devel operlife.comM

SAX Tutorial 1

Aut hor Nane . Nazmul Idris
Created On . May 23, 1999
Modi fied On : June 4, 1999 8:03 pm

Copyright The Bean Factory, LLC. 1998-1999. All Rights Reserved.

SAX Tutorial 1 devel operlife.com

Table of contents

Overview

What is SAX

Three stepsto SAX

Stepl: Creating a custom object model
Step2: Creating a SAX parser

Step3: Creating a DocumentHandler
Presentation layers for the object model
Presentation Layer 1: Swing
Presentation Layer 2: Servlet

Source code

Overview

XML 1.0 alows you to encode your information in textual form and it allows you to create tags
which allow you to structure the information stored in XML documents. Thisinformation must at
some point be read by some program to do something useful, like viewing, modifying or printing
it. In order for your programs to access this information you can use the SAX (Simple API for
XML) or the DOM (Document Object Model) APIs. Both these APIs must be implemented by the
XML parser of your choice (which also must be written in the programming language of your
choice).

For Java, these parsersinclude the Sun TR2 XML Parser, Datachannel XJ2, IBM XML Parser for
Java, and OpenXML (among many others). All of these parsersimplement the SAX API (and
also the DOM API). There are fewer differences in the implementation of SAX compared to the
implementation of DOM 1.0 (simply because SAX is so much smaller and simpler than DOM).

S0 your Java programs must use an XML Parser written in Javathat implements the SAX API in
order for you to use SAX. Inthistutorial, | illustrate the use of the Sun TR2 Parser, and | will
show you how you can modify the code very simply in order to use the XML parser of your
choice.

What is SAX

SAX stands for the Simple API for XML. Unlike DOM (Document Object Model) which creates
atree based representation for the information in your XML documents, SAX does not have a
default object model. This means that when you create a SAX parser and read in a document
(unlike DOM) you will not be given a nice default object model. A SAX parser isonly required to
read in your XML document and fire events based on the things it encountersin your XML docu-
ment. Events are fired when the following things happen:

2/ 21 Aut hor Nanme : Naznmul Idris

SAX Tutorial 1 devel operlife.com

» open element tags are encountered in your document

» close element tags are encountered in your document

 #PCDATA and CDATA sections are encountered in your document

e processing instructions, comments, entity declarations, are encountered in your document.

We will start by looking at the open and close element tag events and the #PCDATA and CDATA
events. One thing to remember about SAX isthat the sequence of these eventsis very important,
because the sequence in which events are fired determines how you will have to interpret each
event.

Three steps to SAX

Since SAX does not come with a default object model representation for the data in your XML
document, the first thing you have to when using SAX is create your own custom Java object
model for your data. This could be something as simple as creating an AddressBook class if your
XML document is an address book. After your custom object model has been created to “hold”
your data (inside your Java program), the next step is creating a SAX document handler to create
instances of your custom object models from the information stored in the XML document. This
“document handler” is alistener for the various events that are fired by the SAX parser based on
the contents of your XML document. Thisisvery similar to the AWT 1.1 Event Delegation
Model, where Ul components generate events based on user input and event listeners perform
some useful function when these events are fired. Most of the work in using SAX isin creating
this document handler. Once you have created the custom object model and the SAX document
handler you can use the SAX parser to create instances of your custom object model based on the
data stored in your XML documents.

This processisillustrated using an example in the following paragraphs. | will show you how to
perform these 3 steps for an AddressBook example. The example problemisthat | have an XML
document which contains my address book and | would like to view this address book using a
Swing program and a Servlet. Also, | would like to use a SAX parser to do thisinstead of using a
DOM parser. Thefirst thing to do is create an object model and deal with the SAX parser issues
before even thinking about the presentation layers (Swing and Servlet) for my object model
(AddressBook). Here iswhat my address book XML document looks like:

<?xm version = “1.0"?>
<addr essbook>
<person>
<l ast name>| dri s</| ast name>
<firstname>Nazmul </firstname>
<conpany>The Bean Factory, LLC. </conpany>
<emai | >xm @eanf actory. conk/ emai | >
</ person>
</ addr essbook>

The three stepsto using SAX in your programs are:
1. Creating a custom object model (like Person and AddressBook classes)

3/ 21 Aut hor Nanme : Naznmul Idris

SAX Tutorial 1 devel operlife.com

2. Creating aSAX parser
3. Creating a DocumentHandler (to turn your XML document into instances of your custom
object model).

