.
The most recent and interesting of these is
the office workstation called Star, an-
nounced in 1981 [SEYB81, SMIT82]. This
product is an integrated office system that
provides document preparation, filing, elec-
tronic mail, and data-processing functions,
all within a uniform command syntax and
interpretation. Star's machine has many
improvements over the Alto, such as a
larger high-resolution bit-mapped display.

Document preparation in Star involves
the direct manipulation of the visible con-
crete document, but with a wider range of
objects than Bravo. Document objects in-
clude mathematics and line graphics with
shading. Star also features multiple over-
lapped display windows, object properties
which are a generalization of Bravo's looks,
and pictorial symbols or icons for repre-
senting all system objects on the display
screen. Examples of system objects repre-
sented by icons are documents, file folders,
file drawers, in and out baskets, disks,
printer devices, and object directories. A
command typically involves the selection of
an object (actually of the icon representing
the object) with a mouse and the invocation
of an operation by further object selections
or keyboard entry.

Computing Surveys, Vol. 14, No. 3, September 1982

2.4.3 Smalltalk

SmaUtalk [GoLA76, GoLA83, INGA78,
SHOC79, BYTE81] is neither a formatter nor
an editor, but an interactive programming
language and system based on object
classes and instances, and on message pass-
ing. Developed and used in an experimental
research setting originally on the Xerox
Alto computer (described in the previous
section), it has demonstrated the usefulness
of class/instance language facilities in a
number of editing, formatting, and related
applications, and has been a productive test
bed for interactive techniques on a bit-
mapped display screen. This work has influ-
enced several modern systems, such as Star
and the systems presented in Section 2.6.

Editors for creating and modifying a wide
variety of different objects, including text,
freehand drawings, and character fonts,
have been constructed. Formatting and
viewing are integrated with editing: the re-
sulting user interfaces deal with concrete
objects, and the screen layouts are closely
associated with the object class and in-
stance definitions. The same language,
SmaUtalk, is used both for programming
objects and for invoking them; that is, the
interactive user language and the extender
language are the same. A particularly useful
systems feature is the subclass/superclass
mechanism through which class attributes
may be inherited. This permits a new class,
a subclass, to be defined by modifying and
extending a previously defined class, the
superclass.

The user interface contains an interesting
window package that permits the definition
and use of any number of screen windows
simultaneously; the "active" window may
overlap inactive ones in screen space, anal-
ogous to a sloppy stack of sheets of paper.
This feature appears particularly applicable
to the document preparation environment.
Several parts of the same document or sev-
eral documents can be viewed simultane-
ously and processed, by being displayed
in their own windows. These and other
Smalltalk features have strongly influenced
the design of Star's user interface.

One particularly interesting system writ-
ten in Smalltalk is ThingLab [BoR~79,
BORN81], which can be used to manipulate

Document Formatting Systems • 449

simulated objects whose interactions are
governed by constraints. For example, a
rectangle containing text may be con-
strained so that the text completely fills the
rectangle. If the user changes the width of
the rectangle, the height is automatically
adjusted and the text rejustified so that the
text still completely fills the rectangle; sim-
ilarly, a change in the amount of text will
cause a corresponding change in the size of
the rectangle. The constraints may be very
general; each constraint description in-
cludes a number of methods that may be
used to satisfy it. The system is also able to
satisfy some circular constraints. Although
ThingLab is not a document-processing
system, its constraint techniques could be
useful in future systems for expressing and
solving some formatting problems.

2.4.4 The Wang Word Processor

The Wang Word Processor is one of many
commercial formatting systems that be-
came available in the late 1970s. It is a self-
contained, multiuser system with a dedi-
cated processor and peripherals. Its design
stresses ease of use, achieved through an
integrated editor/formatter with a simple
set of commands. Editing operations are
applied directly to a representation of the
concrete document that is continuously dis-
played on a CRT device. Text and com-
mands are entered by single keys on a key-
board or by selection from a menu, and
hard-copy output is produced for a type-
writer terminal or a phototypesetter.

Most commands are entered by single
keystrokes, and reside in the document as
special characters. For example, indenta-
tion is accomplished by a special indenta-
tion key that inserts an "indent" command
character into the document. Other, more
global formatting commands are applied to
an entire section of the document, usually
interactively under the control of the user.
For example, the system handles pagina-
tion and hyphenation by displaying each
division point and requesting the user to
make a decision about the division to be
made. In all cases, the effects of the com-
mands are immediately visible in the con-
crete representation.

The Wang system deals with a small set
of the most useful abstract objects: words,

Computing Surveys, Vol 14, No, 8, September 1982

450 • R. Furuta, J. Scofield, and A. Shaw

phrases, paragraphs, and page headings. It
allows operations on these objects such as
hyphenation of words, centering or under-
lining of phrases, and filling or justification
of paragraphs. A number of lower level
commands are also available to allow the
construction of other objects. For example,
characters may be placed as superscripts or
subscripts, and special commands may be
used to control horizontal and vertical spac-
ing. As usual, the system places all these
objects into lines and pages.

In addition to operations that introduce
local formatting actions, there is a set of
concrete attributes associated with each
page (expressed in a template language)
that determines its global characteristics,
such as line and page length, tab settings,
and interline spacing.

The set of commands may be extended
through a general macro facility called a
glossary that allows sequences of key-
strokes to be named and called when de-
sired. This facility includes limited recur-
sion and conditional statements, and hence
is quite powerful. Glossary entries are cre-
ated just as is any document, using the full
power of the system. However, there is no
way to alter the behaviors of the built-in
commands or any notion of variables or
expressions.

Although this system offers only modest
formatting capabilities, it appears respon-
sive and easy to use. The integration of
formatting and editing may help somewhat
to make up for the lack of more sophisti-
cated features. For example, although the
system cannot automatically determine
how to hyphenate words, it can produce
hyphenations fairly painlessly by perform-
ing them interactively.

On the other hand, the commands and
objects of the system are all at a rather low
level. The lack of a higher level structure
makes it difficult to restructure the docu-
ment automatically after it has been
changed. For example, the addition of a few
new phrases may require that the entire
hyphenation process be repeated for long
sections of the document. In Section 2.6 we
describe systems that at tempt to retain the
flexibility of integrated editing and format-
ting, while also making document restruc-
turing easier by maintaining information

about the high-level structure of the docu-
ment.

2.5 Other Systems

In this section we present four interesting,
unrelated systems. KATIB/HATTAT, a
pure formatter, formats and typesets doc-
uments in Arabic script, perhaps the most
difficult alphabet to typeset. The T R I X /
RED formatter is contained within an ex-
tensive document-processing system which
allows composition of quite elaborate doc-
uments containing intermixed color graph-
ics (figures), text, and mathematical equa-
tions. IDEAL, a TROFF preprocessor, is a
language for textually describing two-di-
mensional figure objects using a system of
simultaneous equations to define the rela-
tionships between significant points in the
figure object. And GML, implemented as a
macro package for a RUNOFF-like pure
formatter, includes a high-level declarative
document specification language and many
writer's workbench tools.

2.5.1 KATIB and HATTAT

The programs KATIB and HATTAT, writ-
ten in the mid-1970s by P. MacKay of the
Department of Classics at the University of
Washington, formatted and typeset docu-
ments using the Arabic and the Roman
alphabets [MACK77]. Arabic script writing
is extraordinarily complicated. The shape
and size of each letter is highly context
sensitive, depending not only on the sur-
rounding letters but also on the entire word
in which the letter appears. Thus, while
there are only 29 separate letters in Arabic
(and no differing uppercase and lowercase),
a high-quality typesetting job requires that
more than 900 separate symbols be used.
As MacKay wrote in 1977 [MACK77]: "The
normal policy of every Orientalist journal
in North America, even if it will still consent
to print Chinese, cuneiform, or hiero-
glyphic, is to refuse all Arabic script text.
Arabic is not merely 'penalty copy,' it is
prohibite~ copy."

MacKay's system consists of two sepa-
rate programs. KATIB (which means
"writer" or "scribe" in Arabic) performs the
page-formatting functions. HATTAT
("calligrapher" in Arabic) specifies the pen-

Computing Surveys, Vol. 14, No. 3, September 1982

strokes to be used in forming the characters
which KATIB has placed on the page. Im-
portantly, it is HATTAT which determines
the actual shape of the individual charac-
ters. KATIB only estimates the size of the
characters by using the average value of
the possible forms. Clearly, formatting and
viewing have been separated in this system.
KATIB also handles details of intermixing
Arabic text (written from right to left) with
Roman text (written from left to right).
Input is entered in the Roman alphabet,
from left to right; it is not necessary to type
English or Latin text backward. Arabic let-
ters are represented phonetically. Output
from HATTAT is then processed by a pho-
totypesetter.

The formatting language is surprisingly
general, but unfortunately assembly-lan-
guage-like in appearance. The language is
based on one designed by David Packard
[PACK73] for a system which handled inter-
mixed English, Latin, and Greek text. Nu-
meric variables may be defined, assigned
values, used {along with constants) in
expressions, and tested in conditional state-
ments. Synonyms (i.e., macros), each with
a two-character name, may be defined and
invoked within the text by preceding the
name with a reserved escape character.

2 5,2 TRIX/RED

The document preparation system at Law-
rence Livermore Laboratories [BEAT79],
developed in the middle through late 1970s,
produces visible concrete documents, in
color, containing text, mathematical equa-
tions, and graphics for display on high-res-
olution output devices. The system, con-
sisting of a group of separate programs, can
be logically divided into four parts: TRIX,
which contains a distinct text editor
(TRIX/AC) and text formatter (TRIX/
RED); PCOMP, which compiles picture de-
scriptions written in the string language
PICTURE, producing low-level graphics
primitives; TVSOLIB, a set of routines al-
lowing applications programs to generate
figures for inclusion in the document; and
REDPP, which merges the various outputs
of the preceding parts into a single output
stream, directed to a specific output device.
Thus, two different languages are defined,
one for text, the other for pictures.

Document Formatting Systems * 451

The document description processed by
TRIX/RED is RUNOFF-like in appear-
ance with separate text and command lines.
In some cases, the argument for a command
may be several lines long. A special delim-
iter line is used to mark the end of a mul-
tiline argument. Mathematical equations
can be defined either in the picture lan-
guage (by drawing them) or with TRIX/
RED. When TRIX/RED is used, compo-
nents of the equation are first defined, then
combined into larger parts, and finally dis-
played. For example, a fraction could be
produced by first defining the numerator
and the denominator; then defining the
fraction to be the numerator placed over
the denominator, separated with a line; and
then finally directing that the composite
object be displayed. This is a crude form of
nested boxes. Unfortunately, the language
for specifying equations is quite cumber-
some. A limited form of nesting of environ-
ments is available for low-level typographic
directives (e.g., selecting fonts, or point
sizes). A macro facility, permitting text and
numeric arguments, is available to allow
extension of the language.

The PICTURE language, processed by
PCOMP, is a context-free language with
reserved words. The language, while not
very powerful, is able to describe a useful
range of figures. Primitive objects are lines,
circles, and other geometric forms. Their
position is specified within a coordinate
space. Other attributes, such as radius of a
circle, can also be specified. Simple text-
formatting operations are available within
the language, so text objects can be in-
cluded within a picture. All objects can be
colored, filled in, rotated about an axis, and
scaled. No control structures (e.g., iteration,
conditionals, or macros) are available. PIC-
TURE language statements can either be
embedded in the file processed by TRIX/
RED or maintained separately. However,
since TRIX/RED and PCOMP are sepa-
rate programs, integration of the output
from the two is awkward: the user of the
system must specify to TRIX/RED how
much space the picture will take and cannot
use TRIX/RED commands within PIC-
TURE language input.

Figures and drawings can also be gener-
ated by applications programs through calls

Computing Surveys, VoL 14, No. 3, September 1982

452 • R. Furuta, J. Scofield, and A. Shaw

to routines in TV80LIB. While PCOMP is
not interactive, some of these applications
programs are, so interactive picture editing
is possible.

