Adaptive Grid-Based Document Layout

Charles Jacobs' Wilmot Li’

"Microsoft Research

Abstract

Grid-based page designs are ubiquitous in commercially printed
publications, such as newspapers and magazines. Yet, to date, no
one has invented a good way to easily and automatically adapt
such designs to arbitrarily-sized electronic displays. The difficulty
of generalizing grid-based designs explains the generally inferior
nature of on-screen layouts when compared to their printed coun-

. 2
Evan Schrier

David Bargeron' David Salesin">

2University of Washington

1 Introduction

Pick up any newspaper or magazine today, and you will see a fine
example of grid-based design. The grid, as an ordering system for
structuring the printed page, had its roots in the designs of Mondri-
an and Le Corbusier in the 1920s to 1940s. After World War II,
the grid-based design system was more fully developed in Switzer-
land, and it rapidly spread throughout the rest of the world in the

terparts, and is arguably one
of the greatest remaining im-
pediments to creating on-line
reading experiences that rival
those of ink on paper. In this
work, we present a new ap-
proach to adaptive grid-based
document layout, which at-
tempts to bridge this gap. In
our approach, an adaptive lay-
out style is encoded as a set
of grid-based templates that
know how to adapt to a range
of page sizes and other view-
ing conditions. These tem-
plates include various types
of layout elements (such as
text, figures, etc.) and define,
through constraint-based rela-
tionships, just how these el-
ements are to be laid out
together as a function of both
the properties of the content
itself, such as a figure’s size
and aspect ratio, and the prop-
erties of the viewing condi-
tions under which the content
is being displayed. We de-

Adaptive Grid-Based Document Layout

Charles Jacobs' Wilmot Li* Evan Schrier’ David Bargeron' David Salesin'*

'Microsoft Research *University of Washington

Abstract

1 Introduction
P

Figure 1 A view of our paper on a landscape display. To create our paper,
we constructed a set of adaptive grid-based templates in the “SIGGRAPH
paper format” style, which we generalized from the published instructions
for formatting SIGGRAPH papers. We then used our viewer to format this
paper’s content in that style, as it appears on U.S.-letter-sized paper. This is
the document you have in your hands. Note that the style seamlessly adapts
over a range of display sizes, as demonstrated by this view of the first page
of the paper on a landscape display.

1950s and 1960s [Hurlburt
1977; Hurlburt 1978; Miiller-
Brockmann 1981].

Today, grid-based page
designs are ubiquitous in
commercial publications, and
their creation is supported
by a number of successful
software systems, most no-
tably QuarkXPress, the print-
industry standard; as well as
Adobe PageMaker and Mi-
crosoft Publisher, which are
more typically used for desk-
top publishing.

As pleasing as these grid-
based designs may be, they
currently have one very annoy-
ing property vis-a-vis their
relationship with modern tech-
nology: There is no obvious
way for these designs to adapt
to a different-sized display in
a graceful way. Thus, the com-
mon predicament we all know
so well: When viewing any
document on-line, there is so
often the choice between the

scribe an XML-based repre-

sentation for our templates and content, which maintains a clean
separation between the two. We also describe the various parts of
our research prototype system: a layout engine for formatting the
page; a paginator for determining a globally optimal allocation of
content amongst the pages, as well as an optimal pairing of tem-
plates with content; and a graphical user interface for interactively
creating adaptive templates. We also provide numerous examples
demonstrating the capabilities of this prototype, including this pa-
per, itself, which has been laid out with our system.

CR Categories 1.7.4 [Document and Text Processing]: Electronic Publishing; 1.3.6
[Computer Graphics]: Methodology and Techniques; Interaction techniques.

Keywords Adaptive layout, templates, pagination, constraints, dynamic program-
ming, HTML, PDF, XML, XSL, CSS.

Permission to make digital/hard copy of part of all of this work for personal or
classroom use is granted without fee provided that the copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication, and its date appear, and notice is given that copying is by permission
of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2003 ACM 0730-0301/03/0700-0838 $5.00

838

carefully formatted version of
the article—but formatted only for one specific page size, usually
an 8Y>- by 11-inch sheet of paper—on the one hand, and a version
that flows more gracefully onto the screen on which it is viewed,
but for which all of the beautiful grid-based design is lost, on the
other. With screen resolutions beginning to rival those of the print-
ed page, this problem is arguably one of the sole remaining imped-
iments to the decades-old vision of reading on-line. Thus, we see
its solution as paramount.

Why is this problem so difficult? It turns out that although the
whole point of the grid is to regularize design, the actual mapping
of page elements, such as text, images, sidebars, and so on, to grid
positions is still very much a manual process—and, seemingly at
least, necessarily so. Consider, for example, a document with a
single, large, multicolumn sidebar. The sidebar may look fine, say,
on the right side of a two-page spread or a widescreen display.
But on a legal-sized sheet of paper or on a portrait display, the
“sidebar” may actually have to be placed at the bottom of the page
o0 as not to squeeze out the main story. And on a Personal Digital
Assistant (PDA), this same “sidebar” might have to be moved to a
separate page entirely, perhaps made available through a hypertext

One Big Squi‘dw -

OneBigg d H

Figure 2 An article formatted in an adaptive “U.S. News & World
Report” style, at various sizes. The first row of the figure shows the
first few pages of a document on U.S.-letter-sized paper. The second
and third row show the same document formatted for a slightly small-
er TabletPC screen, in two orientations: portrait and landscape. The
Sfourth row shows the same document, once again, but formatted for
a Personal Data Assistant (PDA) screen. The final row shows the
same document, one last time, but formatted with larger fonts on a
portrait TabletPC. The adaptive style actually accommodates a full
continuous range of sizes and user preferences, of which these are a
few examples. Notice how in addition to the obvious changes in the
number and width of columns, and placement and scale of header
text, images, and so on, the layout engine also makes more subtle ad-
Justments, including selecting among a variety of different sizes and
croppings of the images displayed on each page.

link from the main page. The problem is of course compounded for
more complex layouts, involving potentially multiple sidebars, fig-
ures, pull quotes, etc.—all being merged into a single page design.