Stepl: Creating a custom object model

| have created a ssimple Java object model to represent the information in my address book XML
document. | created 2 classes, an AddressBook class and a Person class. My object model isa
simple mapping from the elements into classes. The following is a description of these classes:

* The AddressBook classis acontainer of Person objects. The AddressBook classisasimple
adapter over the java.util.List interface. The AddressBook class has methods to allow you to
add Person objects, get Person objects, and find out how many Person objects arein the
AddressBook. The addressbook element maps to the AddressBook class.

» The Person class simply holds 4 String objects, the last name, first name, email and company
name. Thisinformation is embedded within the <person> tag. So the person element maps
into the Person class. The firstname, lastname, company and email elements map into String
class.

Hereisalisting of the Person class:

public class Person{

/1 Data Menbers

String fnanme, | nane, conpany, enmil

/1 accessor methods

public String getConpany(){return conpany;}
public String getEmail (){return emmil;}
public String getFirstNanme(){return fnane;}

public String getlLastName(){return | nane;}

/1 mutator nethods

public void setLastNane(String s){lname = s;}
s;}
s;}

public void setFirstNanme(String s){fnane

public void setConmpany(String s){conpany

public void setEmail (String s){email = s;}

/1 toXM.() nethod
public String toXM.(){
StringBuffer sb = new StringBuffer();
sb. append(" <PERSON>\n");
sb. append("\t <LASTNAME>" +| nanme+" </ LASTNAVE>\ n") ;
sb. append("\t <FI RSTNAVE>" +f nane+" </ FI RSTNAVE>\ n") ;

4/ 21 Aut hor Name : Naznmul Idris

SAX Tutorial 1 devel operlife.com

sb. append("\t <COWPANY>"+conpany+" </ COVPANY>\ n");
sb. append("\t<EMAI L>"+emai | +" </ EMAI L>\ n");
sb. append("</ PERSON>\n");
return sb.toString();
1}

Please note the toXML () method. This method returns a String that contains the XML representa-
tion of a Person object. This kind of method is not only very useful for debugging, but it can also
be used to save Person objectsto an XML file (or other kind of XML persistence/storage engine).
The AddressBook class aso hasatoXML() method, and that method uses the Person class's
toXML () method too.

Hereisalisting of the AddressBook class:

public class AddressBook{

/1 Data Menbers

Li st persons = new java.util.ArrayList();

/1 mutator nethod

public void addPerson(Person p){persons.add(p);}

/1 accessor met hods
public int getSize(){ return persons.size();}
public Person getPerson(int i){

return (Person)persons.get(i);}

/1 toXM. nethod
public String toXM.(){
StringBuffer sb = new StringBuffer();
sb. append("<?xm version=\"1.0\"?>\n");
sb. append(" <ADDRESSBOOK>\ n\n");
for(int i=0; i<persons.size(); i++) {
sb. append(getPerson(i).toXM());
sb. append("\ n");
}
sb. append("</ ADDRESSBOOK>");
return sb.toString();
1}
Asyou can see these are very smple classes. The interesting part (in this case) is Step3.

5/ 21 Aut hor Name : Naznmul Idris

SAX Tutorial 1 devel operlife.com

Step2: Creating a SAX parser

Creating a SAX parser is quite easy and you have to create an XML document handler class for
the parser (so that something useful gets done as the parser parses the XML document).
Hereiscodeto create a SAX parser:

i mport java. net.*;

i mport java.io.*;

i mport org.xm.sax.*;

try{
/lcreate an | nputSource fromthe XM. docunent source

| nput St reanReader isr = new | nput StreanReader (
new URL(“http://host/AddressBook. xm ”). openStream();
/I new Fil eReader(new File(“AddressBook.xm”))

)

| nput Source is = new | nput Source(isr);

/'l create an docunenthandler to create obj nodel

Docunent Handl er handl er = //new Your Handl er () ;

/lcreate a SAX parser using SAX interfaces and cl asses
String parserCl assNane = “com sun. xm . parser. Parser”
org. xm . sax. Parser. parser = org.xm .sax. hel pers. Parser Factory.

makePar ser (parserCl assNanme);

[l create docunent handler to do sonething usefu
/Iwith the XML docunent being parsed by the parser
par ser. set Docunent Handl er (handl er);
parser.parse(is);
}
catch(Throwable t){
Systemout.println(t);
t.printStackTrace();
}
The code example above uses the Sun TR2 parser. The classes used from TR2 include the
com.sun.xml.parser.Parser which is used to create a non-validating SAX parser.