The final part of the package, REDPP,
merges the output from TRIX/RED,
PCOMP, and TV80LIB routines, producing
an output file for display on a particular
device. Formatting and viewing have been
separated in this system. T R I X / R E D per-
forms the page formatting, producing a rep-
resentation which is device independent.
R E D P P performs the viewing function.

Again, as with UNIX, the organization of
this system into separate programs has
both advantages and disadvantages. We
discuss these further in Section 3.7.2. Still,
this is an ambitious system, certainly one
of the few to treat characters as picture
objects which may be colored, rotated, and
scaled.

2.5.3 IDEAL

C. Van Wyk has developed an interesting
one-dimensional (string) language for spec-
ifying line drawings in a document
[VANW80, VANW81]. In this language, an
object class is defined in two parts, a de-
clarative section and an instruction section.
The declarations specify the relations, or
constraints, that must hold among the
points of the object. These relations lead to
a system of simultaneous equations that
the points must satisfy. The instruction
section of the object definition gives in-
structions for connecting points and for
drawing other objects by invoking or calling
them. When an object is invoked, addi-
tional relations, equations, and instructions
may be inserted in the call. These
"parameters" further specify the equations
and must result in a unique solution for the
point variables. At this stage, the instruc-
tion part may be executed with the solution
points, drawing, for example, points, lines,
text, circles, and rectangles.

The language has been implemented in
C as a TROFF preprocessor called IDEAL.
While it requires perhaps too much math-
ematical sophistication for general use, the
language may be practical with an interac-
tive or less mathematical user interface. It
is significant chiefly because of its methods
for declaring and solving constraint equa-
tions.

Computing Surveys, Vol. 14, No 3, September 1982

2.5.4 GML

The Generalized Markup Language (GML)
was developed by C. F. Goldfarb of IBM
over a period of years in the early to mid-
1970s. GML first became available for gen-
eral use in 1978 and is now part of IBM's
Document Composition Facility [IBM80a,
IBM80b, GoLC81a, GoLC81b).

GML is a pure formatter, implemented
using macros written for the SCRIPT for-
matter. SCRIPT is a RUNOFF-like pure
formatter first developed in the late 1960s
[MADN68, IBM80c]. GML provides high-
level declarative specifications, called tags,
which are associated with points in the
document text. Figure 20 contains more
information about the specification lan-
guage. Notice that the commands of the
underlying implementation language
(SCRIPT) remain available for use.

GML also incorporates many desirable
writer's workbench features, such as auto-
matic numbering of list elements, chapters,
and footnotes; symbolic referencing to page
numbers or other numbers associated with
parts of the document; and facilities for
collecting and formatting information to be
included in a table of contents and in an
index.

2.6 Some Current Developments

We wish to present three experimental sys-
tems still under development and not yet
completely specified to conclude our dis-
cussion of representative and seminal sys-
tems. All combine the idea of high-level
declarative object specification, taken from
some of the recent pure formatters, with
the idea of continuous viewing of the visible
concrete document, as in some of the inte-
grated editor/formatters.

2.6.1 JANUS

JANUS [CHAM81, CHAM82] is an inte-
grated editor/formatter under development
at the IBM Research Laboratory in San
Jose. JANUS uses a work station with key-
board, joystick, and two screens. One screen
is used to show the specification of a docu-
ment in a declarative specification lan-
guage; the other shows the corresponding
page of the visible concrete document as it
would appear if printed. The two screens

Document Formatting Systems • 453

:frontm.
: t i t lep .
.se t l = 'Document Format t ing Systems: Survey, Concepts, and Issues '
.se ea = 'Extended A b s t r a c t '
: t i t l e . & t l . [& e a .] : f n r e f r e f i d = f u n d s .
:fn id-funds.
This research was suppor ted in pa r t by the ~ a t i o n a l Science Foundat ion
under g ran t number MCS-7826285.
:efn.
: a u t h o r . A l a n Shaw
:au tho r . R ichard Furu ta
:author.Jeffrey Scofleld
:address.
: a l i n e . Department o f Computer Science
: a l i n e . U n i v e r s i t y o f Washington
: a l i n e . S e a t t l e , Washington g8195, U.S.A.
:eaddress.
: e t i t l e p .
: a b s t r a c t .
:p. Fo rmat t i ng , the f i n a l pa r t o f the document p r e p a r a t i o n process, ts
concerned w i t h the phys i ca l l a y o u t o f a document f o r hard and s o f t
copy media Our aims are to c h a r a c t e r i z e the f o r m a t t i n g problem
and i t s r e l a t i o n to o the r aspects o f document p rocess ing , to eva lua te
severa l r e p r e s e n t a t i v e and seminal systems, and to desc r ibe some
issues and problems r e l e v a n t to f u t u r e systems.
:body.
:hZ.The Format t ing Problem
:p. In o rder to d iscuss f o rma t t e r s and t h e i r f u n c t i o n s and to d i s t i n g u i s h
f o r m a t t i n g from o the r aspects o f document p r e p a r a t i o n , i t i s
conven ien t to use an : h p l . o b j e c t : e h p l . model o f documents [Shaw 80],
somewhat analogous to t h a t in programming languages.
:p.A document is an ob jec t composed of a h i e r a r c h y o f more p r i m i t i v e
ob jec ts
:h2.Representative and Seminal Systems
:h3.Pure Formatters
:p.Some t y p i c a l f i r s t gene ra t i on f o r m a t t e r s . . .

Figure 20. GML specification to produce the sectioned document of Figure 16. The figure presents
the same document segment as that given m Figures 8 and 16. This GML specification uses the
"starter set" tags. Other sets would provide different tags. Tags begin with a colon and end with a
period. They cons]st of a tag name followed by an optional list of attribute-value pairs. Attributes
either provide additional information (e.g., a short form of the title) or provide formatting parameters.
A text argument follows the period. Pairs of tags which are defmed as delimiting a multiline argument
are flagged with "." and ":e" respectively.

This document description consists of two major parts: the front matter, beginning with the
":frontm." tag, and the body, beginning with the ":body." tag. The body and the front matter are
formatted differently. The front matter contains a title page which is delimited by ":tltlep." and
":etitlep." tags. The SCRIPT ".se" command, used in the third and fourth lines of the description,
associates the document text to the right of the "=" with the symbol name to the left. "&tl." retrieves
the string associated with the symbol "tl". Note that the permd in "&tl." m part of the specification
and not part of the text. Symbols are used in this example since the argument to the ":title." tag m *
fit onto a single hne. The '"fnref refid = funds." tag retrieves the number of the identified footnc.. ,
here the one tagged with ":fn id = funds." which contains an id attribute corresponding to that used
in the footnote reference. The actual implementation of the "starter set" tags prohibits inclusion of
footnotes within the front matter, although the implementation could be changed to permit them.
":p." tags a paragraph. ":h2." and ":h3.", used m the body, specify text for section and subsection
headings.

Computing Surveys, Vol. 14, No. 3, September 1982

454 * R. Furuta, J. Scofield, and A. Shaw

can be thought of as being two separate
fixed-size windows on different representa-
tions of the document. Editing is performed
on the document description rather than
on the representation of the final document.
Published material does not indicate how
JANUS will aid the correlation of infor-
mation on the two screens. Correlation may
be awkward unless the system's user inter-
face is carefully designed.

The description language is closely re-
lated to GML, associating high-level, de-
clarative tags with particular locations in
the document. The current prototype im-
plementation uses PASCAL language pro-
cedures to define new tags.

A JANUS document is specified as a
collection of galleys. One galley might con-
tain document text and another might con-
tain footnote text. Points in different gal-
leys are marked as corresponding to each
other. This allows a footnote, for example,
to be correlated with its reference in the
body of the text. The correlation is used in
placing material from different galleys on
the same physical page. The actual place-
ment of galley material onto physical pages
is done using information contained inpage
templates. There may be a number of page
templates associated with any particular
document, for example, a title page tem-
plate, a body page template, and a template
for the appendixes. Each template indicates
where the material from each of the galleys
contributing to the page may be placed, and
specifies certain "fixtures" such as page
headings.

JANUS also allows the user to point to
a particular object on the page (say, a fig-
ure) and drag it to a new location. The rest
of the page is reformatted accordingly. This
feature permits local overriding of place-
ment decisions made by the formatter and
is implemented by creating a special page
template to represent the manually altered
page. Consequently, a manually reposi-
tioned item on a page will remain in its new
location, even if surrounding material is
reformatted. Further discussion of issues
raised by this feature is in Section 3.5.1.

2.6.2 Etude

Etude [GOOD81, HAMM81a, HAMM81b,
ILSO80], an integrated editor/formatter

being implemented at M.I.T., uses a bit-
mapped terminal. A Scribe-like model of
document structure is combined with an
internal model based on the boxes and glue
of TEX. A document page consists of a
collection of page spaces. Objects placed in
these page spaces are obtained from one or
more subdocuments, a concept closely re-
sembling JANUS galleys. As in Scribe,
Etude document type definitions are col-
lected into a database. The editing language
uses English-like commands. Special keys
are associated with the more commonly
used commands. A help facility is provided
and a menu of commands is produced on
request.

The document is displayed using four
windows. One window displays paginated
text in final form. Associated with this win-
dow is another window containing format
information. This information window is
placed at the margin of the text window.
The displayed format information corre-
sponds to the adjacent line in the text win-
dow. The third window serves as an inter-
action window, displaying prompts and
echoing typed input. The fourth window
shows the system's status.

2.6.3 PEN

PEN [ALLE81], under development at Yale
University, presents another possible orga-
nization for an integrated editor/formatter.
It differs from JANUS and Etude in its
scope and goals. Rather than build a com-
plete prototype of a future system, PEN
presents a smaller experimental test bed.
Like Etude, PEN includes a Scribe-like hi-
erarchical model to describe the abstract
structure of a document and a TEX-like
boxes and glue model to describe the rela-
tionships between concrete objects. Unlike
JANUS and Etude, PEN' s document
model does not incorporate pagination,
thus allowing for a simpler formulation.

One of the interesting aspects about a
PEN document is its tree representation.
For textual material, the internal modes of
this tree represent a hierarchy of objects
within the document, for example, chapter,
section, and paragraph. Internal nodes are
instances of a template for the object they
represent. Further, each node's type in-

Computing Surveys, VoL 14, No. 3, September 1982

cludes a specification of the type and num-
ber of those nodes which can be its children,
thus placing constraints on the legal rela-
tionships among objects in the tree. Leaves
of the tree contain primitive objects. In the
case of text, these primitive objects are
expressed using the boxes and glue model.
A Smalltalk-like model of object invocation
is used. Editing and formatting operations
on a node are carried out by asking the
node to perform the operation. It is the
node's responsibility to perform the opera-
tion in an appropriate fashion; the action
associated with a particular operation var-
ies depending on the node to which the
operation is applied.

One portion of the formatting problem
which has been investigated in more detail
is the specification of mathematical for-
mulas. PEN includes a specification lan-
guage called PEN-MATH. Since PEN-
MATH is based on APL, it allows concise
specification of mathematical structures
such as arrays and sequences. PEN views
the objects described by a PEN-MATH
specification as being entirely contained
within a leaf of the tree (these objects are
not directly incorporated into PEN's object
hierarchy). However, PEN-MATH extends
PEN's object-oriented structure. In partic-
ular, parameters (called looks) may be
passed to an operator, altering the way in
which the operator displays itself and its
operands. Thus the specification for a mul-
tiplied by b, a × b, may be displayed as a
x b, a . b, or ab depending on the param-
eters passed to the operator.

3. ISSUES AND CONCEPTS

The previous sections have identified a
number of issues and concepts that suggest
ideas for further research and that should
also be of use in the design and evaluation
of formatting systems.

