
developerlife.com™

Copyright The Bean Factory, LLC. 1998-1999. All Rights Reserved.

SAX Tutorial 1

Author Name : Nazmul Idris
Created On : May 23, 1999
Modified On : June 4, 1999 8:03 pm

SAX Tutorial 1 developerlife.com

2/21 Author Name : Nazmul Idris

Table of contents

Overview

What is SAX

Three steps to SAX

Step1: Creating a custom object model

Step2: Creating a SAX parser

Step3: Creating a DocumentHandler

Presentation layers for the object model

Presentation Layer 1: Swing

Presentation Layer 2: Servlet

Source code

Overview

XML 1.0 allows you to encode your information in textual form and it allows you to create tags
which allow you to structure the information stored in XML documents. This information must at
some point be read by some program to do something useful, like viewing, modifying or printing
it. In order for your programs to access this information you can use the SAX (Simple API for
XML) or the DOM (Document Object Model) APIs. Both these APIs must be implemented by the
XML parser of your choice (which also must be written in the programming language of your
choice).

For Java, these parsers include the Sun TR2 XML Parser, Datachannel XJ2, IBM XML Parser for
Java, and OpenXML (among many others). All of these parsers implement the SAX API (and
also the DOM API). There are fewer differences in the implementation of SAX compared to the
implementation of DOM 1.0 (simply because SAX is so much smaller and simpler than DOM).

So your Java programs must use an XML Parser written in Java that implements the SAX API in
order for you to use SAX. In this tutorial, I illustrate the use of the Sun TR2 Parser, and I will
show you how you can modify the code very simply in order to use the XML parser of your
choice.

What is SAX

SAX stands for the Simple API for XML. Unlike DOM (Document Object Model) which creates
a tree based representation for the information in your XML documents, SAX does not have a
default object model. This means that when you create a SAX parser and read in a document
(unlike DOM) you will not be given a nice default object model. A SAX parser is only required to
read in your XML document and fire events based on the things it encounters in your XML docu-
ment. Events are fired when the following things happen:

SAX Tutorial 1 developerlife.com

3/21 Author Name : Nazmul Idris

• open element tags are encountered in your document
• close element tags are encountered in your document
• #PCDATA and CDATA sections are encountered in your document
• processing instructions, comments, entity declarations, are encountered in your document.

We will start by looking at the open and close element tag events and the #PCDATA and CDATA
events. One thing to remember about SAX is that the sequence of these events is very important,
because the sequence in which events are fired determines how you will have to interpret each
event.

Three steps to SAX

Since SAX does not come with a default object model representation for the data in your XML
document, the first thing you have to when using SAX is create your own custom Java object
model for your data. This could be something as simple as creating an AddressBook class if your
XML document is an address book. After your custom object model has been created to “hold”
your data (inside your Java program), the next step is creating a SAX document handler to create
instances of your custom object models from the information stored in the XML document. This
“document handler” is a listener for the various events that are fired by the SAX parser based on
the contents of your XML document. This is very similar to the AWT 1.1 Event Delegation
Model, where UI components generate events based on user input and event listeners perform
some useful function when these events are fired. Most of the work in using SAX is in creating
this document handler. Once you have created the custom object model and the SAX document
handler you can use the SAX parser to create instances of your custom object model based on the
data stored in your XML documents.

This process is illustrated using an example in the following paragraphs. I will show you how to
perform these 3 steps for an AddressBook example. The example problem is that I have an XML
document which contains my address book and I would like to view this address book using a
Swing program and a Servlet. Also, I would like to use a SAX parser to do this instead of using a
DOM parser. The first thing to do is create an object model and deal with the SAX parser issues
before even thinking about the presentation layers (Swing and Servlet) for my object model
(AddressBook). Here is what my address book XML document looks like:
<?xml version = “1.0”?>

<addressbook>

 <person>

 <lastname>Idris</lastname>

 <firstname>Nazmul</firstname>

 <company>The Bean Factory, LLC.</company>

 <email>xml@beanfactory.com</email>

 </person>

</addressbook>

The three steps to using SAX in your programs are:
1. Creating a custom object model (like Person and AddressBook classes)

SAX Tutorial 1 developerlife.com

4/21 Author Name : Nazmul Idris

2. Creating a SAX parser
3. Creating a DocumentHandler (to turn your XML document into instances of your custom

object model).