Y ou can use any parser that supports SAX. You have to change 1 thing:

6/ 21 Aut hor Name : Naznmul Idris

SAX Tutorial 1 devel operlife.com

* Replace the value of the parserClassName string with the class name of the SAX Parser class
of your choice.

Y ou might be wondering what an InputSource class does. An InputSource is analogous to an
InputStream. An InputSource is an encapsulation over a byte stream or character stream and it
also includes a system and public identifier (which amount to aURI). Infact, in order to createin
InputSource, you have to pass the constructor an InputStream object reference.

Step3: Creating a DocumentHandler

The SAX parser that was created in Step2 reads an XML document and fires events as it encoun-
ters open tags, close tags, CDATA and #PCDATA sections, etc. These events are fired asthe
SAX parser reads the XML document from top to bottom, atag at atime. In order for the SAX
parser to notify some object that these events are occurring, an interface called DocumentHandler
isused (itsinthe org.xml.sax package). There are 3 other interfaces that exist called EntityRe-
solver, DTDHandler and ErrorHandler. These 4 interfaces together include all the methods that
correspond to al possible eventsthat the SAX parser can fire (as its reading an XML document).
The most frequently used interface is the DocumentHandler interface. So you have to provide an
implementation of at least the DocumentHandler interface to the SAX parser, which then will
invoke the right methods in the right sequence on your DocumentHandler implementation class.
Asthe SAX parser reads an XML document, events are fired, which are then trandated into
method calls on all the “registered document event listeners’ (which is your DocumentHandler
implementation class). So asthese events are fired, asthe XML document is read, method calls
are made on your Document Handler implementation class. This class must do something useful
with these method calls and the sequence of the calls.

Figure 1 shows the sequence of method calls that the SAX parser makes on your Documen-
tHandler interface implementation class. The sequence of method calls are numbered from 1 to
12. Y ou can see from this picture how the SAX parser turnsthe XML document into a bunch of
events, which are in turn translated into a bunch of method calls in your DocumentHandler inter-
face implementation class.

The DocumentHandler interface contains methods in it which deal primarily with element open
and close tags, attributes, #PCDATA and CDATA sections. Once you create your Documen-
tHandler implementation class you must tell the SAX parser to useit. The following code snippet
does thistrick.

org. xm .sax. Parser.parser = //create a SAX parser

Docunent Handl er handler = //instantiate your inplenentation

par ser. set Docunent Handl er (handl er);

There are 3 more interfaces in addition to the DocumentHandler interface: EntityResolver,
DTDHandler, ErrorHandler. The following sections describe each of these interfaces in addition

to the HandlerBase class. Then | describe the actual implementation of the DocumentHandler
interface (that creates the AddressBook object).

7121 Aut hor Nane : Nazmul ldris

SAX Tutorial 1 devel operlife.com

XML Document List of SAX parser method calls
(in sequence) on your
DocumentHandler implementation

tmmmmccccccccccco--> 1: startDocument()

<?xml version="1.0"?>

<addressbook> ~ rm===m===mmm---a --> 2: startElement("addressbook" , attribs)
<person> = eceeeeeccooooo -=-=->> 3: startElement("person" , attribs)
D -l-r--> 4: startElement("name" , attribs)
______________ dbees B characters(char[] , start , length)
Nazmul Idris evaluates to "Nazmul Idris"
-------------- ==r==2>> 6: endElement("name")
</name>
<email> e -~F=-=> 7: startElement("email" , attribs)
xml@ijava-xml.com .____________. RIS 8: characters(charl[] , start, length)
evaluates to "xml@java-xml.com"
<femail>] -~-==> 9: endElement("email")
</person> e =====> 10: endElement("person")
.
L]
</addressbook> = -=--c----cc-o--- F-=-=> 11: endElement("addressbook")

tm=====------------> 12: endDocument()

‘ Figure 1 : SAX DocumentHandler interface methods and their sequence

ErrorHandler interface

The ErrorHandler interface methods deal with custom error handling behaviors that you want to
implement in your handler, in response to erroneous conditions in your source XML document.
The SAX parser is not required to do any kind of error handling, it is the programmer’ s responsi-
bility to put any error handling and exception-throwing code in the implementation class of this
interface. You don't have to implement thisinterface. If you extend the HandlerBase class, a
default implementation is already provided which throws a SAX Exception when errors are
encountered in the XML document being parsed. The methods in the ErrorHandler interface are:
error(SAXParseException €), fatalError(SAX ParseException €) and warning(SA X ParseExcep-
tion €) methods.