3.1 Document and Processing Models

A formatter is easier to understand and to
design if it is based on a consistent model
of documents and of the operations used in
processing them. Current systems offer
some interesting and useful models, but
much development remains to be done.

Document Formatting Systems • 455

3. 1.1 Document Models

Because the notion of classes and instances
is a powerful means of characterizing sets
of related objects, a document model like
the class/instance model described in Sec-
tion 1.1 seems to be a natural choice. A
further advantage is that this is an inte-
grated model of abstract and concrete
documents. Existing models have tended
to be either concrete or abstract, but not
both.

3.1.1.1 Abstract Models. The underlying
form of the model presented in Section 1.1
is tree structured, as may be seen in the
example class (ExtendedAbstract). How-
ever, the notion of ordered and unordered
subtrees allows a flexibility of expression
not present in strictly tree-structured
models such as those of the XS-1 system
[BURK80].

One limitation of any tree-structured
model is that it cannot directly represent
all the necessary relations among the ob-
jects in documents, since some violate the
nesting restrictions of trees. Such relations
are rather common, since parts of a docu-
ment very often refer to other parts by
name, by section number, or by page num-
ber.

A model of abstract documents that does
not have this limitation is a generalized
graph structure, such as the one used in the
Hypertext Editing System (HES) [CARM69,
rAND71], in the NLS system [ENGE68,
ENGE73, VAND71], and in PIE [GoLIS0,
GOLI81]. By assigning particular structural
meanings to the links in the graph, this
model can be used to represent any rela-
tions among the objects of a document. For
example, the relation between a footnote
reference in the main text and the footnote
to which it refers may be modeled in this
way. This model could also be used to rep-
resent desired spatial relations among con-
crete objects.

Since trees are more comprehensible
than general graphs, and since many docu-
ments are primarily tree structured, it may
be more desirable to use a tree-structured
model and to include general relations
among objects as subsidiary information.
For example, Scribe allows references be-
tween objects, although they are not di-

Computing Surveys, Vol. 14, No. 3, September 1982

456 • R. Furuta, J. Scofield, and A. Shaw

rectly included in Scribe's essentially tree-
structured model.

It should be noted that neither HES, XS-
1, nor PIE is chiefly a formatting system.
In fact, no formatting system today offers
a sufficiently explicit model for abstract
documents. Scribe's notion of "document
types" and PEN's tree structure come clos-
est to this goal.

3.1.1.2 Concrete Models. A model for
concrete documents must deal with two-
dimensional components of the page. In
general, the details of particular concrete
primitives, such as characters, are hidden
by considering them to reside inside simpler
figures, such as rectangles or parallelo-
grams. The model developed for EQN, with
nested and juxtaposed rectangular boxes,
has proved simple and very natural. The
more refined model used in TEX, which
places glue between the boxes, is the most
complete model for concrete documents
that has been implemented and tested.

Current experimental systems, such as
Etude, JANUS, and PEN, may help to
determine whether TEX's model can be
made even more useful by being integrated
into a higher level model for concrete doc-
uments. Etude and JANUS attempt to pro-
vide a high-level concrete document that
consists of a set of related galleys to be
placed into definable concrete page spaces.
All three systems attempt to integrate this
concrete model with a model for abstract
documents.

3.1.2 Processing Models

Models for the processing of documents are
rather diverse. The traditional processing
method that was used in all early format-
ters accumulates characters into lines and
pages, and takes appropriate action when
these spaces threaten to overflow; these
actions are taken immediately, without
looking ahead into the document. This
model has proved far too limited to offer
flexible control over the appearance of the
final document, largely because of this lack
of look-ahead.

The syntax-driven model of the format-
ting process is based on the parsing of a
context-free language. This model has been
used for two slightly different purposes. In
the first case, the syntax is that of an al-
Computing Surveys, Vol 14, No. 3, September 1982

ready existing language (in general, a pro-
gramming language). This approach has
been used to reformat programs into a more
legible form, and has the characteristic that
the input and output are syntactically iden-
tical strings. In the second case, the syntax
is that of a language used to describe the
objects of the document, and the resulting
concrete output is very different from its
input description. This approach is used in
EQN and in the math mode of TEX. Al-
though syntax-driven techniques are very
powerful when applied to languages with
easily described grammars, "~ey cannot
readily be applied to textual objects such as
paragraphs, or other objects with less reg-
ular structure.

The processing model used in ~ for
paragraph layout, described in Section
2.3.3, is the most satisfactory to date. How-
ever, since the use of penalty values to
control the concrete appearance of objects
is not based on a direct statement of the
desired appearance of the document, the
choice of penalty values appears to be a
task requiring a fair amount of experience.
A more direct way of specifying the desired
appearance would be even more useful.

The use of constraints to specify desired
properties of objects, as is done in IDEAL
and in ThingLab, leads to a processing
model in which the system attempts to
satisfy all constraints simultaneously. The
equation-solving technique used in IDEAL
is quite powerful, although rather stringent
restrictions must be placed on the types of
equations allowed. Further, this technique
is clearly limited to problem domains that
are essentially numeric. The more flexible
technique used in ThingLab includes equa-
tion solving as a particular case, but is much
more general and may be used with con-
straints that are not numeric.

The development of document and pro-
cessing models must be undertaken to-
gether, since they interact very strongly.
For example, an attractive document model
may be rejected if it cannot lead to good
models for the processing of the document.

3.2 Formatting Functions

3.2.1 Kinds of Objects

Formatters must have facilities for dealing
with many kinds of objects. Current sys-

terns provide a variety of textual objects, a
few systems offer mathematical and tabular
objects, and fewer yet offer pictorial ob-
jects.

There are many other useful specialized
object types that need to be formatted, such
as musical notation, chemical diagrams,
chess positions, and crossword puzzle dia-
grams. In each case, it should be possible
to take advantage of the structure of the
objects to simplify their specification. One
challenge for future general-purpose for-
matters will be to provide such new and
useful object types, to allow users to create
their own object types, and to define a
uniform framework in which objects of all
types may be used.

3.2.2 Composition of Oblects

Documents consist of simple objects com-
bined into more complex ones. For the most
part, this structuring is conveniently done
at the abstract level. That is, the user
should describe the abstract object com-
position of the document, and the formatter
should transform this structured abstract
object into a structured concrete one.

There are two levels of definition that
may be used in the construction of abstract
documents. The first is the creation of new
classes and subclasses. A user may want to
define an entirely new document class such
as "business letter," or may want to create
a subclass by further specifying an existing
class. An example of a subclass of the
"business letter" class would be a "form
letter" class with a fixed body. Instances of
"form letter" would need to supply only a
recipient, as the body would be supplied by
the subclass. This notion of classes and
subclasses is similar to that of Smalltalk.

The creation of new classes and sub-
classes is not allowed in all systems, and in
systems where even a partial facility is pro-
vided (Scribe, TEX, TROFF), it is often so
difficult that it is not intended for the casual
user. In addition, few systems provide a
mechanism for encapsulating the details of
new classes. In many cases, the behavior of
classes is controlled by global variables that
may be inadvertently changed, either di-
rectly or through the use of conflicting low-
level commands. Since the creation of new
classes and subclasses is often the easiest

Document Formatting Systems • 457

and most natural way for a user to specify
a desired document (or, even more so, a
series of similar documents), ways of sim-
plifying this task should be developed. This
topic is discussed further in Section 3.3.3.

The second level of definition used in the
construction of abstract documents is the
definition of instances of an already defined
class, for example, the definition of a par-
ticular paragraph and its body. All format-
ters allow this sort of definition, although it
is not always thought of in the terms used
here.

Structural information about classes of
objects can be used by formatters to govern
the composition of abstract objects and to
simplify the user's task. Class information
can be used, for example, to ensure that
objects are correctly formed or, in interac-
tive systems, to suggest prompts for parts
of the structure to be entered next. Classes
can also supply default values for attributes
of their instances. This can substantially
simplify the creation of new objects, allow-
ing the user to concentrate on only the
aspects of objects that distinguish them
from the default for the class.

Some limited structural checking is per-
formed by Scribe, which defines different
kinds of object substructures depending on
the type (i.e., the class) of the document
being constructed. The PEN system has
formalized this notion and performs even
stronger checking. No other modern system
offers functions of this sort. In TROFF, for
example, abstract objects are most often
bracketed by pairs of opening and closing
commands, but TROFF does not check
that such opening and closing brackets are
properly nested, or that the enclosed ma-
terial is of the correct type.

3.2.3 Abstract-to-Concrete Mappings

All present formatting systems severely
limit the ways in which abstract-to-con-
crete mappings are performed for struc-
tured abstract objects. For example, most
systems simply change a sequence of ab-
stract objects into a corresponding se-
quence of concrete objects, and provide no
control over the orderings of the objects
and of their parts. This requires the user to
specify completely the ordering of objects
{such as bibliographic references), when it

Computing Surveys, Vol. 14, No. 3, September 1982

458 • R. Furuta, J. Scofield, and A. Shaw

may be more desirable to allow the format-
ter to choose the ordering. Recent systems
have offered more control, but this is usu-
ally limited to a few special cases such as
figures that may be reordered with respect
to the surrounding text.

TROFF and TEX allow users to define
new abstract objects, while TBL and EQN
support a large number of built-in abstract
objects. However, because none of these
systems have a general way for users to
express concrete attributes of objects, much
of the desired control over their concrete
representations must be built into their im-
plementations from the beginning.

Scribe has more flexible mechanisms
whereby the concrete attributes of its ab-
stract objects, or "environments," may be
modified at any time, and this modification
may be local (to only a single instance of
an object), or global (applying to all objects
of the class). A limitation of this system is
that it relies on the existence of a fixed
universe of concrete attributes; there is no
mechanism provided for extending the set
of attributes.

3.2.4. Relations among Concrete Objects

Formatters should provide a means for ex-
pressing relations among concrete objects.
For example, it should be possible to align
designated parts of the concrete represen-
tation of nearby objects, to constrain the
allowed distances between them (imposing
either a minimum or a maximum distance,
or both), or to specify objects whose size
depends on the placement of nearby ob-
jects.

Only one system, TEX, permits con-
straints on distances between all types of
objects, accomplished by means of glue
specifications. Since there is usually glue
between all pairs of adjacent objects, a very
fine degree of control over the distances
between them is possible. However, this
scheme does not work for specifying dis-
tances between objects that are not directly
adjacent, for specifying alignments of ob-
jects, or for making sizes of objects depend
on other objects.

One result of the lack of a means to
express relations between objects is that all
recent formatters contain a number of
rather low-level functions to allow concrete

specifications. These facilities are similar to
the strictly concrete control that was of-
fered by earlier formatters such as FOR-
MAT and RUNOFF. For example, EQN
and TEX have many types of "space" char-
acters that must be used to move parts of
equations around when the provided struc-
turing methods are not adequate. For the
same reason, Scribe has low-level features
for tabulation and a number of other posi-
tioning commands.

Controlling the concrete representations
by low-level spacing commands is rather
unsatisfactory for two reasons. First, it
causes the user to be concerned with very
low-level details when in fact often only
high-level notions of alignment are in-
volved. Second, use of these low-level spac-
ing commands makes it very hard to change
the document: a small change in one place
will often require that all of the spaces be
recalibrated. If the alignment constraints
could be stated directly, this recalibration
would not be necessary.

Another result is that common kinds of
control over relations must often be built
into formatters as special cases. For exam-
ple, EQN and TEX provide special-purpose
"alignment" operators; these allow desig-
nated parts of adjacent equations to be
aligned but cannot be used to solve general
two-dimensional alignment problems. As
another example, both ~ and Scribe of-
fer special predefined operations for dealing
with footnotes, which require control over
the maximum distance between concrete
objects to guarantee that the footnote will
be on the same page as its reference.

In each case these concrete functions vi-
olate the goal that the user be freed from
low-level details. In many ways, this is sim-
ilar to the dilemma faced in the design of
higher level languages, where the at tempt
to eliminate low-level details restricts the
programmer's control.