Thus, the quandary we are in. Grid-based design systems, for
good reason, do not support “document reflow.” And, also for good

839

reason, the systems that do support reflowing of document con-
tent—of which there are many well-known examples, most no-
tably, Microsoft Word, the HyperText Markup Language (HTML),
and Knuth’s typesetting system, TgX [Knuth 1986]—treat the doc-
ument’s contents more or less as a single one-dimensional “flow”
snaking from one page to the next, rather than supporting grid-
based design.

In this paper, we propose a new approach to adaptive grid-based
document layout that bridges this gap. The basic idea is to encode
each adaptive layout “style” (such as the “New Yorker magazine”
style) as a collection of adaptive grid-based page templates that
include style attributes, layout elements (such as text, cartoons, ad-
vertisements, etc.), and constraint-based relationships among them.
Each adaptive template is designed to adapt to a range of display
dimensions, as well as to other types of viewing conditions, such as
an increased font size. The document’s content is then selected and
formatted dynamically to fit the viewing situation at hand—i.e.,
the display device being used, as well as other user preferences.
Figures 1 and 2 demonstrate the kind of results we have been able
to achieve with this approach.

Making this approach practical has entailed a variety of research
challenges. First, we need a representation for templates and con-
tent that is flexible enough to represent all the different style at-
tributes, layout elements, and constraint-based relationships that
may exist in a document. Second, we need a layout engine that
makes good use of this representation to format a document’s con-
tent automatically, on the fly. Third, we need a paginator that can
determine the globally optimal pairing of content with templates.
And finally, we need a template authoring tool for creating adap-
tive templates. We briefly review related work before we delve
into the details of each of these areas.

2 Related work

Early work on software for document layout focused largely on
text formatting—the arrangement of text into lines, paragraphs,
and higher-level semantic structures [Furuta et al. 1982; Knuth and
Plass 1981; Peels et al. 1985]. In contrast, our work on layout
encompasses a richer and more complex document model that in-
cludes modern layout elements such as sidebars, overlapping fig-
ures and text, and floating figures.

At the heart of our system lies the decoupling of a document’s
content from its stylistic formatting rules. Several standards en-
dorsed by the World-Wide-Web Consortium (W3C) have emerged
to support this separation, most notably the Extensible Stylesheet
Language (XSL) [Adler 2001] and Cascading Style Sheets (CSS)
[Lie and Bos 1996]. A constraints-based extension to Cascading
Style Sheets (CCSS) has also been proposed [Badros et al. 1999],
and others have tried encapsulating stylistic rules in page templates
[Purvis 2002]. Style is imposed top-down on document content in
these systems, without consideration for the local characteristics
of the content itself. In contrast, our templates support a protocol
whereby alternate document content—for example, a wider ver-
sion of an image or an optional drawing—can be chosen if it will
improve the overall page layout.

Our templates encode two-dimensional relationships among lay-
out elements as constraints that must be resolved to evaluate a
particular layout. Other approaches have involved creating an un-
derlying grid for page layout automatically by looking at the
page’s content [Feiner 1988] or through the use of relational gram-
mars [Weitzman and Wittenburg 1993; Weitzman and Wittenburg
1996]. Other researchers have used constraints and/or rules along
with some form of optimization to arrange different elements on
a page while satisfying some notion of “goodness” [Graf et al.
1996; Kroner 1999; Kroner et al. 2002]. Our template representa-

o
Among fhe Tibefans
by Isael

lo L. Bird

Isabella L. Bird

Among the Tibetans

y

Awong the Tibetans

Among the Tibetans 1a

Isabella L. Bird

Among the Tibetans

Among the Tibetans

Figure 3 Examples of adaptive grid-based designs at two different page sizes. Our system accommodates a wide range of modern page-design elements
and ideas, including arrangements of text in unusual configurations, such as (from left to right) text that starts beneath its continuation and/or text
that flows from regions with one style of formatting to another; text and captions that flow over colored backdrops or other images; design elements
such as captions that carve out text regions, and pull quotes. Also, notice how each example can automatically adapt to portrait and landscape page

orientations by changing the configuration of layout elements.

tion distinguishes our approach from most of this previous work, en-
abling us to perform optimal pagination efficiently, while still sup-
porting a large class of grid-based designs. Furthermore, templates
allow designers to author layout styles in an intuitive way via our
graphical authoring tool; they give designers a type of direct and
precise graphical control that is more difficult to attain using just
rules and constraints. The problem of solving graphical constraints
has been an active area of research for years, including investiga-
tion of iterative and direct numeric solvers [Sutherland 1963; Hey-
don and Nelson 1994, Borning et al. 2000; Badros et al. 2001],
differential methods [Gleicher 1991], and discrete/continuous op-
timizations [Harada et al. 1995]. However, we have found that
resolving constraints using simple local propagation (LP) [Suther-
land 1963; Van Wyk 1981] has been sufficient for our purposes.

Before constraints can be resolved, however, they must be spec-
ified. While early systems allowed users to explicitly apply con-
straints in a graphical way [Sutherland 1963], more recent work
has explored inferring constraints from layout snapshots [Kurlan-
der and Feiner 1993] or user interaction [Karsenty et al. 1992].
Badros et al. [2000] allowed users to graphically apply and build
up composite relationships in their constraint-based window man-
ager. In our system, we focus on improving the user interaction
model specifically for specifying the kinds of constraints needed
for document layout.