If you choose to perform custom error handling (in the implementation class of your ErrorHandler
interface) you haveto tell the SAX parser to use your class as an error handler. The following
code snippet doesthis:

org. xml . sax. Parser.parser = //create a SAX parser
ErrorHandl er handler = //instantiate your inplenmentation

par ser.set ErrorHandl er (handl er);

8/ 21 Aut hor Name : Naznmul Idris

SAX Tutorial 1 devel operlife.com

DTDHandler interface

The DTDHandler interface methods deal with entity and notation declaration sectionsin the
DTDs of the XML documentsthat you reading. The SAX parser is not required to do anything
with these notation and entity declarations, if you wish to do something with these things then you
have to write a class that implements the DTDHandler interface and tell the SAX parser to useit.
The DTDHandler interface has the following methods: notationDecl(String name, String publi-
cld, String systemid), and unparsedEntityDecl((String name, String publicld, String sys-

temld, String notationName).

If you choose to do something useful with entity and notation declarations, you have to tell the
SAX parser to use your classasa DTD handler. The following code snippet does this:

org. xm .sax. Parser.parser = //create a SAX parser

DTDHandl er handler = //instantiate your DTDHandl er inplenmentation

par ser. set DTDHandl er (handl er);

EntityResolver interface

The EntityResolver interface deals with allowing you to create customized I nputSource objects
for external entities. These external entities could be DTDsthat are located by using aURI to a
remote resource or any other resource that is external to your local system. These external entities
or resources are located using URIs and by implementing the EntityResolver interface you can
define custom code for creating an InputSource given an externa entity. The EntityResolver
interface only has one method: I nputSource resolveEntity (String publicld, String systemid).

If you choose to provide customized behaviors for creating I nputSources from external entities,
you have to tell the SAX parser to use your class that implements the EntityResolver interface.
The following code snippet does this:

org.xm .sax. Parser.parser = //create a SAX parser
EntityResol ver handler = //instantiate your inplenentation

par ser. set DTDHandl er (handl er);

HandlerBase class

Now, instead of implementing each method in the 4 interfaces (DocumentHandler, EntityRe-
solver, DTDHandler and ErrorHandler) you can make your SAX handler class extend the
org.xml.sax.HandlerBase class. The HandlerBase class provides empty implementations for each
of the 4 SAX handler interfaces (DocumentHandler, EntityResolver, DTDHandler and ErrorHan-
dler). Extending the HandlerBase saves alot of time because you can only override the implemen-
tations for the methods that you are interested in using. | will demonstrate how to create an
AddressBook from an XML document by extending the HandlerBase class.

Building the actual object model (using DocumentHandler)

In converting the address book XML document (described in the “Three stepsto SAX” section), |
use a DocumentHandler to create Person objectsthat | insert in one AddressBook object (the code

9/ 21 Aut hor Nanme : Naznmul Idris

SAX Tutorial 1 devel operlife.com

for these classesis given in the “ Stepl: Creating a custom object model” section). Instead of cre-
ating a DocumentHandler class by implementing the DocumentHandler interface directly, |
choose to extend the HandlerBase class (as it saves alot of time). | am only going to use three
methods that are available in the DocumentHandler interface: startElement(...), endElement(...)
and characterg(...).

Now, and address book contains person elements, which in turn contain name and email elements.

Thisishow | have to think in order to write a DocumentHandler:

» each person element hasto be converted into a Person object and inserted into one Address-
Book object.

» thelastname, firstname, company and email elements have to be converted to String objects
and put inside a Person object.

So as you can see, my DocumentHandler implementation must create one AddressBook object
and many Person objects (using the information in the XML document). The SAX parser reports
thisinformation to my DocumentHandler by making a sequence of method calls as shown in Fig-
ure 1. I must use this sequence of method calls and remember “ where’ inthe XML document | am
in order to create Person objects (and add them to the AddressBook object).

In order to remember “ where” inthe XML document | currently amin, | use a String to remember
the name of the last tag that was encountered. Every time an startElement(“person” , ..) method

is called on my handler (by the SAX parser), | create a new Person object (and save areferenceto
it). Thereafter, when | get endElement(“person” , ..) method called on my handler, | add the cur-
rent Person object to my AddressBook object.