Two methods of solving this dilemma are
found in recent systems designed for the
formatting of graphics; these systems offer
much greater flexibility in expressing rela-
tions among objects. The first of these, the
PIC language, provides predefined names
for the key parts of objects and ways of
specifying how the named parts of objects
are to be spatially related. To some extent,

Computing Surveys, VoL 14, No. 3, September 1982

it also allows the size of an object to depend
on its relation to other objects.

The means for specifying these relations
is very simple: objects are described in a
sequence, and a point on each new object
is placed either at an absolute location or
in a described relationship to a point on an
existing object. This simplicity also limits
the complexity of relations that may be
represented. No cyclic relations may be rep-
resented, and, with the exception of arc
definitions, it is not possible to represent a
relation between one object and several
others. This structure may thus be some-
what cumbersome for very complex rela-
tions.

The IDEAL system allows even more
flexible relations among graphical objects.
In this system, relations among objects are
represented by equations involving points
on the objects, expressed as complex num-
bers. The system solves these equations to
determine the actual points to be used. In
this way, any desired relations among the
points of the objects may be expressed,
provided that the resulting equations admit
a solution. However, a possible weakness is
that equations are not always a natural
means for representing desired relations.

Both of these systems have the drawback
that relations among objects must be com-
pletely specified, although the use of de-
faults helps to reduce the problem. How-
ever, neither system provides a way of ex-
pressing general constraints on the concrete
appearance of objects and allowing the sys-
tem to choose the appearance that best
satisfies these constraints. For example, the
user cannot specify a range of allowable
values instead of a single value. Experi-
ments with methods for specifying and sat-
isfying more general constraints, such as
those of ThingLab, may provide insight
into more flexible ways of expressing rela-
tions.

If formatters had better facilities for com-
posing objects and more control over their
concrete forms and relations, the number
of primitive predefined objects could be
decreased. For example, it would not be
necessary to include a special kind of object,
such as a figure, that may be reordered with
respect to surrounding text, or a special
command for aligning equal signs in adja-
cent equations. Formatters could provide

Document Formatting Systems • 459

only characters and line segments as prim-
itives, and all of the normal objects could
be built from them.

3.2.5 Page Spaces

Many characteristics of documents are best
described as properties of the page spaces
into which the document objects are placed,
rather than as properties of the objects
themselves. For example, pages are most
often built from nested and juxtaposed
spaces for page headers, footnotes, figures,
and so forth. However, few formatters per-
mit much control over the page spaces oc-
cupied by concrete objects; most do not
allow these spaces to be either nested or
juxtaposed, and require them to have a
bounded rectangular shape. The lack of a
general means for specifying such struc-
tures means that they must be treated awk-
wardly, as properties of document objects
or as special cases.

Further, even more complex shapes are
often required. For example, a page may be
shaped like a rectangle with a smaller rec-
tangle removed; the surrounding rectangle
may contain text while the removed rectan-
gle can be used for a figure. Even three-
dimensional spaces could be considered--
for example, layouts for transparent over-
lays could be designed in this manner. As
the layout of pages becomes more and more
complex, the task may become too compli-
cated to be handled conveniently by a pure
formatter. An integrated system may be
needed, so that the user may see immedi-
ately the results of changes. The lack of
sufficient control over page layout has
meant that general-purpose formatters are
not used for document types, such as mag-
azines and newspapers, for which this con-
trol is essential.

Two of the experimental systems de-
scribed above, JANUS and Etude, have
proposed more flexible methods for speci-
fying the nesting of page spaces; further
research should at tempt to provide even
more control. If this research is successful,
general-purpose formatters could be used
for a number of layout problems for which
more specialized programs have tradition-
ally been used.

From the preceding discussion of objects,
composition, abstract-to-concrete mappings,

Computing Surveys, Vol. 14, No. 3, September 1982

460 * R. Furuta, J. Scofield, and A. Shaw

relations, and page spaces, it is clear that
even current formatters are very limited in
the formatting functions that they offer.
Some of the limitations are historical and
are caused by former restrictions on output
devices. Some are due to the lack of effi-
cient algorithms for implementing the de-
sired functions. Others, such as inadequate
control over relations among concrete ob-
jects or the inability to format objects into
complex page spaces, arise because it has
proved difficult to design a language for
expressing the desired functions.

3.3 Formatting Language

The usefulness of a formatting system is
very dependent upon the formatting lan-
guage used to specify documents. The doc-
ument specification language must be able
to express the structure and content of
many different kinds of objects. Some
means of controlling the abstract-to-con-
crete mapping of the objects is also re-
quired. Finally, the language may also allow
the user to create new classes of objects.

Few systems give an explicit description
of their formatting language. With the ex-
ception of EQN, no formatting l~.nguage
has even included its grammar in its pub-
lished description, as do most modern pro-
gramming languages. It is therefore often
very difficult to determine whether an un-
desired feature of the concrete document is
the result of an error in the formatting
system or due to a misunderstanding of the
syntax or semantics of the formatting lan-
guage. In addition, the absence of a precise
semantic description often makes it impos-
sible to determine the effects of combina-
tions of operations provided by the lan-
guage.

Future formatting systems should pro-
vide more precise descriptions of the syntax
and semantics of their formatting language.
There is a great deal of benefit to be derived
from the explicit use of a rich context-free
language like that of EQN; such a language
ensures great flexibility and internal con-
sistency. Many other benefits of this ap-
proach are discussed in the original paper
on EQN [KsRs75].

Since formatting systems are used by a
wider variety of people than conventional

programming systems, it is important that
the language be easy to use and to under-
stand. It is also important, however, that
the language be capable of describing any
desired document. Much of the difficulty of
designing a formatting language is caused
by the conflict between these two goals.

3.3.1 Declarative Languages

One approach that has been used to make
formatting languages easier to understand
is to make them declarative rather than
procedural. Since documents are essentially
passive in nature and themselves perform
no processing, this is a natural approach. It
also allows the formatting process to be
understood without a knowledge of pro-
gramming concepts. With a declarative lan-
guage, the document is viewed as a series
of declarations that elaborate its structure
and content. The abstract-to-concrete map-
ping is controlled by associating "prop-
erties" with the objects.

The power of a declarative language can
be increased by using templates for describ-
ing parameterized structures, that is, struc-
tures of which part is constant and part is
supplied later as an argument. Templates
are a very natural means of specification,
since the template language can be de-
signed so that the template graphically re-
sembles the class of structures that it en-
codes. Templates represent a natural
method for extending declarative lan-
guages; in a well-designed language, named
templates can be used in the same manner
as structures that are built into the lan-
guage.

Among the pure formatters, the declara-
tive approach is taken most notably by
Scribe, where concrete properties associ-
ated with text are defined by environments.
Default properties supplied by Scribe's da-
tabase may be supplemented or overridden
in each case by the user. Scribe uses tem-
plates in some special cases, such as the
representation of formats for dates and for
numerical quantities, but does not really
allow the language to be extended by means
of templates.

Some integrated editor/formatters also
offer what is essentially a declarative lan-
guage. For example, both Bravo and Star
define the appearance of objects by associ-

Computing Surveys, Vol 14, No. 3, September 1982

ating low-level properties with them. As
described in Section 2.4.2, Bravo is conven-
tionally used with a set of template files
{forms) that simplify the process of creating
new documents. A very similar facility is
offered by PEN, where the templates are
called "default instances" of objects.

The power and naturalness of templates
is also demonstrated in both ~ and
UNIX. Although their languages are chiefly
procedural, both systems use a template
language to specify table formats.

3.3.2 Procedural Languages

Many systems treat the formatting process
as a series of operations to be applied to
objects, much in the style of a traditional
programming language. This has the ad-
vantage that the formatting language can
be made extremely powerful. The inclusion
in the language of only a small number of
programming constructs can help to ensure
that a user will be able to perform any
function that is desired, since the format-
ting language can then presumably be used
to calculate any computable function at all.
This approach does have the corresponding
disadvantage that a user unfamiliar with
programming concepts will be unable to
understand the more advanced features of
the system.

In a purely functional system, the ab-
stract-to-concrete mapping would be con-
trolled only by the operations that were
performed on the objects. In most systems,
however, there is also a set of global vari-
ables that control this mapping. In addition,
there is usually some way for particular
values of the global variables to be associ-
ated with particular objects by entering a
nested scope for the duration of the pro-
cessing of the objects. Upon leaving the
scope, the old values of the global variables
are restored. This is the method used by
PUB, TROFF, and TEX.

A procedural formatting language also
allows the language itself to be extended
easily through the definition of macros or
procedures. If properly designed, the lan-
guage can permit the extended operations
to be used exactly as the built-in operations.
In PUB, TROFF, and TEX, the user can
define macros including recursion and con-
ditional tests. PUB has an especially large

Document Formatting Systems ° 461

number of programming constructs, includ-
ing procedures and iteration in its later
versions. These ensure that a user will be
able to produce almost any desired docu-
ment.

Formatters could benefit from even more
ideas from conventional programming lan-
guages. Much could be gained by allowing
variables and expressions of many types,
including both traditional types such as
integers and strings, and also abstract and
concrete objects. In addition, such format-
ters should offer the kinds of debugging
facilities that are provided by programming
language systems. This is necessary be-
cause the increased power of procedural
languages makes it harder to diagnose their
failures.

As shown by TEX and UNIX, it is pos-
sible for a system to be a mixture of both
declarative and procedural languages. One
scheme, proposed for the JANUS system,
provides a declarative language to describe
particular documents, and a procedural lan-
guage to define classes of documents by
implementing the constructs of this declar-
ative language. Many other organizations
are possible. Again, there are similarities to
the design of higher level programming lan-
guages, which most often consist of a mix-
ture of declarations and executable state-
ments.

3.3.3 Class Definitions

There are a variety of mechanisms for de-
fining new classes. In a declarative language
this may be done either, as in PEN, by
using a template to represent a class of
objects by means of a single, partially spec-
ified object, or, as in Scribe, by the simpler
process of associating an environment
name with a set of concrete properties.

In a procedural language, this may be
done either by explicitly declaring classes
as in SIMULA [BIRT79] or Smalltalk, or, as
in most current formatting systems, by the
simpler method of associating a procedure
or macro with the new class. This procedure
or macro is used to produce instances of the
new class by calling or invoking it with
appropriate arguments, most often a stream
of text. The more explicit class/instance
method has greater promise, however, since
it permits more control over objects. For
example, this method could be used to en-

Computing Surveys, Vol. 14, No. 3, September 1982

462 • R. Furuta, J. Scofield, and A. Shaw

sure that objects of a class were correctly
structured.

Some systems, such as Scribe and
JANUS, have separated the language used
to describe classes from that used to de-
scribe instances of the classes. In both
cases, this is done so that the general user
need not be concerned with class definition.
However, it also has the drawback that it
may tend to draw too sharp a distinction
between a class of objects and a single
object. Usually there is a spectrum of ob-
jects in use, from a very generic class of
"documents" at the top, through a number
of more and more highly specified objects
with fairly constant formats (such as
"technical reports" or "newletters"), down
to particular instances of documents (such
as "Technical Report #37") at the most
specific level. As described in Section 3.2.2,
it is often as natural for a user to want to
create a new subclass (a more specified
form of an existing class) as it is to want to
create a particular instance of a document.
There is a danger, then, that too great a
distinction between the languages used
to describe classes and instances would
make it difficult to create natural and eco-
nomical descriptions of such a hierarchy of
objects.

3.4 Integration of Objects

Systems that deal with a large number of
different kinds of objects have often failed
to provide a uniform framework for han-
dling them. For example, the UNIX system
offers separate languages and programs for
its different clases of objects. It is worth
investigating the advantages of a single lan-
guage and set of commands for all these
classes.