840

Most document layout systems in use today rely either on us-
er interaction to control pagination (e.g., Microsoft Word, Adobe
PageMaker, and QuarkXPress) or some kind of “first fit” algorithm
[Knuth 1986]. First-fit algorithms typically fill pages entirely, plac-
ing each figure in the document on the first page on which it fits
following its first reference. Such paginations are sometimes ade-
quate, but often they require substantial hand-tuning of the docu-
ment content. Our algorithm begins with a first-fit solution, and
then automatically tries to provide a globally optimal pagination if
the first fit fails.

Much of the previous work on pagination has focused on special-
ized problem domains. In the mid-1990s, two groups independent-
ly proposed solutions for the “Yellow Pages” pagination problem,
where block advertisements and textual phone listings are laid out
on a sequence of pages subject to various constraints on their place-
ment, using constraint satisfaction [Graf et al. 1996] and simulated
annealing [Johari et al. 1997]. Though these systems worked well
on that one specific problem, it is unclear how well they might
work on the more general and sophisticated types of page layout
that our system handles. More recently, Purvis tried using a genetic
algorithm for custom document layout [2002], but her approach
appears to use entire blocks of text as atomic units rather than
considering individual lines, words, and hyphenation units, as our
system does.

For more generalized pagination solutions, researchers have
based their algorithms on dynamic programming. Plass [1981] out-
lined one such algorithm based upon his earlier work with Knuth
on line-breaking algorithms [Knuth and Plass 1981]. Briiggeman-
Klein, et al. [1998] based their approach on Plass’s work; however,
they assumed a simplified document model wherein all text lines
and figures had the same, constant width. Our approach is also
based on Plass, but we generalize this approach to allow a more
expressive document model, one that gives the paginator flexibili-
ty to choose among various page templates, multiple versions of
content (such as figure croppings), and optional content. We also
describe several modifications and optimizations to the basic algo-
rithm that turn out to accelerate the pagination by several orders
of magnitude—optimizations that are essential in our more fine-
grained version of the problem.

3 Representation

We maintain a clean separation between document content and pre-
sentation style in our system, and we further divide the specifica-
tion of style into layout templates and style sheets. We describe our
representation of each of these in turn.

mary” version of text for formatting a page on a small device. If
there are no custom attributes, then the paginator and layout engine
are free to choose the version that works best for formatting the
document and/or individual page.

3.2 Templates

Document layout is described in our system using page templates.
Each template is responsible for defining the layout for a single
page containing a particular set of content (for instance, “a page
with two figures, one sidebar, and some body text”) across a range
of page dimensions. Together, a collection of templates constitute
a particular layout style. Our system supports a wide range of mod-
ern page-design ideas, as shown in Figure 3.

Each individual template is composed of elements, constraints
defining relationships between elements, and preconditions that
characterize the suitability of the template for the particular con-
tent of the page.

3.2.1 Elements
Elements represent rectangular areas of the page in which con-
tent can be placed. To specify which

3.1 Document content

Document content in our system is repre-
sented as a set of individual streams, each
of which contains content that must be
laid out sequentially. Streams are differ-
entiated by media type and purpose—a
magazine article might have five streams,
for example, including “body text,” “pho-
tos,” “sidebar text,” “pull quotes,” and
“photo credits”—and the content with-
in each stream is decorated with special

ELT3

content to use, each element specifies a
source stream from which its content is
drawn. If multiple elements consume con-
tent from the same stream, then a flow
is established, and the stream’s content
flows from one element to the next.
Grid-based page designs often have
overlapping elements, or regions that ap-
pear to be cut out of other elements.
For example, the text on this page flows
around the figure in the center. We
achieve this effect by allowing each ele-

markup to indicate structure. Streams can
also be nested hierarchically using the
<atom> tag, which serves to group a col-
lection of streams together as a content
atom inside a parent stream. For exam-
ple, an atom may group a title, a figure, a
figure caption, some descriptive text, and

ment to specify its place in an element
z-order. Elements that are higher in the
z-order sit atop lower elements, and the
area of the higher elements is subtracted
from those of the elements underneath.
Elements themselves can also speci-
fy a layout template (or a collection of

a footer, all of which belong together in a
sidebar, within a parent “sidebar” stream.

In addition to our standard markup, we
also allow content elements to be anno-
tated with custom attributes that alter the
way an element is treated by the layout
engine and templates. For example, an
image could be marked with a custom
“importance” attribute, and specially au-
thored templates could check the value of
this property to decide how large to make
the image in the final layout.

templates) that can be used to lay out
content atoms. In this way, our layout
infrastructure is fully recursive and can
support everything from the very sim-
ple figure/caption combinations, as seen
throughout the paper, to more complex
recursive embeddings, as in Figure 1.

3.2.2 Constraints

The size and placement of each element
in a template is determined by the evalua-
tion of a set of interdependent constraints

Our document format also allows us to
encode multiple versions of any piece of
content. To accomplish this, each of the
different versions of a piece of content
are packaged inside a <multi> tag, and
the layout system chooses one of these
versions to use when formatting the page.
Each of these different versions may be
tagged with custom attributes, which al-
low the layout engine to choose the ver-
sion of content most appropriate for a
given template—for instance, the “sum-

Figure 4 Automatic selection of templates. 7he lay-
out engine can adapt the layout automatically ac-
cording to the content of the document. The topmost
frame shows the second page of the layout on a
TabletPC in portrait mode, from Figure 2. If the im-
age on that page is tagged as “important,” the lay-
out engine uses the template for “important” figures,
which enlarges the figure and centers it on the page.
If the content formatted with the page includes a side-
bar instead of a figure, then a different subtemplate
is chosen, one that contains the stylistic information
required for displaying a sidebar instead.

that form a directed acyclic graph. Con-
sider, for example, a simple page tem-
plate composed of a title element above
a body text element. In the template, the
title would be constrained to begin at the
top of the page and to be as tall as re-
quired in order to fit the title text. The
body element would be constrained to be-
gin at the bottom of the title element, and
to end at the bottom of the page.