In between the startElement(“person” , ...) and endElement(“person” , ...) method calls| get 4
more startElement(...) and endElement(...) method calls for the “lastname”, * firstname”, “ email”
and “company” tags. | haveto save the valuesthat are contained inside each of these 4 elementsin
4 Strings, and add these values to the current Person object that | just created.

Inanutshell, thisis how you have to interpret the sequence of method callsin order to create your
object model. Y ou can think of this process as a document -> event -> method -> object model
mapping. Y ou have to provide the document and the object model and the method handler. SAX
only takes care of the event generation and method invocation (on your handler implementations).

Thisal sounds alot more complicated than it really is. Here a partial listing of the code for my
DocumentHandler implementation (and HandlerBase subclass) that | call SaxAddressBookHan-
dler.java

i nport java.io.?*;
i nport org.xm.sax.*;
i nport org.xm . sax. hel pers. Parser Factory;

i nport com sun. xml . par ser. Resol ver;

public class SaxAddressBookHandl er extends Handl er Base{
/'l data nmenbers
private AddressBook ab = new AddressBook();

private Person p = null; //tenp Person ref

10/ 21 Aut hor Nane : Nazmul ldris

SAX Tutorial 1 devel operlife.com

private String currentElenent = null; //current el ement name

/1 AddressBook accessor nethod
publ i c AddressBook get Addr essBook() { return ab; }

/'l Handl er Base nethod overrides. This is SAX
| *
This nethod is called when the SAX parser encounters an open el enent
tag. Must remenber which el enent tag was just opened (so that the
characters(..) nmethod can do sonething useful with the data that is
read by the parser.
*/
public void startElenment(String name , AttributelList atts){
i f(nane. equal sl gnoreCase("LASTNAME")) {
current El enent = "LASTNAME";
}
el se if(nane. equal sl gnoreCase("FI RSTNAME")) {
current El enent = "FI RSTNAVE";
}
el se if(nanme. equal sl gnoreCase(" COWPANY")) {
current El enent = " COVPANY";
}
el se if(name. equal sl gnoreCase("EMAIL")) {
current El enent = "EMAIL";
}
el se if(name. equal sl gnoreCase("PERSON')) {

p = new Person();

| *
This nethod is called when the SAX parser encounters a close el enent
tag. If the person tag is closed, then the person objec nust be
added to the AddressBook (ab).
*/
public void endEl ement(String name){

i f(nane. equal sl gnoreCase("PERSON")) {

ab. addPerson(p);

11/ 21 Aut hor Name : Naznul

SAX Tutorial 1 devel operlife.com

p = null

| *
This nethod is called when the SAX parser encounters #PCDATA or CDATA.
It is inportant to renenber which element tag was just opened so that
this data can be put in the right object.

| had to trim) the textual data and make sure that enpty data is

just ignored.

Also the start index and length integer nust be used to retrieve only

a portion of the data stored in the char[].

*/
public void characters(char ch[], int start, int length){
/[/dont try to read ch[] as it will go on forever, must use the
/'l range provided by the SAX parser.
String value = new String(ch , start , length);
if(!'value.trim)).equals("")) {
i f(currentEl enent. equal sl gnoreCase("FlI RSTNAME")) {
p. set First Name(val ue);
}
el se if(currentEl ement. equal sl gnoreCase("LASTNAME")) {
p. set Last Nane(val ue);
}
el se if(currentEl ement. equal sl gnoreCase(" COWPANY")) {
p. set Conpany(val ue);
}
el se if(currentEl ement. equal sl gnoreCase("EMAIL")) {
p.setEmail (val ue);
}
}
}

This classis what makesit all happen. In your projects, you will have to do something very simi-
lar. Thisis asimple example by its very design to show you the basic idea. In your real world
projects, the code in your DocumentHandler implementation might be very complex in order to
deal with a complex XML document.

Now that you have seen the object model creation (using SAX from XML documents) part, the
next step involves displaying thisinformation to your users using a presentation layer (in our case,
Swing and Servlet).