The UNIX system also places some limi-
tations on the ways objects may be nested.
For example, it is not possible to include
one table as an entry in another, or to
include graphical objects within a mathe-
matical one. This is caused partly by the
fact that the formatting processes commu-
nicate by one-directional pipes and are de-
signed so that objects of one kind are all
processed at once by a single program. This
means that, for example, the results of for-
matting a table containing mathematics
cannot easily be used as input to the for-

matting process for another mathematical
object.

As another example, ~ integrates the
formatting of textual, tabular, and mathe-
matical objects into a single language. How-
ever, the integration is not complete be-
cause there are separate "modes" for han-
dling text and mathematics. TEX thus fails
to provide a single set of commands that is
applicable to all objects.

Future research should attempt to find a
single set of primitive operations (or prop-
erties, for declarative systems) that may be
used in the creation and manipulation (or
description) of objects of all types. This
would ensure that objects might be nested
in arbitrary combinations, and would re-
duce the amount of detail present in a
formatting system based on these primitive
operations. The Star system uses an espe-
cially small set of universal commands, and
Smalltalk and its applications use a single
mechanism for applying operations to all
objects. These systems are thus rich sources
of ideas for integrating objects.

3.5 Integration of Document-Processing
Functions

In addition to integrating different types of
objects into a single framework, systems
should also attempt to integrate the many
different functions performed in the prep-
aration of a document. Systems in which
these functions are not integrated require
the use of a large number of unrelated
environments. For example, one environ-
ment may be an editor, another may be the
command interpreter of an operating or
filing system, and a third may be the for-
matting system itself. Different commands
and operations are used in each environ-
ment, and even the styles of interaction
may be different for the different environ-
ments. There is usually a fairly large
amount of mental effort and time required
to move from one environment to another.

3.5.1 Integrahon of Echhng and Formatting

The greatest gains in this area come from
the integration of editing and formatting,
as in the systems described in Section 2.4.
In a system where these functions are not
integrated, the document preparation pro-

Computing Surveys, Vol. 14, No. 3, September 1982

cess is a cyclic activity of refining the doc-
ument description, generating the resulting
document, and finding flaws in the concrete
appearance of the document. This process
is repeated until the concrete appearance is
satisfactory. An integrated editor/format-
ter reduces the effort of this task by making
the generation of the concrete document a
part of a single document creation proce-
dure. In simple systems, the current con-
crete appearance of the document may be
viewed on request.

This process may be carried even further,
so that the formatting and viewing func-
tions are carried out continuously, and the
user may be considered to be applying op-
erations directly to the finished document.
This immediacy allows the document to be
manipulated partly through the physically
intuitive notions of moving objects around
on a two-dimensional surface. It also re-
duces the amount of detail that a user must
remember, since it is no longer necessary to
be able to "predict" the system's actions
when it is given a set of commands. Instead,
the system's actions become immediately
apparent.

The drawback of existing integrated edi-
tor/formatters is that the high-level struc-
ture of the document is not represented.
Since the user manipulates only the con-
crete document, its abstract structure is
obscured. This makes it difficult not only
to manipulate logical entities as a unit, but
also to generate several versions of the
same document according to different for-
matting conventions.

Two experimental systems, JANUS and
Etude, attempt to provide concrete and
abstract information simultaneously. In
these systems, the user may edit both the
abstract structure of the document and its
concrete format. Although similar in this
respect, the two systems differ in their em-
phasis. In Etude, the user is expected to
deal chiefly with the concrete form of the
document, except when direct manipula-
tion of its abstract structure is desired. In
JANUS, on the other hand, the user is
expected to be concerned chiefly with the
abstract form of the document, perhaps
checking its concrete appearance from time
to time. Editing of the concrete document
is intended only as a means of overriding
the actions of the formatter. Although this

Document Formatt ing Systems • 463

is an attractive means of controlling the
abstract-to-concrete mapping, it is of lim-
ited use unless the changes are also made
a permanent part of the abstract document.
Otherwise, there will be serious problems
in maintaining consistency between the two
versions of the document.

Integrated systems make it possible for
programming to be done in an entirely new
way. Rather than describe the desired ac-
tions symbolically, the user may actually
carry out the actions, which are remem-
bered by the system. The system may then
be asked to repeat the actions at a later
time. This technique is powerful, yet simple
enough to be used by people with no knowl-
edge of programming. It has been used in a
number of experimental programming sys-
tems [SMIT75, CURR78], and work is going
on to include it in the Star system
[HALB81].

New methods for creating classes of ob-
jects can also be used in an integrated sys-
tem. ThingLab, for example, implements
an attractive technique that allows a user
to define a class by constructing a particular
instance of the class. This idea may be
applied to document systems as well. For
example, a class of form letters could be
constructed by creating a single prototypi-
cal form letter. Instances of this class would
specify different recipients but would other-
wise be identical to the prototype.

Future systems could benefit from even
further integration. For example, the crea-
tion of primitive graphical objects, special
characters, and new character fonts may be
made an integral part of the document
preparation process.

3.5.2 Integration of Other Functions

In order to be most useful, document prep-
aration systems must offer more than just
editing and formatting functions. Even the
earliest formatting systems attempted to
provide a number of more general docu-
ment preparation functions, such as the
"dictionary" command of FORMAT. More
of these writer's workbench facilities should
be available, including detection and cor-
rection of spelling errors; generation of out-
lines, tables of contents, indices, and con-
cordances; and citation of bibliographic ref-
erences. A number of general resources,

Computing Surveys, Vol. 14, No. 3, September 1982

464 • R. Furuta, J. Scofield, and A. Shaw

such as dictionaries, thesauri, and manuals
of writing style, would also be useful.

When a document becomes very large,
changes are most often made only to part
of the document; the other parts are un-
changed or are changed only slightly. In
this case it is much more efficient if the
changed parts can be reformatted sepa-
rately, without reformatting the entire doc-
ument. The reformatting is complicated
somewhat by the fact that parts of the
document often refer by name, section
number, or page number to other parts.
This means that a change to one section
may require changes (perhaps small ones)
to the sections that refer to them.

Scribe solves these problems by allowing
a document to be broken into a number of
modules that may be formatted either sep-
arately or as a unit, and handles the refer-
ences between these modules automati-
cally. However, the user must state explic-
itly where the divisions into modules are to
be made, and these divisions need not be
related to the logical structure of the doc-
ument.

The class/instance model outlined in
Section 1.1 defines a document as being
structured from a number of nested simpler
objects such as paragraphs, sections, and so
on. A document preparation system based
on this model could use the high-level struc-
ture of the document, together with a
knowledge of the references from one object
to another, to determine automatically
parts of the document to be formatted sep-
arately, and could allow many kinds of
changes to be propagated through the en-
tire document automatically.

There are also advantages in keeping his-
torical versions of a single document and in
maintaining families of related documents
that have some parts in common. A system
that understood these notions would allow
the integration of a facility for comparing
documents in order to determine their dif-
ferences. This comparison could be used to
determine the portions of a document that
have changed since its previous version, or
to capture the differences between the
members of a family of documents. The
PIE system has suggested a way of achiev-
ing these goals. PIE also allows the creation
of alternate versions that may be main-

tained consistently in parallel. However, its
ideas have not yet been tried in a format-
ting system.

Even more elaborate tools may be envi-
sioned. For example, a system could help to
maintain documents in a partial state of
composition by maintaining an outline of
parts not yet written, and could allow this
outline to be easily fleshed out later. Im-
proved facilities for allowing multiple au-
thors to work on a document without con-
flict could be added. This might include, for
example, a means of making comments on
sections and a means of "locking" sections
for exclusive access while they are being
worked on. Recent programs in the UNIX
system analyze aspects of the style and
readability of documents [CHER81]; some
potential also exists for the application of
artificial intelligence and other techniques
to the deeper analysis of document style
and content.

3.6 User Interface

Every formatting system provides the user
with a means of accessing the operations
for creating, viewing, and modifying docu-
ments. The quality of the interface pre-
sented to the user may be judged in part by
the following criteria:

• the amount of detail that the user must
memorize in order to use the system;

• the amount of mental and physical effort
that is required to perform common func-
tions;

• the average number of errors made by
the user, especially including errors from
which recovery is difficult;

• the amount of time that the user is re-
quired to wait for the system to perform
its functions, such as the time required
for an integrated editor/formatter to up-
date the contents of a screen, or the time
required for a pure formatter to create a
concrete document for viewing.

The overall design of a formatting system
contributes a great deal to the quality of
the interface. Ideally, a system should be
based on a small number of powerful oper-
ations, so that it is simple enough to be
easily understood (and hence memorized)
by its intended users. Similarly, a system
designed around a small number of orga-

Computing Surveys, Vol. 14, No. 3, September 1982

nizing principles (such as a single context-
free language) may be made very consis-
tent. This allows the behavior of the system
to be predicted easily and reduces the
amount of memorization required. Finally,
as stated in Section 3.5.1, a highly inte-
grated editor/formatter may also reduce
the amount of memorization required, since
the user no longer must predict the behav-
ior of such a system.

Another desirable feature of a system is
the ability to provide access to a freely
chosen subsystem oriented to a certain
class of user or to a restricted class of prob-
lems. This has been referred to as filtering
[GoLA79]. For example, a beginning user
may learn only a very small set of com-
mands, and this set may be increased as the
user becomes more and more familiar with
the system. At each stage, the user is able
to access only commands that are well un-
derstood, thus reducing the possibility of
error.

In recent years, a growing number of
empirical studies of interactive systems
have been performed, giving quantitative
insight into the importance of the various
aspects of user interfaces. Both the hard-
ware and the software features of interfaces
have been investigated [ACMC81, CARD78,
CARDS0, SHNE80]. Increasingly, research of
this type is being used to assist the intuition
of the user interface designer.

3.6.1 Software Improvements

Many software techniques have been de-
veloped to improve aspects of the interface,
but most of these improvements require
compromises in other areas. For example,
using long identifiers as command names
tends to reduce the amount of detail that
the user must remember, since the com-
mand names may be made descriptive of
their action. However, it tends to increase
the amount of physical effort required for
the user to enter a command, since it takes
more keystrokes to enter a long name than
a short one. Similarly, long command
names make it easier to mistype a com-
mand, an error from which it is easy to
recover. However, they also make it physi-
cally harder to type one command when
another is intended, an error from which
recovery may be more difficult.

Document Formatting Systems ° 465

As another example, prompting for por-
tions of commands and data reduces the
amount of detail that the user must mem-
orize, but it increases the amount of data
that must be emitted by the system, thus
increasing the amount of time required for
the system to perform its functions. The
use of menus reduces the amount of detail
that must be memorized, the number of
errors in entering commands, and the
amount of physical effort required to enter
commands, but it also has the drawback
that it increases the amount of time re-
quired for a system to perform display func-
tions and that it requires the user to read
more material between commands.

Multiple windows have been used to de-
crease the mental effo~ involved in switch-
ing from one context to another, since they
allow a number of contexts to be main-
tained simultaneously. For example, they
may contain menus, prompting informa-
tion, or views of several different parts of a
document. However, their use increases the
amount of time required for display func-
tions, and introduces the mental task of
correlating the information found in differ-
ent windows.

As the above examples illustrate, it is
impossible to achieve simultaneously all of
the desirable properties of an interface for
all classes of users. However, one can do
much better by taking into account the
characteristics of the intended user. For
example, a system may be intended for an
expert user who may be expected to mem-
orize all the details of a system. In this case,
the design of the interface would probably
emphasize a reduction of the physical effort
required of the user. In other cases, the
design of the interface may attempt to min-
imize the amount of detail to be memorized.
In the most general case, a single system
may offer a number of different user inter-
faces. This may be accomplished by imple-
menting entirely separate interfaces; how-
ever, a more general and more consistent
system will result from the use of filtering
to provide access to well-defined subsys-
tems.