Step1: Creating a custom object model

I have created a simple Java object model to represent the information in my address book XML
document. I created 2 classes, an AddressBook class and a Person class. My object model is a
simple mapping from the elements into classes. The following is a description of these classes:
• The AddressBook class is a container of Person objects. The AddressBook class is a simple

adapter over the java.util.List interface. The AddressBook class has methods to allow you to
add Person objects, get Person objects, and find out how many Person objects are in the
AddressBook. The addressbook element maps to the AddressBook class.

• The Person class simply holds 4 String objects, the last name, first name, email and company
name. This information is embedded within the <person> tag. So the person element maps
into the Person class. The firstname, lastname, company and email elements map into String
class.

Here is a listing of the Person class:
public class Person{

// Data Members

String fname, lname, company, email;

// accessor methods

public String getCompany(){return company;}

public String getEmail(){return email;}

public String getFirstName(){return fname;}

public String getLastName(){return lname;}

// mutator methods

public void setLastName(String s){lname = s;}

public void setFirstName(String s){fname = s;}

public void setCompany(String s){company = s;}

public void setEmail(String s){email = s;}

// toXML() method

public String toXML(){

 StringBuffer sb = new StringBuffer();

 sb.append("<PERSON>\n");

 sb.append("\t<LASTNAME>"+lname+"</LASTNAME>\n");

 sb.append("\t<FIRSTNAME>"+fname+"</FIRSTNAME>\n");

SAX Tutorial 1 developerlife.com

5/21 Author Name : Nazmul Idris

 sb.append("\t<COMPANY>"+company+"</COMPANY>\n");

 sb.append("\t<EMAIL>"+email+"</EMAIL>\n");

 sb.append("</PERSON>\n");

 return sb.toString();

}}

Please note the toXML() method. This method returns a String that contains the XML representa-
tion of a Person object. This kind of method is not only very useful for debugging, but it can also
be used to save Person objects to an XML file (or other kind of XML persistence/storage engine).
The AddressBook class also has a toXML() method, and that method uses the Person class’s
toXML() method too.

Here is a listing of the AddressBook class:
public class AddressBook{

// Data Members

List persons = new java.util.ArrayList();

// mutator method

public void addPerson(Person p){persons.add(p);}

// accessor methods

public int getSize(){ return persons.size();}

public Person getPerson(int i){

 return (Person)persons.get(i);}

// toXML method

public String toXML(){

 StringBuffer sb = new StringBuffer();

 sb.append("<?xml version=\"1.0\"?>\n");

 sb.append("<ADDRESSBOOK>\n\n");

 for(int i=0; i<persons.size(); i++) {

 sb.append(getPerson(i).toXML());

 sb.append("\n");

 }

 sb.append("</ADDRESSBOOK>");

 return sb.toString();

}}

As you can see these are very simple classes. The interesting part (in this case) is Step3.

SAX Tutorial 1 developerlife.com

6/21 Author Name : Nazmul Idris

Step2: Creating a SAX parser

Creating a SAX parser is quite easy and you have to create an XML document handler class for
the parser (so that something useful gets done as the parser parses the XML document).

Here is code to create a SAX parser:
import java.net.*;

import java.io.*;

import org.xml.sax.*;

...

try{

 //create an InputSource from the XML document source

 InputStreamReader isr = new InputStreamReader(

 new URL(“http://host/AddressBook.xml”).openStream();

 //new FileReader(new File(“AddressBook.xml”))

);

 InputSource is = new InputSource(isr);

 //create an documenthandler to create obj model

 DocumentHandler handler = //new YourHandler();

 //create a SAX parser using SAX interfaces and classes

 String parserClassName = “com.sun.xml.parser.Parser”;

 org.xml.sax.Parser.parser = org.xml.sax.helpers.ParserFactory.

 makeParser(parserClassName);

 //create document handler to do something useful

 //with the XML document being parsed by the parser.

 parser.setDocumentHandler(handler);

 parser.parse(is);

}

catch(Throwable t){

 System.out.println(t);

 t.printStackTrace();

}

The code example above uses the Sun TR2 parser. The classes used from TR2 include the
com.sun.xml.parser.Parser which is used to create a non-validating SAX parser.