12/ 21 Aut hor Name : Naznmul Idris

SAX Tutorial 1 devel operlife.com

Presentation layers for the object model

Once the SAX document handler and Java object models have been created, the presentation layer
becomes important. Here is where the user will “see” the object model (that came from the XML
document viathe SAX document handler you write). The presentation layer isthe View (inan
MV C context). The view should be independent of the model, so we can create any number of
presentation layers (or views). Two are shown here, one is Swing based for local display, another
is for web based display using HTML and Servlets. Both of the presentation layers shown below
are read-only or view-only layers, they don't allow editing of the address book XML document.
In future SAX tutorials, | will show you how to create editable presentation layers.

Presentation Layer 1. Swing

In order to display the object model (AddressBook) using Swing, | chooseto use aJTable to dis-
play it in. This simply involves the creation of a TableModel implementation class (that sits on
top of the AddressBook class). | call this TableModel implementation class AddressBookTa-
bleModelAdapter and it isa TableModel (interface) adapter for the AddressBook. This adapter
class smply implements the TableModel, but the methods for the TableM odel implementation
are actually implemented by making use of methods available to the AddressBook class.

Hereisalisting of the AddressBookTableM odel Adapter class:

i mport java.awt.*; /1 AWl cl asses

i mport java.awt.event.?*; /1 AWl event cl asses
i mport java.util.*; /I Vectors, etc

i mport java.io.*; /1 Serializable, etc
i mport java. net.*; /I Network cl asses

i mport javax.sw ng.*; /1 Swi ng classes

i mport javax.sw ng.event.*; /1 Swi ng events

i mport javax.sw ng.table.*; /1 JTabl e nodel s

i mport javax.sw ng.tree.*; /1 JTree nodel s

i mport javax.sw ng. border. *; /1 JConponent Borders

public class AddressBookTabl eMbdel Adapt er
i mpl ements Tabl eMbdel {
/1 Data Menbers
protected java.util.List listeners = new ArrayList();
protected static final Class[] col Classes = {
String.class |,
String.class |,
String.class ,

String.class

13/ 21 Aut hor Name : Naznmul Idris

SAX Tutorial 1 devel operlife.com

i
protected static final String[] col Names = {
"LASTNAME"
"FI RSTNAME"
" COVPANY" |
"EMAI L"
i
protected static final int LASTNAME COL = O ,
FI RSTNAME_COL = 1
COMPANY_COL = 2
EMAIL_COL = 3;
protected AddressBook addressBook;

/1 Constructor
publ i ¢ AddressBookTabl eMbdel Adapt er (Addr essBook a){

addr essBook = a;

/1 Tabl eMbdel inpl
public int getRowCount () {

return addressBook. get Si ze();

public int getCol umCount () {

return col Cl asses. | engt h;

public String getCol umNane(int c){

return col Names[¢];

public Class get Col umcCl ass(int c){

return col Classes[¢];

public boolean isCell Editable(int r, int c){

return fal se;

14/ 21 Aut hor Name : Naznmul Idris

SAX Tutorial 1 devel operlife.com

public Object getValueAt(int r, int c){
/lrow corresponds to person

Person p = addressBook. get Person(r);

/I col utm corresponds to person field
if(c == LASTNAME_COL) {
return p.getlLastNanme();

}
else if(¢ == FIRSTNAME_COL) {

return p.getFirstNane();

}
el se if(¢ == COMPANY_COL) {
return p.get Conpany();

}

else if(¢ == EMAIL_COL) {
return p.getEmail ();

}

else return "No value for this col";

public void setVal ueAt (Object v, int r, int c){

i f(r == addressBook. get Si ze()) return;

public void addTabl eModel Li st ener (Tabl eModel Li stener 1) {
if(!listeners.contains(l)) {
I

steners.add(|);

public void renmoveTabl eMbdel Li st ener (Tabl eMbdel Li stener 1){
if(listeners.contains(l)) {

[isteners.renmove(l);

/1 Event Utility Methods

15/ 21 Aut hor Name : Naznmul Idris

SAX Tutorial 1 devel operlife.com

public void fireTabl eChanged(){
Tabl eMbdel Event e = new Tabl eModel Event (this);
ArrayLi st copy = new ArrayList(listeners);
for(int i=0; i<copy.size(); i++) {
((Tabl eModel Li stener) copy.get(i)).tabl eChanged(e);

}
}//end class AddressBookTabl eModel Adapt er

The AddressBookFrame class (that is provided with the source code for thistutorial) can berunin
order to see this Swing user interface in action. The AddressBookFrame does the following
things:

» usesthe SaxAddressBookConverter to create an AddressBook (using SAX); the actual
AddressBook.xml document that is used islocated at http://beanfactory.com/xml/Address-
Book.xml

» takesthis AddressBook object and creates an AddressBookTableM odelAdapter class with it

» createsaJTable with this AddressBookTableModelAdapter asits TableModel

» displaysthe JTable to a JFrame (after putting it in a JScrollPane).