3.6.2 Hardware Improvements

The user interface may also be improved
through the use of hardware techniques,

Computing Surveys, Vol. 14, No. 3, September 1982

466 • R. Furuta, J. Scofield, and A. Shaw

such as high-resolution displays and graph-
ical input devices, dedicated computers,
large storage facilities, and high-bandwidth
connections. For example, the time re-
quired for the system to perform display
functions may be reduced by increasing the
bandwidth between the processor and the
display device. Higher bandwidth than that
available under a large time-sharing system
may be achieved on a single-user computer
with a dedicated display. If the bandwidth
is sufficiently high, many of the software
techniques described above become prac-
tical, because there is little time spent wait-
ing for the system.
Graphical input devices such as the

mouse, light pen, and joystick substantially
reduce the physical effort required to select
and position objects. For example, they are
used successfully for the selection of items
from a menu. Bit-mapped displays and
their extensions can allow the manipulation
of many different types of objects, such as
colored objects and halftone images.

3.7 Implementation

The utility of a practical document-pro-
cessing system also depends significantly
on its implementation. For example, an ap-
pealing model or formatting language may
need to be rejected if it is impossible to
build efficiently. Aside from choosing low-
level data structures and algorithms, an
implementation may also at tempt to de-
compose the formatting problem into small
independent pieces and to provide device
independence. Another aspect of an imple-
mentation is the ease with which it fits into
a larger system of which it is part. Each of
these is now discussed in turn.

3. 7.1 Data Structures and Algorithms

algorithms and data structures have ap-
peared. A notable example is the dynamic
programming algorithm for paragraph lay-
out in TEX, which is probably the first
clearly described and nontrivial algorithm
to be employed for this task.

The sticky pointer data structure
[Fmc79] provides a mechanism that can be
used to associate pointers with textual data.
In this scheme, the pointers are kept en-
tirely separate from the data and point to
a tree structure that in turn points to a
linked list containing the text. The advan-
tage of this structure is that it allows the
data to change freely without requiring
command updating of the pointers. Sticky
pointers have already been used in the im-
plementation of a text editor [ROBESla,
RoBESlb]. They may also be useful for an
integrated editor/formatter, where the
structure and properties of objects in the
document could be represented separately
from the objects themselves. Modifications
to the document contents could be handled
very quickly while keeping the structure up
to date.

The familiar concept of an inverted file
used in R E F E R also appears applicable to
a number of other document-processing
tasks that require a search of a set of textual
objects that do not change frequently. For
example, it could be used to locate a partic-
ular quotation in a large work.

In addition to these relatively low-level
techniques, some interesting methods have
been used for the implementation of for-
matting systems as a whole. For example,
EQN, PIC, and IDEAL are constructed by
means of a context-free language parser,
generated using a compiler-compiler. In
general, these and other preprocessors have
proved very useful in systems that are bro-
ken down into separate programs.

The published material of the earliest sys-
tems placed little emphasis on their data
structures and algorithms, although they
may often be deduced from the other infor-
mation about the systems. For example, the
document model used by HES is based
rather directly on a data structure for rep-
resenting segments of text linked into a
graph structure, with pointers in the text
that refer to locations in other text seg-
ments. Recently, a certain number of new

3. 7.2 Decomposition of the Formatting
Problem

An implementation may be based on a sin-
gle large program, as are TEX and Scribe,
or factored into a number of smaller pro-
grams, as is done in the UNIX system. A
factored system may be broken into small
programs that process different types of
objects, as under UNIX, or it may be bro-
ken into programs that handle different

Computing Surveys, VoL 14, No 3, September 1982

parts of the formatting problem. For ex-
ample, some systems use one program to
format a document into a series of lines and
a different program to place these lines onto
pages.

One advantage of a factored approach is
that each of the programs may be very
simple and fairly easy to understand. Fur-
ther, it is possible to set up a configuration
of programs that is tailored to the complex-
ity of the document to be formatted. This
allows the overall system resource require-
ments for a particular document to be re-
duced. The disadvantage of this organiza-
tion is that it may tend to multiply the
number of languages used in the system (as
is true under UNIX), and also it will mul-
tiply the number of programs to be main-
tained. There is also hkely to be a certain
amount of duplication of code among the
separate programs, such as the code re-
quired to parse the formatting language.

The advantage of a single program is that
it seems to make it easier to offer a single
integrated system for handling all types of
objects. As observed in Section 3.4, the use
in UNIX of many small programs commu-
nicating by one-directional pipes tends to
limit the possible nesting of different kinds
of objects. Further, with a single program
it is easier to provide a single language for
describing documents. On the other hand,
a single large program must be much more
comphcated, and also it cannot be tailored
to the document.

One of the fundamental difficulties of the
formatting problem is that the processing
of objects depends not only on the objects
themselves, but on the larger objects of
which they are part. For example, the con-
crete appearance of a sentence is not known
until the paragraph of which it is part is
mapped into a set of lines; there is not
enough information to format the sentence
when taken by itself. However, the concrete
appearance of an object (a paragraph in
this example) clearly depends upon the ob-
jects from which it is composed. Therefore,
neither a strictly top-down nor a strictly
bottom-up algorithm can be used.

Besides complicating the formatting
process itself, this fact has implications
about the ways in which formatting systems
may be broken down into small programs.
That is, unless a certain amount of control

Document Formatting Systems • 467

over the concrete appearance is relin-
quished, it is not possible in general to
break down the formatting problem into a
number of completely independent pro-
grams that handle different objects. In the
example above, it would not be possible to
format the paragraph without formatting
its component sentences or to format the
sentences without formatting the para.
graph of which they are part.

As another example, ~ exercises much
more control than earlier formatters over
the concrete appearance of paragraphs be-
cause it tries many different ways of placing
words into lines. This interdependence
could be carried even further. A system
could try many different ways of placing
words into both lines and paragraphs in
order to choose the one that gives the pages
the best appearance. For example, words
could be formatted more tightly to elimi-
nate a widow on the following page. In
systems that separa te the format t ing of
paragraphs into lines from the layout of
hnes onto pages, this would not be possible.

On the other hand, the resulting simpli-
fication makes it worth looking for cases in
which the formatting problem can be de-
composed. An example appears in the Ar-
abic language system KATIB/HATTAT,
where the placing of characters into lines is
separated from the determination of the
concrete forms of the individual characters,
by using average values for the widths of
characters. This method of decomposition
may perhaps be extended to other cases
where the different concrete forms of a
given class of abstract objects do not show
too much variation in size.

It should also be noted that decomposi-
tion can provide device independence. The
viewing of a concrete document may be
separated from the rest of the formatting
process, allowing the same concrete docu-
ment to be produced on a number of differ-
ent devices without requiring that it be
reformatted each time. This may be accom-
phshed through a device-independent for-
matter output that is translated by the
viewing process into low-level commands
for controlling a particular device.

A decomposition of the formatting prob-
lem is achieved in the UNIX system by
having the programs for separate objects
perform a high-level "preformatting" func-

Computing Surveys, Vol. 14, No. 8, September 1982

468 • R. Furuta, J. Scofield, a n d A. S h a w

tion; almost all of the actual solutions to
formatting problems are handled in the fi-
nal pass through the low-level formatter
TROFF. This approach, while very appeal-
ing, increases the amount of processing
time required to produce a document from
its description.

3. 7.3 Interface to Host Environment

Many formatting systems today are de-
signed as application programs under exist-
ing operating systems. One of the difficul-
ties of this embedding occurs if it is desired
to ensure that the formatting system could
also function (without much change) under
a different operating system. Independence
of particular operating system features
tends to increase the portability of the for-
matting system and of the abstract docu-
ments themselves. These can be very im-
portant goals, especially if a standardized
means for exchange of documents is to be
developed. At the same time, however, de-
pendence upon a particular operating sys-
tem often increases the usability and effi-
ciency of a formatting system.

For example, Scribe is designed to exe-
cute in the environment of a generic oper-
ating system that makes only modest de-
mands upon the specific operating system
in which it is embedded and does not try to
provide a sophisticated interface to any sys-
tem functions [REIDS0c, Appendix B]. The
central requirements are the ability to ac-
cess files with names formed from short
character strings and the ability to perform
simple operations on these files, such as
reading, writing, deleting, and determining
date of creation.

Because Scribe's interface to the operat-
ing system is so simple, it is impossible for
Scribe to provide a complete or integrated
interface to its documents. It is necessary,
for example, for the user to communicate
with the command interpreter of the oper-
ating system to ask for a list of current files
containing documents. Adding this function
to Scribe would make the file interface
more difficult to move to another system.

Scribe and the UNIX formatters have
proved easy to move to new operating sys-
tems because they use only features, such
as programs and text files, that are present
in nearly all current systems. However, a

formatting system that used interprocess
communication more complex than that of-
fered by files or pipes would be more diffi-
cult to make portable, because there is not
as much agreement about how these facili-
ties should be provided. Similarly, format-
ters that rely on specialized hardware not
present in all operating systems could not
easily be moved to systems not supporting
this hardware.

4. CONCLUDING REMARKS

We have defined the nature of the format-
ting problem, surveyed some significant
systems, and presented a number of con-
cepts and outstanding issues and problems.
Despite the impressive achievements in
this fast-moving field, it is evident from our
analysis in the preceding pages that much
remains to be done before we can realize
the potential inherent in computer, display,
and printing technology--a hardware tech-
nology that makes it feasible, in principle,
to specify, manipulate, and view the ap-
pearance of documents with an unprece-
dented degree of control, precision, flexibil-
ity, speed, and economy.

As they are developed further, formatting
systems will remain a major part of such
applications as publishing and word pro-
cessing, but they will also become a major
utility available in most general-purpose
computer systems. Even more generally, a
complete package of integrated editors, for-
matters, and other tools for computer-aided
writing and reading of documents will be an
important component of the computer sys-
tem of the future.

ACKNOWLEDGMENTS

We are grateful to the following people for reading
and offering helpful comments on various parts of the
paper: A. Borning, D. Chamberlin, G. Coulouris, S.
Johnston, B. Kernighan, J. King, D. Knuth, B. Lamp-
son, M. Lesk, P. MacKay, H. Moll, B. Reid, J. Saltzer,
L. Tesler, C. Van Wyk, and J. ZahoDan. We wish to
acknowledge the assistance in obtaining certain refer-
ences provided by G. Kimura, J. Saltzer, P. Samson,
and L. Tesler. D. Knuth, G. Kimura, B. Kernighan,
and B. Rice helped us obtain material used in the
figures. Thanks are also due to B. Reid for his assis-
tance in producing typeset versions of this paper. A.
Goldberg and the referees made many constructive
suggestions We used Scribe extensively in preparing

Computing Surveys, Vol. 14, No 3, September 1982

Document Formatting Systems • 469

the many drafts of this paper. Figures 7 and 9 were
produced using TEX and Figures 11 and 14 with the
UNIX document productmn tools

This work was supported in part by the National BYTE81
Science Foundation under grants numbered MCS-

CARD78 7826285 and MCS-8004111. An extended abstract
[SHAwS0b] of this paper was presented at the Inter-
natmnal Conference on Research and Trends in Doc-
ument Preparation Systems, held in Lausanne, Swit-
zerland, m February 1981. CARD80