In our implementation, the constraint
system comprises a pool of comnstraint

ES

Behavioral Enrichment for Marmosets by
a Novel Food Dispenser

3 Subjects

Berhard Voelkl, Edith Hober, and Ecline Dungl

The suoss

4 Method

Disponcer

N cftoes atecs rtredores

& Conclusion

Behavioral Enrichment for Marmosets by
a Novel Food Dispenser
erbard Voclkl, Edith Huhr, and i Dungl
¥ictbod

AT e Pk, 0., (1993), Bt

Figure 5 Optimal pagination. The first row shows a

“first fit” pagination of a four-page scientific journal article (using a “SIGGRAPH” formatting

style for a TabletPC-size display in portrait mode). Figure references whose referent is laid out on the same page are rendered in blue, while those
whose referents were placed on some other page are rendered in red. Similarly, widowed and orphaned text lines are highlighted in red. Note how, by
selecting from among a small variety of templates and alternate versions of images, the paginator was able to achieve an “optimal” layout, with every
figure on the same page as its reference and no widows or orphans. This optimal pagination, shown in the second row, was computed in 5 seconds on a

Pentium IV processor.

variables, whose values are determined by a mathematical expres-
sion in terms of the other constraint variables. This configuration
is known as a one-way constraint system.

A template’s constraint variables can be divided into two types:
input and output. The input variables are used to tell the template
about the context in which it is being used. For example, the page
dimensions are related to the template by the use of input variables,
page.width and page.height. Also, if content is tagged with custom
attributes, these values are reflected as additional variables in the
constraint system. The most important output variables in our sys-
tem are the variables that indicate the bounding rectangle for each
element. An element’s size is set by the variables, element. width
and element.height. Another important output variable is called
template.score, which allows a template to express its fitness in
terms of the inputs.

3.2.3 Preconditions

In order for the system to be able to choose from among the mul-
titude of templates constituting a given layout style, each template
uses preconditions to express when it is valid. Content precondi-
tions indicate the amount of content from a given stream that must
be present, and value preconditions indicate the range of values
within which a given constraint variable must lie. With this mech-
anism we can specify, for example, that a particular template is
valid only if there are exactly two figures available to put on the

842

page, and only if the page dimensions fall somewhere between an
A4 and U.S.-letter size page. In fact, we rely quite heavily on value
preconditions to determine the range of page sizes for which each
template is valid, and to help determine which set of templates is
used for laying out a document’s first page, which often requires
special treatment.

3.3 Style sheets

In order to allow document authors to apply specific styling to text,
such as bold or SMALL CAPS, we provide a simple stylesheet lan-
guage that is similar in spirit to CSS [Lie and Bos 1996]. (We may
eventually adopt CSS or XSL-FO [Adler 2001] as the stylesheet
language, but our simple language has been sufficient for our pur-
poses.) Runs of text in the document can be tagged with a style
identifier, and these identifiers can in turn be associated with for-
matting rules in a separate stylesheet file. The section headings, fig-
ure references, italics, citations, and other parts of this paper were
styled in this way.

3.4 Bringing it all together

Together, document content, templates, and stylesheets comprise
the raw data on which our system operates. These data are fed to
the paginator, which in turn relies on the layout engine to render
the actual page layouts. In the next two sections we take a more in-
depth look at how the layout engine and paginator do their jobs.

4 Layout

The layout engine is responsible for combining a page-full of con-
tent, which it receives from the paginator, together with the tem-
plates and stylesheets that define the document’s layout style, to
produce a collection of potential page layouts.

The first step in this process is to determine the appropriate set
of candidate templates to try, from among all the templates in the
collection. The layout engine does this by evaluating all of the
templates’ preconditions against the content at hand (see Figure 4).
Often, more than one template is valid for the given content, in
which case the content is laid out according to each of these candi-
date templates.

For each valid template, the layout engine determines the size
and position of each element by setting the template’s input vari-
ables and then propagating these values forward through the tem-
plate’s constraint graph using simple greedy local propagation.
Once this is done, the layout engine computes the 2-dimensional
regions of the page into which content is to be flowed, shaving
the regions down according to the various elements’ overlap and
z-ordering. Finally, content is flowed into each of the determined
regions.

4.1 Flowing into elements
Our prototype layout engine uses simple

the element’s content exposes a special output variable called tem-
plate.outheight, which, after the element has been laid-out, can be
used to set the final height of the element within its template.

4.3 Template scoring

For each template used to lay out a given page of content, the lay-
out engine calculates a score based on how well the content fits
the template (by evaluating the femplate.score variable) and how
many widows and orphans there are in the page layout. Once the
layout engine has calculated scores for all of the candidate tem-
plates, it reports these back to the paginator, which uses them—
along with template scores for previous and subsequent pages—to
calculate an optimal sequence of templates to use for paginating a
whole document.

5 Pagination

The pagination task is the mapping of content from the document
streams to a set of discrete pages, subject to various constraints
such as the sequential ordering of words in the text stream, the
finite capacity of the pages, and dependencies between content
streams (e.g., textual references to figures and tables). When only
text is present in a document, a superior pagination can avoid wid-
owed and orphaned lines by slightly under- or over-filling pages to

rules for flowing content into regions. For
images, it simply scales the image to fit the
appropriate element’s bounding rectangle,
and then displays the image, cropped by
the element’s content region. For text ele- e :
Y
&

ments, it flows the text into the element’s
region using Knuth and Plass’s optimal
line-breaking algorithm [Knuth and Plass
1981]. For inline figures—figures that oc-
cur within a text flow—the layout engine
places each figure at the position at which
it is referenced in the text, and stretches the
figure to fill the whole column. If there is
no room left in the current element, the fig-
ure is displayed in the next element in the
flow.