Figure 2 is a screenshot of what this Swing program looks like.

[=% developerlife.com :: SAX Tutorial 1

LASTHAME FIRSTHAME C O P ARY EmAIL
Idris Mazmul The Bean Factory, LL... smig@beanfactore.corm

o

husashi Miyarmato Bushido, Inc. katana@bushido.com
Einstein Albert Hasta Praton, Inc. hasta@nroton.com
Hampton Ed AMAC Inc energy@hsingi.com

‘ Figure 2 : Screenshot of Swing presentation layer of the AddressBook

Presentation Layer 2: Servlet

In order to display the AddressBook to HTML (by using a Servlet), it is possible to generate the
HTML by using the AddressBook object itself. Instead of doing this, | choose to use the Address-
BookTableModel Adapter that has already been written. By reusing the adapter class, | can save
myself alot of coding because the adapter (which implements the TableModel) can easily be con-
verted into HTML with very little work.

i mport java.util.*; /I Vectors, etc

i mport java.io.*; /1 Serializable, etc
i mport java.net.*; /I Network cl asses

i mport javax.servlet.*; /1 Servlet classes

i mport javax.servlet.http.*; /1 Servlet classes

16/ 21 Aut hor Name : Naznmul Idris

SAX Tutorial 1 devel operlife.com

public class AddressBookServl et extends HttpServlet {
/1 doGet () nethod
protected void doGet(HttpServl et Request req,
Ht t pSer vl et Response res)

t hrows Servl et Exception, | OException{

/I create an AddressBook obj using a SaxAddressBookConvert er

Addr essBookTabl eModel Adapt er nodel =

new Addr essBookTabl eModel Adapt er (
new SaxAddr essBookConverter().get AddressBook());

/loutput the HTML to the res.outputstream
res. set Content Type("text/htm");

PrintWiter out = new PrintWiter(res.getQutputStream));
out.print("<htm >");

out.print("<title>");

out.print("SAX Tutorial Part 1");

out.print("</title>");

out.print("<center>");

out.print("<head><pre>");

out.print("http://beanfactory.com xm /Addr essBook. xm ");

out.print("</pre></head><hr>");

//format the table
out.print("<table BORDER=0 CELLSPACI NG=2 ");
out. print("CELLPADDI NG=10 BGCOLOR=\"#CFCFFF\" >");

out.print("<tr>");
/1display table col um
for(int i=0; i < nodel.getColumCount(); i++){
out.print("<td><center>" +
nodel . get Col umNane(i) +
"</ center></td>");

out.print("</tr>");

/Ineed to iterate the doc to get the fields in it

17/ 21 Aut hor Name : Naznmul Idris

SAX Tutorial 1 devel operlife.com

for(int r=0; r < nodel.getRowCount(); r++) {

out.print("<tr>");

for(int ¢=0; c < nodel.getCol umCount(); c++) {
out.print("<td>");
out.print(nodel.getValueAt(r , ¢));
out.print("</td>");

}//end for c¢=0...

out.print("</tr>");
}//end for r=0...

out.print("</table>");
out.print("<hr>Copyright The Bean Factory, LLC ");
out.print(" 1998-1999. Al Rights Reserved.");
out.print("</center>");
out.println("</body>");
out.println("</htm >");
out.flush();
}

}//end class AddressBookServl et

The AddressBookServlet does the following things:

» usesthe SaxAddressBookConverter to create an AddressBook (using SAX); the actual
AddressBook.xml document that is used islocated at http://beanfactory.com/xml/Address-
Book.xml

» takesthis AddressBook object and creates an AddressBookTableM odelAdapter class with it

» iteratesthrough the AddressBookTableM odel Adapter and creates an HTML table by running
through each row of the TableModel.

18/ 21 Aut hor Name : Naznmul Idris

SAX Tutorial 1 devel operlife.com

Figure 3 is ascreen shot of what this servlet looks like.