ACMC

ALLE81

BARN65

BAUD78

BEAT79

BERN68

BERN69

BIRT79

BORN79

BORN81

REFERENCES

ACM COMPUTING SURVEYS. Comput.
Surv. 13, 1 (March 1981). Special Issue CARM69
The Psychology of Human-Computer
Interaction.
ALLEN, T., NIX, R., AND PERLIS,
A. "PEN: A hierarchical document ed-
itor." In Proc. ACM SIGPLAN SIGOA
Syrup. Text Manipulatwn, SIGPLAN
Notwes (ACM) 16, 6 (June 1981), 74-
81. Also available as SIGOA Newsletter
ACM 2, 1&2 (Spring/Summer 1981),
74-81. CHAM81
BARNETT, M. P. Computer Typeset°
tmg: Experiments and Prospects. The
M.I.T. Press, Cambridge, Mass., 1965.
BAUDELAIRE, P . C . "Draw Manual."
In Alto User's Handbook, B. W. Lamp-
son and E. A. Taft (Eds.). Computer
Science Lab., Xerox Palo Alto Research
Center, Palo Alto, Calif., 1978.
BEATTY, J. C., CHIN, J. S., AND MOLL,
H . F . "An interactive documentation
system " In SIGGRAPH '79 Proceed-
~ngs, Computer Graphics (ACM) 13, 2
(Aug. 1979), 71-82. CHAM82
BERNS, G. M The FORMAT pro-
gram. IEEE Trans. Eng Writ. Sp.
EWS-11, 2 (Aug. 1968), 85-91.
BERNS, G. M. Description of FOR-
MAT, a text-processing program. Com-
mun. ACM 12, 3 (March 1969), 141-146.
BIRTWISTLE, G. M., DAHL, O-J., MYHR- CHERS1
HAUG, B., AND NYGAARD, K. Slmula
Begin. 2nd ed. Van Nostrand-Reinhold,
New York, 1979.
BORNING, A. "ThlngLab--A Con-
straint Oriented Simulatmn Labora-
tory." Ph.D. dissertation, Stanford
Univ., Stanford, Calif., 1979. Available CouL76
as Tech. Rep. SSL-79-3, Xerox Palo
Alto Research Center, Palo Alto, Calif.,
and as Tech. Rep. STAN-CS-79-746,
Stanford Computer Science Dep., Stan-
ford Univ., Stanford, Calif.
BORNING A. The programming lan- CURR78
guage aspect of ThingLab, a constraint-
oriented simulation laboratory. ACM
Trans. Prog. Lang. Sys. 3, 4 (Oct. 1981),
353-387.
BURKHART, H., AND NIEVERGELT,
J. "Structure-oriented editors." Ber- EHRM71
ichte des Instituts filer Informatik 38,

BURKS0

Eidgenoessische Technische Hoch-
schule Zuerich, Zurich, Switzerland,
May, 1980.
BYTE MAGAZINE Byte 6, 8 (Aug.
1981). Special issue on Smalltalk.
CARD, S. K., ENGLISH, W. K., AND
BURR, B.J. Evaluation of mouse, rate-
controlled isometric joystick, step keys,
and text keys for text selection on a
CRT. Ergonomics 21 (1978), 601-613.
CARD, S. K., MORAN, T. P., AND NEW-
ELL, A. The keystroke-level model for
user performance time with interactwe
systems. Commun. ACM 23, 7 (July
1980), 396-410.
CARMODY, S., GROSS, W., NELSON,
T. E., RICE, D., AND VAN DAM, A. "A
hypertext editing system for the/360."
Center for Computer and Information
Sciences, Brown Univ., Prowdence,
R.I., March 1969. Also contained in Per-
tment Concepts in Computer Graphws,
M. Faiman and J. Nievergelt (Eds.).
Univ. of Illinois, Urbana, Ill., 1969, pp.
291-330.
CHAMBERLIN, D. C., KING, J. C, SLUTZ,
D. R., TODD, S. J. P., AND WADE,
B.W. "JANUS: An interactive system
for document composition." In Proc.
ACM SIGPLAN SIGOA Syrup. Text
Manipulation, SIGPLAN Notices
(ACM) 16, 6 (June 1981), 82-91. Also
available as SIGOA Newsletter (ACM)
2, 1&2 (Spring/Summer 1981), 82-91.
This report was also issued as IBM
Computer Science Res. Rep. RJ3006
(37371), IBM Research Lab., San Jose,
Calif., Dec. 1980.
CHAMBERLIN, D. C., KING, J. C., SLUTZ,
D. R., TODD, S. J. P., AND WADE,
B.W. "JANUS: An interactive docu-
ment formatter based on declarative
tags." IBM Comp. Sci. Res. Rep.
RJ3366 (40402), IBM Research Lab.,
San Jose, Calif., Jan. 1982.
CHERRY, L. "Computer aids for
writers. In Proc. ACM SIGPLAN SI-
GOA Symp. Text Manipulation, SIG-
PLAN Notices (ACM) 16, 6 (June
1981), 61-67. Also available as SIGOA
Newsletter (ACM) 2, 1&2 (Spring/
Summer 1982), 61-67.
COULOURIS, G. F., DURHAM, I., HUTCH-
INSON, J. R., PATEL, M. H., REEVES, T.,
AND WINDERBANK, D.G. The design
and implementation of an interactive
document editor. Softw. Prac. Exper. 6,
2 (April-June 1976), 271-279.
CURRY, G. A. "Programming by Ab-
stract Demonstration," Ph.D. disserta-
tion, Univ. of Washington, Seattle,
March 1978. Also issued as Tech. Rep.
78-03-02, Dep. of Computer Science,
Univ. of Washington.
EHRMAN, J. R., AND BERNS, G. M.
"FORMAT, a text processing program."

Computing Surveys, Vol. 14, No. 3, September 1982

470 • R. Furuta , J. Scofield, and A. Shaw

SLAC Rep. 135, Stanfrd Linear Accel- GuTTS0
erator Center, July 1971.

ENGE68 ENGELBART, D. C., AND ENGLISH,
W. K. "A research center for aug-
menting human intellect." In Proc. Fall
Jr. Computer Conf., vol. 33. AFIPS
Press, Arlington, Va., 1968, pp. 395-410.

ENGE73 ENGELBART, D. C., WATSON, R. W., AND
NORTON, J. C. "The augmented
knowledge workshop." ARC Journal
Accession Number 14724, Stanford Re- HALB81
search Center, Menlo Park, Calif.,
March 1973. Paper presented at the Na-
tional Computer Conference, June 1973.

FIsc79 FISCHER, M. J., AND LADNER, R. E.
"Data structures for efficient implemen-
tation of sticky pointers in text editors."
Tech. Rep. 79-06-08, Dep. of Computer
Scmnce, Univ. of Washington, Seattle,
June 1979.

GOLA76 GOLDBERG, A., AND KAY, A., Eds.
"Smalltalk-72 Instruction Manual."
Rep. SSL-76-6, Xerox Palo Alto Re-
search Center, Palo Alto, Calif., March
1976.

GoLA79 GOLDBERG, A., AND ROBSON, D. "A
metaphor for user interface design." In
Proc. of 12th Hawad Int. Conf. Syst.
Sc~., vol. 1, University of Hawaii Press,
Honolulu, 1979, pp. 148-157.

GoLA83 GOLDBERG, A., AND ROBSON, D. Small-
talk-80: The Language and Its Im-
plementatwn. Addison-Wesley, Read-
ing, Mass, 1983

GOLC81a GOLDFARB, C. F. "Use of an inte-
grated text processing system in com-
mercial textbook production." In Ab-
stracts of the Presented Papers, Int.
Conf. Research and Trends m Docu-
ment Preparatton Systems (Lausanne,
Switzerland, Feb. 1981), Swiss Institutes IBM80a
of Technology, Lasanne and Zurich, pp.
121-122.

GoLC81b GOLDFARB, C. F. "A generalized ap-
proach to document markup." In Proc.
ACM SIGPLAN SIGOA Syrup. Text IBM80b
Manipulation, SIGPLAN Notices
(ACM) 16, 6 (June 1981), 68-73. Also
available as SIGOA Newsletter (ACM)
2, l&2 (Spring/Summer 1981), 68-73.

GOLI80 GOLDSTEIN, I. P., AND BOBROW, IBM80c
D.G. "A layered approach to software
design." Rep. No. CSL-80-5, Xerox Palo
Alto Research Center, Palo Alto, Calif., ILSO80
Dec. 1980.

GOLI81 GOLDSTEIN, I., AND BOBROW, D. "An
experimental description-based pro-
gramming environment" Four reports."
Rep. CSL-81-3, Xerox Palo Alto Re-
search Center, Palo Alto, Calff, March INGA78
1981.

GooD81 GOOD, M. "An ease of use evaluation
of an integrated editor and formatter,"
Tech. Rep. MIT/LCS/TR-266, M.I.T.
Lab. for Computer Science, Cambridge,
Mass., Nov. 1981. This is a revised ver- IVIE77
sion of Good's M.S. thesis, Aug. 1981.

Computing Surveys, Vol. 14, No 3, September 1982

HAMM81a

HAMM81b

GUTTAG, J., AND HORNING, J. J.
"Formal specification as a design tool."
In Conf. Rec. 7th Ann. ACM Syrup.
Principles of Programming Languages
(Las Vegas, NED., Jan. 1980), ACM, New
York, 1980, pp. 251-261. Also issued as
Rep. No. CSL-80-1, Xerox Palo Alto
Research Center, Palo Alto, Calif., Jan.
1980.

HALBERT, D.C. "An Example of Pro-
gramming by Example." Master's the-
sis, Univ. of Cahfornia, Berkeley, June
1981.

HAMMER, M., ILSON, R., ANDERSON, T.,
GILBERT, E. J., GOOD M., NIAMIR, B.,
ROSENSTEIN, L., AND SCHOICHET,
S. "Etude: An integrated document
processing system." Office Automation
Group Memo OAM-028, M.I.T. Lab. for
Computer Science, Cambridge, Mass.,
Feb. 1981. Presented at the 1981 Office
Automation Conference, March 23-25,
1981.

HAMMER, M, ILSON, R., ANDERSON, T.,
GILBERT, E. J., GOOD, M., NIAMIR, B.,
ROSENSTEIN, L., AND SCHOICHET,
S. "The implementation of Etude, an
integrated and interactive document
production system." Proc. ACM SIG-
PLAN SIGOA Symp. Text Man~pula-
tmn, SIGPLAN Notwes (ACM) 16, 6
(June 1981), 137-141. Also available as
SIGOA Newsletter (ACM) 2, 1, 2
(Spring/Summer 1981), 137-141. Previ-
ously issued as Office Automation
Group Memo OAM-026, M.I.T. Lab. for
Computer Science, Cambridge, Mass.,
Dec. 1980.

Document composition facihty--Intro-
ductmn to the generalized markup lan-
guage: Using the starter set. IBM,
White Plains, N.Y., 1980. Order no.
SH20-9186-0.

Document composltmn facd~ty gener-
alized markup language: Starter set
reference. IBM, White Plains, N.Y.,
1980. Order no. SH20-9187-0.

Document compos~tmn facd~ty: User's
guide. IBM, White Plains, N.Y., 1980.
Order no. SH20-9161-1.

ILSON, R. "An integrated approach to
formatted document production." Tech.
Rep. MIT/LCS/TR-253, M.I T. Lab.
for Computer Science, Cambridge,
Mass., Aug. 1980.
INGALLS, D. H. "The Smalltalk-76
programming system design and imple-
mentation." In Conf. Rec. 5th Annual
ACM Symp. Principles of Program-
ming Languages (Tucson, Ariz., Jan.
1978), ACM, New York, 1978, pp. 9-16.