20,000 LEAGUES UNDER THE SEA

4.2 Self-sizing elements
The layout engine also supports elements
that automatically adjust their height to fit
their content. For an element that can con-
tain a single image, the layout engine sets o
constraint variables on the element to in-
form it of the pixel dimensions of the image
being placed inside. The pixel dimensions
are then used to compute the image’s as-
pect ratio, and this is multiplied by the el-
ement’s width in the template to come up
with the element’s height.

For a text element, if it is marked with
a special “resize-to-content” tag, the lay-
out engine first sets the element’s height
variable to the maximum allowable value.

20,000 LEAGUES UNDER THE SEA

Then, if there is not enough text to fill the
element entirely, the element’s height is re-
set to be the actual height of the text.

For elements that contain compound con-
tent and require templates for layout, the
situation is only slightly more complex. In
this case, the template employed to lay out

Figure 6 Automatic page filling. This figure, along with Figure 7, demonstrates how multiple tem-
plate choices and optional content can be used by the paginator to completely fill pages in multiple

formats. The first row shows the content laid out in an adaptive “New Yorker” style using first fit.
The blank space at the end of the last page is something that would never appear in the printed
magazine. In the second row, the layout has been optimized to fill the last page, through a combina-
tion of “underfilling” the text (i.e., increasing the bottom margin of the page) and the inclusion of
“bubbles” (optional image content) to inflate the text area.

0000 LEAGUES UNDER THE SEA

RO000 LEAGLES UNDER THE SEA

Figure 7 Automatic page filling, continued. The same content and style as in Figure 6, adapted to a different-sized display. Once again, the top row
shows the unoptimized “first fit” layout, whereas the bottom row shows the result that our paginator can achieve using multiple template choices and

optional content.

move the page breaks to more desirable places. When one or more
additional types of content, such as figures or tables, are present
there are many more choices that can be made to affect the pagina-
tion, and finding a desirable pagination is non-trivial.

In order to find an optimal pagination, a measure of “goodness”
must be defined and then maximized by systematic or heuristic
search, or by constraint optimization. One simple measure of “good-
ness” is the “total page turns” metric, which counts the total num-
ber of page turns that would be required to both read through the
text, and also turn to any additional content that is referenced by
the text from the place where it is referenced.

We typically use a metric that combines total number of page
turns with other measures that reflect the quality of the appearance
of the page. In general, the more flexibility available to an algo-
rithm—i.e., the more choices that can be made in laying out the
content—the higher the “goodness” of the optimal solution is like-
ly to be.

5.1 Original algorithm
Pagination is solvable by dynamic programming because it has the
“optimal subproblem” property, where any optimal solution of n
pages contains an optimal solution of the first n—1 pages. A dy-
namic programming paginator will start with the empty solution
and incrementally solve larger and larger subproblems, while keep-
ing a table of each subproblem’s score, and a pointer back to the
preceding subproblem in the optimal solution. The basic algorithm
evaluates a new subproblem S by scanning the table for the preced-
ing subproblem S’ with the best score that can legally precede the
last page in S, and stores the score for the new last page in the table
(if there is a valid predecessor). Since the number of subproblems
that can precede the last page is bounded by the page size, there is
just a constant number of predecessors that must be examined for
each subproblem. When the table is completed, the entry in the last
cell contains an optimal pagination (if one exists), and the pointers
can be followed back to recover the optimal solution.

Plass [1981] was not concerned with the specifics of validating
a page, but commented that the operation had to be very low-cost.

844

Briiggeman-Klein et al. [1998] kept this cost low by restricting
the document model. Our model, on the other hand, requires an
incredibly complex inner loop in which we must both solve a con-
straint system to lay out each template and also line-break the text
to measure the template’s capacity. Therefore, we had to rethink
the basic dynamic programming algorithm to evaluate far fewer of
these very expensive operations.

5.2 Our algorithm

The basic algorithm just described calls an “evaluate page” func-
tion on each of the possible predecessors of each subproblem—
of which there can be thousands, the vast majority of which are
not even valid predecessors. Our approach was to restructure the
algorithm so that the evaluation is performed only for valid pages.
Since there is no way to know which pages are valid looking back-
wards from an endpoint, we start instead with each completed sub-
problem (again, beginning with the empty problem) and calculate
all possible ending points for the following page. A reference back
to the originating subproblem is placed in the table for each ending
point, along with the score for that partial solution. If an entry for
the ending point already exists in the table, it is replaced if the
new entry has a better score. The revised algorithm ensures that
when a new subproblem is considered, all subproblems that could
possibly precede it in a solution will have already been solved, and
the entry pointing back to the optimal predecessor will be in the
table. If no entry exists for a subproblem when it is reached, then
the subproblem can be passed over with no computation. The new
algorithm is still linear in the product of the sizes of the content
streams, but many of these operations now require no substantial
work.

Performance is further improved by pruning partial solutions
from the table whose score is worse than some threshold. This prun-
ing is helpful because there are relatively few “good” solutions in
the valid solution space. A conservative pruning strategy uses the
score from a cheap “first fit” solution as a pruning threshold, which
typically provides a large speedup and guarantees that a solution
will always be found. Another strategy is the optimistic pruning

strategy, which chooses an approximate, near-perfect threshold of
“goodness” and iteratively reduces this threshold if no solution is
found. When lots of flexibility is available to the paginator (typical-
ly because a rich choice of templates or content options is present),
the likelihood of a near-perfect solution existing becomes high,
and this “optimistic” approach is preferred.