£i|e Edit View Go Communicator Help
19w At e b S & G =
4w Bookmarks A& Location:[hp://127.0.0.1 /seret/AddressBaokSerst -

http://beanfactory . com/xml/AddressBook xml

LASTNAME FIRSTNAME COMPANY EMAIL

Idris MNazmul Ilggtc?ri?rll_l_c. #ml@beanfactory. com
Musashi Miyamato Bushido, Inc. katana@bushido, com
Einstein Albert IHnacslta Preen, hasta@proton, com
Hampton Ed AMAT, Inc energy@hsingi. com

Copyright The Bean Factory, LLC, 1998-1983, All Rights Reserved,

= [~5=| |Document: Done S gD N
———

‘ Figure 3 : Screenshot of Servlet presentation layer of the AddressBook

Source code

All the source code on the site is provided in one zip file. The com.developerlife.saxtutorial1
package contains the classes used in this tutorial. A description of these classes are provided in
Table 1.

Table 1: Source code classes and descriptions

Sourcefile Description
Package com.developerlife.saxtutorial 1l Contains all the classes for thistutorial
AddressBook.java Object model for information store in the
address book XML document
AddressBookFrame.java This class displays the Swing based user
interface for the address book
AddressBookServlet Thisclassisthe Servlet that displays the

address book asan HTML document

19/ 21 Aut hor Name : Naznmul Idris

SAX Tutorial 1 devel operlife.com

Table 1: Source code classes and descriptions

Sourcefile Description

AddressBook T ableM odel Adapter This classis an adapter that fitsthe
TableModel interface on top of the
AddressBook class

Person Thisclass contains information stored in a
person element of the address book XML
document

SaxAddressBookConverter This class creates a SAX parser and reads
an XML address book document, and uses
the SaxAddressBookHandler to create an
AddressBook object

SaxAddressBookHandler This class implements most of the Docu-
mentHandler SAX interface and is respon-
sible for converting the address book
XML document into an AddressBook
object

Running the programs

In order to run the Swing or Servlet program you must download the zip file that contains all the
sources and unzip it to some folder on your harddrive (and make sure to recreate al the folders
contained in the zip file).

Swing

If you are trying to run the Swing program, then make sure you have JDK1.2 VM on your
machine. Using the Java2 VM, run the following from the command prompt:

java com devel operlife.saxtutorial 1. Addr essBookFrane

Please make sure that you are in the folder in which you unzipped the source archive. If you are
behind afirewall, then this program will not work because it triesto load an XML document from
http://beanfactory.com/xml/AddressBook.xml. In order to make this program work behind a fire-
wall, you must tell the Java2 VM that you are behind afirewall by doing the following:

java -DproxySet=true -DproxyHost =PROXYSERVER - Dpr oxyPor t =PORT
com devel operlife.saxtutorial 1. Addr essBookFr ane

where PROXY SERVER is the hostname or I P address of your proxy server and PORT isthe port
number of the proxy server.

Alternatively, you can run the following code before you use URL .openStream() method:
System get Properties(). put("proxySet", "true");
System get Properties().put("proxyHost", "PROXYSERVER");

20/ 21 Aut hor Nanme : Naznmul Idris

SAX Tutorial 1 devel operlife.com

System get Properties(). put("proxyPort", "PORT");

Using either of the 2 ways shown above, your JavaVM will try to use the proxy server that is
installed in your network.

Servlet

If you are trying to run the Servlet program, make sure you have a Servlet 2.0 compliant Servlet
engine and webserver installed on your machine. Then you have to make sure to copy the
com.developerlife.saxtutoriall package to your servlet engines servlet class folder. Then invoke
the servlet from your web browser by using the following URL:

http:// HOST: PORT/ servl et/
com devel operlife.saxtutorial 1. Addr essBookSer vl et

where HOST is the hostname or IP address of the machine running the servlet engine and PORT
is the port number of the servlet engine. Now some servlet engines might require you to put ina
different URI than what | have shown above. Regardless of what your servlet engine expects you
to do, you must specify the Servlet class that must be run by using com.developer-
life.saxtutorial 1. AddressBookServlet.

If you are behind afirewall you should put the following lines of code in your Servlet:

System get Properties(). put("proxySet", "true");
System get Properties(). put ("proxyHost", "PROXYSERVER');
System get Properties(). put("proxyPort", "PORT");

where the PROXY SERVER is the hostname or |P address of the proxy server and PORT isthe
port number of the proxy server.

| hope you enjoyed this tutorial, | will have more complicated SAX tutorials online at a later time.

21/ 21 Aut hor Name : Naznmul Idris