IvxE, E. L. The programmer's work-
bench--A machine for software devel-

KAIM68

KERN75

KERN76a

KERN76b

KERN78

KERN81a

KERN81b

KERN81C

KERN82

KNUT75

KNUT79a

KNUT79b

KNUT79C

D o c u m e n t F o r m a t t i n g S y s t e m s ° 471

opment. Commun. ACM 20, 10 (Oct.
1977), 746-753.
KAIMAN, A. Computer-aided publica-
tions editor. IEEE Trans. Eng. Wr. Sp. KNUT81
EWS-11, 2 (Aug. 1968), 65-75.
KERNIGHAN, B. W., AND CHERRY,
L.L. A system for typesetting mathe-
matics. Commun. ACM 18, 3 (March
1975), 151-157. Also available as Com-
puter Science Tech. Rep. 17, Bell Lab- LAMP78
oratories, Murray Hill, N.J. (rev. April
1977).
KERNIGHAN, B. W., AND PLAUGER,
P. L. Software Tools. Addison-Wesley,
Reading, Mass., 1976.
KERNIGHAN, B.W. "A TROFF tuto-
rial." Internal Memo, Bell Laboratories,
Murray Hill, N.J., Aug. 1976. In Docu-
ments for Use w¢th the Phototypesetter,
version 7.
KERNIGHAN, B. W., LESK, M. E., AND
OSSANNA, J. F., JR. UNIX time-shar-
ing system: Document preparation. Bell
Syst. Tech. J. 57, 6 (July-Aug. 1978),
2115-2135. LESK77
KERNIGHAN, B. W. "PIC--A crude
graphics language for typesetting,"
Computer Science Tech. Rep. 85, Bell
Laboratories, Murray Hill, N.J., Jan.
1981.
KERNIGHAN, B. W. Remew of 'TEX
and METAFONT: New dtrections in LESK78
typesetting,' Comp. Rev. 22 (July 1981),
299-301. Review 38,151.
KERNIGHAN, B.W. "A typesetter-in-
dependent TROFF." Computer Science
Tech. Rep. 97, Bell Laboratories, Mur-
ray Hill, N.J., 1981.
KERNIGHAN, B.W. PIC--A language
for typesetting graphics. Softw. Prac.
Exper. 12, 1 (Jan. 1982), 1-21. A prelim-
mary version of this paper appeared in
the Proc. ACM SIGPLAN SIGOA
Syrup. Text Manipulation, SIGPLAN
Notwes (ACM) 16, 6 (June 1981), and
SIGOA Newsletter (ACM) 2, 1&2
(Spring/Summer 1981).
KNUTH, D.E. Sorting and Searching.
The Art of Computer Programming,
vol. 3. Addison-Wesley, Reading, Mass.,
1975, sect. 6.5, pp. 552-557.
KNUTH, D. E. TEX and Metafont.
New Dwections m Typesetting. Digital
Press and the American Mathematical
Society, Bedford, Mass., and Provi- OSSA74
denee, R.I., 1979.
KNUTH, I). E. "Mathematical typog-
raphy." In TEX and Metafont: New OssA76
Dwect~ons in Typesetting, part 1. Digi-
tal Press and the American Mathemat-
Ical Society, Bedford, Mass., and Prov-
idence, R.I., 1979. PACK73
KNUTH, D. E. "TEX, a system for
technical text." In TE X and Metafont"
New Dwecaons m Typesetting, part 2. PIER72

LESK76a

LESK76b

MACK77

MADN68

McMA78

NEWM78

Digital Press and the American Math-
ematical Society, Bedford, Mass., and
Providence, R.I., 1979.
KNUTH, D. E. AND])LASS, M. F.
Breaking paragraphs into lines. Soflw.
Prac. Exper. 11, 11 (Nov. 1981), 1119-
1184. Also issued as Tech. Rep. STAN-
CS-80-828, Stanford Dep. of Computer
Science, Stanford, Calif., Nov. 1980.
LAMPSOS, B.W. "Bravo manual." In
Alto User's Handbook, B. W. Lampson
and E. A. Taft (Eds.). Computer Science
Lab., Xerox palo Alto Research Center,
Palo Alto, Calif., 1978.
LESK, M.E. "Tbl--A program to for-
mat tables." Computer Science Tech.
Rep. 49, Bell Laboratories, Murray Hill,
N.J., Sept. 1976.
LESK, M. E. "Typing documents on
the UNIX system: Using the -ms ma-
cros with TROFF and NROFF." Inter-
nal Memo, Bell Laboratories, Oct. 1976.
In Documents for Use With the Photo-
typesetter, version 7.
LESK, M. E., AND KERNIGHAN, B. W.
"Computer typesetting of technical
journals on UNIX." In Proc. Nat.
Comp. Conf. 46 (1977), 879-888. Also
available as Computer Science Tech.
Rep. 44, Bell Laboratories, Murray Hill,
N.J., June 1976.
LESK, M.E. "Some applications of in-
verted indexes on the UNIX System,"
Computing Science Tech. Rep. 69, Bell
Laboratories, Murray Hill, N.J., June
1978.
MACKAY, P.A. Setting Arabic with a
computer. Scholarly Publishing 8, 2
(Jan. 1977), 142-150.
MADNICK, S. E., AND MOULTON,
A. SCRIPT: An on-line manuscript
processing system. IEEE Trans. Eng.
Writ. Sp. EWS-U, 2 (Aug. 1968), 92-
100.
McMAHON, L. E., CHERRY, L. L., xNv
MORRIS, R. UNIX time-sharing sys-
tem: Statistical text processing. Bell
Syst. Tech. J. 57, 6 (July-Aug. 1978),
2137-2154.
NEWMAN, W. M. "Markup user's
manual." In Alto User's Handbook,
B. W. Lampson and E. A. Taft (Eds.),
Computer Science Lab., Xerox Palo
Alto Research Center, Palo Alto, Calif.,
1978.
OSSANNA, J .F. "NROFF user's man-
ual," 2nd ed., Internal Doc., Bell Labo-
ratories, Sept. 1974.
OSSANNA, J. F. "NROFF/TROFF
user's manual," Computer Science
Tech. Rep. 54, Bell Laboratories, Mur-
ray Hill, N.J., Oct. 1976.
PACKARD, D. W. "Can scholars pub-
lish their own books?" Scholarly Pub-
l~shmg 5, 1 (Oct. 1973), 65-74.
PIERSOS, J. Computer Composition

Computmg Surveys, Vol. 14, No. 3, September 1982

472

REID80a

REID80b

REID80C

REID81

RITC78

ROBE81a

ROBE81b

SALT65

SEYB81

SHAW80a

SHAW80b

SHNE80

SHOC79

R. Furu ta , J . Scofield, a n d A. S h a w

Using PAGE-1. Wiley-Interscience,
New York, N.Y., 1972.
REID, B.K. "A high-level approach to
computer document formatting." In
Conf. Rec. 7th Annual ACM Symp. on
Principles of Programming Languages
(Las Vegas, NED., Jan. 1980), ACM, New
York, 1980, pp. 24-31.
REID, B. K., AND WALKER, J. H.
SCRIBE Introductory User's Manual,
3rd ed., preliminary draft. Unilogic,
Pittsburgh, 1980.
REID, B. K. "Scribe: A Document
Specificatmn Language and Its Corn-
prier," Ph.D. dissertation, Computer
Science Dep., Carnegie-Mellon Univ.,
Pittsburgh, Pa., Oct. 1980. Also issued
as Tech. Rep. CMU-CS-81-100.
REID, B. K. "The Scribe document
specificatmn language and its com-
piler." In Abstracts of the Presented
Papers, Int. Conf. Research and
Trends m Document Preparation Sys-
tems (Lausanne, Switzerland, Feb.
1981), Swiss Institutes of Technology,
Lausanne and Zurich, pp. 59-62.
RITCHIE, D. M. UNIX time sharing
system: A retrospective. BellSyst. Tech.
J. 57, 6 (July-Aug. 1978), 1947-1969.
ROBERTSON, K. "ESP, a direct access
editor: ESP user's guide," Tech. Note
134, Computer Science Lab., Univ. of
Washington, Seattle, April 1981.
ROBERTSON, K. R. "ESP: A Direct
Access Editor." Master's thesis, Umv.
of Washington, Seattle, 1981.
SALTZER, J. "Manuscript typing and
editing' TYPSET, RUNOFF." In The
Compatible Time-Sharing System: A
programmer'sgu~de. 2nd ed., P. A. Cris-
man (Ed.). The M.I.T. Press, Cam-
bridge, Mass., 1965, sec. AH.9.01.
SEYBOLD, J. "Xerox's 'Star'," The
Seybold Report 10, 16 (April 27, 1981).
SHAW, A.C. "A model for document
preparation systems," Tech. Rep. 80-04-
02, Dep of Computer Science, Univ. of
Washington, Seattle, April 1980.
SHAW, A., FURUTA, R., AND SCOFIELD,
J. "Document formatting systems:
Survey, concepts, and issues (Extended
Abstract)," Tech. Rep. 80-10-02, Dep. of
Comp. Sci., Univ. of Washington, Seat-
tle, Oct. 1980. Also available in the Ab-
stracts of the Presented Papers, Int.
Conf. Research and Trends m Docu-
ment Preparatmn Systems (Lausanne,
Switzerland, Feb. 1981), Swiss Institutes
of Technology, Lausanne and Zurich,
pp. 47-52.
SHNEIDERMAN, B. Software Psychol-
ogy. Winthrop, Cambridge, Mass., 1980.
SHOCH, d. F "An overview of the pro-
gramming language Smalltalk-72," SIG-
PLAN Notices (ACM) 14, 9 (Sept.
1979), 64-73.

SMIT75 SMITH, D.C. "PYGMALION: A Cre-
ative Programming Environment,"
Ph.D. dissertation, Stanford Univ.,
Stanford, Calif., June 1975. Also issued
as Stanford Artificial Intelligence Lab.
Memo AIM-260 and as Computer Sci-
ence Dep. Rep. STAN-CS-75-499.

SMIT82 SMITH, D. C., IRBY, C., KIMBALL, R.,
AND VERPLANK, B. Designing the Star
user Interface. Byte 7, 4 (April 1982),
242-282.

SPIVS0 SPIVAK, M. The Joy of TEX: A gour-
met guide to typesetting technwal text
by computer, Version -1. American
Mathematmal Society, Providence, R.I.,
1980.

STAL80 STALLMAN, R. M. "EMACS manual
for TENEX users." AI Memo 555,
M.I.T. Artificial Intelhgence Lab., Cam-
bridge, Mass., Sept. 1980.

STAL81 STALLMAN, R. M. "EMACS, the ex-
tensible, customizable self-documenting
display editor." In Proc. ACM SIG-
PLAN SIGOA Symp. on Text Manip-
ulation, SIGPLAN Notices (ACM) 16,
6 (June 1981), 147-156. Also available
as SIGOA Newsletter (ACM) 2, 1&2
(Spring/Summer 1981), 147-156. This
report is a revised version of AI Memo
519, M.I.T. Artificial Intelligence Lab.,
Cambridge, Mass., June 1979.
TESLER, L. "PUB: The document
compiler," Operating Note 70. Stanford
Artificial Intelligence Project, Stanford,
Calif., Sept. 1972.
THACKER, C. P., MCCREIGHT, E. M.,
LAMPSON, B. W., SPROULL, R. F., AND
BOC~S, D.R. "Alto. A personal com-
puter," Tech. Rep. CSL-79-11, Xerox
Palo Alto Research Center, Palo Alto,
Calif., Aug. 1979.
THOMPSON, K., AND RITCHIE, D. M.
UNIX Programmer's Manual, 6th ed.
Bell Telephone Laboratories, 1975, en-
try ROFF(1).

vAsD71 VAN DAM, A., AND RICE, D.E. On-line
text editing: A survey, ACM Comput.
Surv. 3, 3 (Sept. 1971), 93-114.

VANL73 VANLEHN, K.A. "SAIL user manual."
Rep. STAN-CS-73-373, Stanford Dep.
of Comp. Sci., Stanford, Calif., July
1973. Also issued as Stanford Artificial
Intelligence Lab. Memo AIM-204.

VANW80 VAN WYK, C. J. "A Language for
Typesetting Graphics," Ph.D. disserta-
tmn, Stanford Univ., Stanford, Calif.,
June 1980.

VANW81 VAN WYK, C.J. A graphics typeset-
ting language. In Proc. A CM SIGPLAN
SIGOA Symp. on Text Manipulatmn,
SIGPLAN Notices (ACM) 16, 6 (June
1981), 99-107. Also available as SIGOA
Newsletter (ACM) 2, 1, 2 (Spring/Sum-
mer 1981), 99-107.

Received November 1981, final revision accepted
May 1982.

TESL72

THAC79

THOM75

Computmg Surveys, Vol. 14, No 3, September 1982