To implement this algorithm the layout engine must provide a
FindValidEndingPoints() call that enumerates the places the next
page can end, given the starting point and the number of figures
to be placed on the page. The FindValidEndingPoints() call is re-
sponsible for enumerating the valid template choices and returning
a vector of valid ending points together with the template used to
arrive at each ending point and a quality score for the resulting
layout. The quality can reflect the template’s output score, the pres-
ence of widows and orphans, and any other measures of layout
quality, such as penalties for under-filled pages.

Like the original algorithm, our improved algorithm can easily
be expanded for additional content streams by adding extra dimen-
sions to the table and additional nested loops to the algorithm.
Optional content streams can be handled with no additional pro-
gramming by having templates available that display content from
optional streams. If these templates are included in the “style” and
optional content is available in the document, the paginator will in-
clude them in the solution whenever they improve the optimal pag-
ination. We have found that having a small number of templates
with optional content can vastly improve pagination quality (see
Figures 5-7).

5.3 Analysis

To test our pagination algorithm, we created a set of synthetic
test documents using a statistical distribution of words. Figures
were chosen for each document from a pool of samples with vary-
ing aspect ratios and at a variety of densities, and references to
these figures were randomly distributed over the document. These
documents were then paginated by a greedy first-fit algorithm to
establish a base pagination quality, then optimal solutions were
generated using our paginator. As expected, overall, our algorithm
produced consistently superior paginations using the “total page
turns” metric.

We first tested our algorithm using a simplified layout engine
that employed greedy line-breaking and a small collection of tem-
plates. A set of 50 test documents containing between 5,000 and
20,000 words and between 10 and 45 figures were tested. These
documents were found to have an average greedy pagination quali-
ty of 3.2 “penalty page turns,” that is, page turns beyond the ones
required to simply page through the text. This count was reduced
to an average of I.4 page turns by the optimal algorithm when
constrained to nearly full pages. With more flexibility available
(equivalent to a 90% minimum fill) this count was further reduced
to an average below 0.1 page turns, although occasionally adding
an extra page to the document. A set of large documents with un-
usually high figure density had an average penalty of 6.0 reduced
to 1.7 with 100% fill. Using the new algorithm described here yield-
ed running times of under three seconds on a Pentium IV. These
timings represent a speed-up of over 5,000 from the running time
of the standard dynamic programming algorithm.

Paginations generated with the full system are highly dependent
upon the selection of templates associated with the documents.
We tested the fully-featured system with two sets of templates:
our standard “SIGGRAPH” style used in Figure 5 and a “rich
SIGGRAPH” style augmented with ten additional templates offer-
ing more layout options. We tested documents of two sizes, 5,000
and 10,000 words, and at two densities, 1.2 and 2.5 figures per
thousand words. Overall, the documents with the basic template

845

set averaged 4.4 penalty turns per document with greedy pagina-
tion, which improved to 1.6 page turns with our algorithm. With
the richer template set, the documents averaged 2.7 penalty turns
with the greedy solution and 0.45 page turns with the optimal. We
found that widowed and orphaned lines occured about 1.2 times
per thousand words in the greedy paginations and were reduced
to about 0.4 times per thousand words in optimal solutions. For
timing results, we used the optimistic pruning strategy, since it dra-
matically outperformed the conservative strategy most of the time.
(However, this approach slows down considerably when no good
optimal solution exists.) Using the optimistic pruning strategy, the
full layout system solved the small (5,000 word) test files in an av-
erage of 21 seconds with 6 figures and 43 seconds with 12 figures.
The large files (10,000 words) averaged 94 seconds with 12 figures
and 472 seconds with 25 figures. Our experimental prototype has
not been optimized for speed, and we expect a tuned system to
perform much faster.

6 Authoring templates

Although constraints represent a powerful means for specifying
flexible layouts, this increased expressiveness does place more re-
sponsibility on the template designer, who must now consider how
a page should look over a range of different aspect ratios and sizes,
rather than at just a single static size. To make this potentially diffi-
cult task more manageable, we have developed a constraint-based
graphical authoring tool that allows the user to draw and arrange
layout elements, specify how they adapt to different page sizes,
and preview this adaptation interactively. In addition, our system
also offers some support for authoring template preconditions and
adding style attributes to elements.

6.1 Creating and arranging layout elements

The user interface for our system presents a schematic representa-
tion of a page template that can be interactively resized. (See Fig-
ure 8 and the accompanying video or CD-ROM to get a sense of
the interface and style of interaction.) To create a new layout ele-
ment, the designer simply draws a rectangular region on the screen
and then (using standard “drawing tool” operations) manipulates it
to its desired size and position. Since templates are adaptive, most
elements will need to be constrained relative to the page and/or
other elements in order to maintain the integrity of the layout at dif-
ferent form factors. For example, a designer might want to specify
that columns of text remain evenly distributed across the horizon-
tal extent of the page, or that a caption remain below a figure and
aligned with its right edge.

To specify page-level constraints, the user defines a page grid
by drawing horizontal or vertical guides and then, using a snap-
dragging interface [Bier et al. 1986], constrains elements relative
to this grid. The user can create guides that either scale relative
to the page (e.g., a horizontal “hang line” for figures that always
remains one-third of the way down the page), or maintain a con-
stant offset (e.g., a vertical guide that defines a constant margin on
the left side of the page). Guides can also be specified relative to
other guides, allowing the user to define a hierarchical page grid.
To constrain one element relative to another, the user again uses a
snap-dragging interaction to align the elements as desired.

Not all elements can be fully constrained using the page grid
and other elements alone. As mentioned previously, templates of-
ten include layout elements that size themselves based on content
rather than on the dimensions of the page. For example, figure el-
ements typically must respect the native aspect ratio of an image,
and caption elements usually expand to fit the available text. To
handle these situations, the user can constrain one of an element’s
dimensions (usually the width) as described above, and then speci-

e Edit View Fle Edit View

usnewsMargins : 411 x 495 [8]=13] usnewsTitleFig : 411 x 495 FER usnewsTitleFig : 294 x 492 BEER

Fie Edt View Fle Edt View

usnewsMargins Margins

e

Tanter Jradtarniie fanfer
104

e
1

— B
| =

Figure 8 Template authoring. The authoring interface allows the user to construct a grid over the page using a set of guides. Here are some snapshots
from the process of creating a template for the “U.S. News & World Report” style. From left to right: a simple two-column grid is loaded from an
existing template; a text element is snapped to the grid, the pink lines indicating aligned features that will be constrained to abut if the mouse button is
released with the element in this position; the completed template with guide lines turned off; and the resulting constraint-based template adapting to
different display sizes as the window is resized. (Please see the video or CD-ROM for a real-time depiction of this figure.)

fy that the other dimension be computed based on content. Another
common type of content-specific constraint involves alignment
based on the implicit grid defined by text. Our system allows the
user to align the top or bottom of one element to the precise po-
sition of the top, bottom, or center of a set of lines of text within
another.

The system keeps track of the specified relationships by main-
taining a multi-way constraint graph. When elements are manipulat-
ed or the page is resized, we use local propagation (LP) to update
the constraint system, and then we re-render the page to reflect
the changes. We chose LP as our constraint resolution technique
because it is simple and supports arbitrary constraint functions.
The primary drawback of LP, however, is its inability to correctly
resolve simultaneous constraints. A more sophisticated constraint
solving engine could also be incorporated into our tool should the
need arise.

6.2 Template selection
As mentioned in Section 3, how suitable a template is for a particu-
lar page size and selection of content is defined using preconditions
and a scoring function. Based on the content sources associated
with each element, the content preconditions for a template can be
automatically computed. Using a simple dialog box, the user can
specify additional preconditions based on the value of any variable
in the constraint system. For instance, there is typically a range of
page dimensions for which a given template is suitable; to specify
this common precondition, the tool allows the user to take snap-
shots of the template at its smallest and largest acceptable sizes.
Often, certain templates are optimized for content with specific
attributes. For example, magazines usually have special layouts de-
signed for particularly important figures that are different than the
ones used for regular figures. Using our tool, a designer can add
attribute preferences to elements that influence the score that the
page template receives for a given selection of content. Specifical-
ly, these preferences are incorporated into the expression for com-
puting template.score. When more than one attribute preference is
specified for an element, the user is asked to rank them in order of
importance. Although we could easily allow the user to specify ac-
tual numeric weights for each of the attributes, we have not found
this to be necessary, and we have been wary of exposing too many
controls unnecessarily in a tool of this kind.

846

7 Results

All of the figures in this paper—as well as the paper, itself—were
generated using our adaptive grid-based document layout system.
Other examples are shown on the accompanying video or CD-
ROM.

Currently, we have no special authoring system for creating con-
tent in our markup format. Instead, we have used Microsoft Word
to author the documents and converted them to our markup using a
macro.

8 Conclusion and future work
Computer display hardware is rapidly approaching the point at
which—at least from a technical standpoint—the on-screen read-
ing experience will rival the printed page. Moreover, there is ev-
ery reason to believe that, once documents can look as good on
the screen as they do in print, the on-screen reading experience
will even surpass the experience of reading on paper, as computers
provide all sorts of opportunities for customization of style and
content—not to mention additional capabilities, like animation and
interactivity—that should make the on-screen experience superior
in many ways.

Yet, oddly, one of the biggest impediments to achieving this
decades-old vision of a paperless world may turn out to be a de-
ceptively simple two-dimensional computer graphics and user in-
terface problem: How can you define a type of grid-based design
that adapts elegantly and seamlessly to any viewing conditions?

In this paper, we take some significant first steps toward address-
ing this timely question. However, our prototype system is not,
by any means, the final word on adaptive grid-based page layout.
In fact, we feel this work opens up a lot of new and interesting
directions, which we hope others will join us in exploring. These
include:

* What kind of editor could be built for creating and editing con-
tent, as well as adaptive styles? How do you allow the user to
move seamlessly between the two modes?

* How do you allow the interactive editing of multiple versions
of content? And how do you keep track of all the different ver-
sions? And what about interactions among the various choices?
(See also [Anderson 2002].)

* How do you create a higher-level editor for entire layout
“styles,” defined as collections of templates?

How do you design styles for tables, defined as arbitrary two-
dimensional arrays of elements? (See also [Anderson and Sobti
1999; Wang 1996].)

How do you design a style that can accommodate hand-drawn
annotations that the user might add?

How do you add more continuous forms of optimization to the
paginator and layout engine in order to achieve more nuanced
effects, such as, for example, scaling an image by a tiny fraction
in order to achieve a better page break later on?

How do you incorporate additional metrics into the layout en-
gine, such as achieving some kind of “compositional balance”?
Is it possible to infer a set of templates, or an entire style, auto-
matically from a scanned set of documents?

9 Acknowledgements

The authors wish to thank the following people for helpful discus-
sions at various points in this project: Maneesh Agrawala, P. Anan-
dan, Richard Anderson, Alan Borning, Michael Cooper, Michael
Duggan, Sam Epstein, Bill Hill, Nathan Hurst, Joe King, Eliyezer
Kohen, Kim Marriott, Marc McDonald, Tomer Moscovich, Raman
Narayanan, Radoslav Nickolov, Patrice Simard, and Geraldine
Wade. We would also like to thank the SIGGRAPH anonymous
reviewers for their comments and suggestions.

References

ADLER, S. 2001. Extensible stylesheet language (XSL) version 1.0. W3C
recommendation. http://www.w3.org/TR/xsl/.

ANDERSON, R.J. 2002. The power of choice: Content selection in page lay-
out. Technical report, University of Washington.

ANDERSON, R.J., AND SOBTI, S. 1999. The table layout problem. In Proceed-
ings of the 15th ACM Symposium on Computational Geometry, 115—
123.

BADROS, G.J., BORNING, A., MARRIOTT, K., AND STUCKEY, P. 1999. Con-
straint cascading style sheets for the web. Proceedings of UIST ’99, 73—
82.

BADROS, G.J., BORNING, A., AND STUCKEY, P.J. 2001. The Cassowary lin-
ear arithmetic constraint solving algorithm. In Computer-Human Inter-
action 8 (4), 267-306.

BaDRroS, G.J., NICHOLS, J., AND BORNING, A. 2000. Scwm—An intelligent
constraint-enabled window manager. In Proceedings of SmartGraphics

B

00.

BIEr, E.A., STONE, M.C. 1986. Snap-dragging. In Proceedings of

SIGGRAPH 86, 233-240.

BORNING, A., LIN, R., AND MARRIOTT, K. 2000. Constraint-based docu-
ment layout for the web. In Multimedia Systems 8.3, 177-189.

BRUGGEMAN-KLEIN, A., KLEIN, R., AND WOHLFEIL, S. 1998. On the pag-
ination of complex documents. Technical report, Fernuniversitdt Hagen
[University of Hagen].

FEINER, S. 1988. A grid-based approach to automating display layout. In
Proceedings of Graphics Interface ’88, 192-197.

FURUTA, R., SCHOFIELD, J., AND SHAW, A. 1982. Document formatting
systems: Survey, concepts and issues. In ACM Computing Surveys, 417—
472.

GLEICHER, M. AND WITKIN, A. 1991. Differential manipulation. In Pro-
ceedings of Graphics Interface 91, 61-67.

GrAF, W. H. 1992. Constraint-based graphical layout of multimodal presen-
tations. In Proceedings of AVI 92, 356-387.

GrAF, W.H., NEUROHR, S., GOEBEL, R. 1996. YPPS—A constraint-based
tool for the pagination of yellow-page directories. In Proceedings of the
KI-96 Workshop on Declarative Constraint Programming, 87-97.

847

HarADA, M., WITKIN, A., AND BARAFF, D. 1995. Interactive physically-
based manipulation of discrete/continuous models. In Proceedings of
SIGGRAPH ’95, 199—208.

HEYDON, A., AND NELSON, G. 1994. The Juno-2 constraint-based drawing
editor. DEC SRC technical report 131a, Digital Systems Research Cen-
ter.

HURLBURT, A. 1977. Layout: The Design of the Printed Page. Watson-
Guptill Publications. New York.

HURLBURT, A. 1978. The Grid. Van Nostrand Reinhold Company. New
York.

JoHARI, R., MARKS, J., PARTOVI, A., AND SHIEBER, S. 1997. Automatic
yellow-pages pagination and layout. In Journal of Heuristics 2 (4), 321—
342.

KARSENTY, S., LANDAY, J.A., AND WEIKART, C. 1992. Inferring graphical
constraints with Rockit. In Proceedings of HCI 92, 137-153.

KNuTH, D.E. 1986. TgX: The Program, Volume B of Computing and Type-
setting. Addison Wesley. New York.

KNUTH, D.E., AND PLASS, M.F. 1981. Breaking paragraphs into lines. In
Software—Practice and Experience 11, 1119—-1184.

KRONER, A. 1999. The DesignComposer: Context-based automated layout
for the internet. In 4441 1999 Fall Symposium Series: Using Layout for
the Generation, Understanding or Retrieval of Documents.

KRONER, A., BRANDMEIER, P., AND RisT, T. 2002. Managing layout con-
straints in a platform for customized multimedia content packaging. In
Proceedings of AVI 02, 89-93.

KURLANDER, D., AND FEINER, S. 1993. Inferring constraints from multiple
snapshots. In ACM Transactions on Graphics, October, 227-304.

Lie, HW., AND Bos, B. 1996. Cascading style sheets, level 1. W3C recom-
mendation. http://www.w3.org/Style/CSS/.

Lok, S., AND FEINER, S. 2001. A Survey of automated layout techniques
for information presentations. In SmartGraphics ‘o1, 61-68.

MULLER-BROCKMANN, J. 1981. Grid Systems in Graphic Design. Hastings
House Publishers. New York.

PEELS, A.J.H., JANSSEN, N.T.M., AND NAWDN, W. 1985. Document archi-
tecture and text formatting. In ACM Transactions on Information Sys-
tems, 347-369.

PLass, M.F. 1981. Optimal pagination techniques for automatic typesetting
systems, technical report STAN-CS-81-870, Department of Computer
Science, Stanford University.

PuRrvis, L. 2002. A genetic approach to automated custom document assem-
bly, In Proceedings of ISDA "02.

SUTHERLAND, LE. 1963. SketchPad: A man-machine graphical communi-
cation system. In Proceedings of AFIPS 23, 323-328.

VAN WyK, CJ. 1981. IDEAL user’s manual. Bell Laboratories.

WANG, X. 1996. Tabular Abstraction, Editing and Formatting. PhD thesis,
University of Waterloo.

WEITZMAN, L., AND WITTENBURG, K. 1993. Relational grammars for in-
teractive design. In Proceedings of the IEEE Workshop on Visual Lan-
guages, 4—11.

WEITZMAN, L., AND WITTENBURG, K. 1996. Grammar-based articulation
for multimedia document design. In Multimedia Systems 4, 99—111.