You can use any parser that supports SAX. You have to change 1 thing:

SAX Tutorial 1 developerlife.com

7/21 Author Name : Nazmul Idris

• Replace the value of the parserClassName string with the class name of the SAX Parser class
of your choice.

You might be wondering what an InputSource class does. An InputSource is analogous to an
InputStream. An InputSource is an encapsulation over a byte stream or character stream and it
also includes a system and public identifier (which amount to a URI). In fact, in order to create in
InputSource, you have to pass the constructor an InputStream object reference.

Step3: Creating a DocumentHandler

The SAX parser that was created in Step2 reads an XML document and fires events as it encoun-
ters open tags, close tags, CDATA and #PCDATA sections, etc. These events are fired as the
SAX parser reads the XML document from top to bottom, a tag at a time. In order for the SAX
parser to notify some object that these events are occurring, an interface called DocumentHandler
is used (its in the org.xml.sax package). There are 3 other interfaces that exist called EntityRe-
solver, DTDHandler and ErrorHandler. These 4 interfaces together include all the methods that
correspond to all possible events that the SAX parser can fire (as its reading an XML document).
The most frequently used interface is the DocumentHandler interface. So you have to provide an
implementation of at least the DocumentHandler interface to the SAX parser, which then will
invoke the right methods in the right sequence on your DocumentHandler implementation class.
As the SAX parser reads an XML document, events are fired, which are then translated into
method calls on all the “registered document event listeners” (which is your DocumentHandler
implementation class). So as these events are fired, as the XML document is read, method calls
are made on your Document Handler implementation class. This class must do something useful
with these method calls and the sequence of the calls.

Figure 1 shows the sequence of method calls that the SAX parser makes on your Documen-
tHandler interface implementation class. The sequence of method calls are numbered from 1 to
12. You can see from this picture how the SAX parser turns the XML document into a bunch of
events, which are in turn translated into a bunch of method calls in your DocumentHandler inter-
face implementation class.

The DocumentHandler interface contains methods in it which deal primarily with element open
and close tags, attributes, #PCDATA and CDATA sections. Once you create your Documen-
tHandler implementation class you must tell the SAX parser to use it. The following code snippet
does this trick.
org.xml.sax.Parser.parser = //create a SAX parser

DocumentHandler handler = //instantiate your implementation

parser.setDocumentHandler(handler);

There are 3 more interfaces in addition to the DocumentHandler interface: EntityResolver,
DTDHandler, ErrorHandler. The following sections describe each of these interfaces in addition
to the HandlerBase class. Then I describe the actual implementation of the DocumentHandler
interface (that creates the AddressBook object).

SAX Tutorial 1 developerlife.com

8/21 Author Name : Nazmul Idris

ErrorHandler interface

The ErrorHandler interface methods deal with custom error handling behaviors that you want to
implement in your handler, in response to erroneous conditions in your source XML document.
The SAX parser is not required to do any kind of error handling, it is the programmer’s responsi-
bility to put any error handling and exception-throwing code in the implementation class of this
interface. You don’t have to implement this interface. If you extend the HandlerBase class, a
default implementation is already provided which throws a SAXException when errors are
encountered in the XML document being parsed. The methods in the ErrorHandler interface are:
error(SAXParseException e), fatalError(SAXParseException e) and warning(SAXParseExcep-
tion e) methods.

If you choose to perform custom error handling (in the implementation class of your ErrorHandler
interface) you have to tell the SAX parser to use your class as an error handler. The following
code snippet does this:
org.xml.sax.Parser.parser = //create a SAX parser

ErrorHandler handler = //instantiate your implementation

parser.setErrorHandler(handler);

XML Document

person Element

<addressbook>

</addressbook>

<?xml version="1.0"?>

List of SAX parser method calls
(in sequence) on your

DocumentHandler implementation

<person>

</person>

<name>

Nazmul Idris

</name>

<email>

xml@java-xml.com

</email>

Figure 1 : SAX DocumentHandler interface methods and their sequence

1: startDocument()

3: startElement("person" , attribs)

4: startElement("name" , attribs)

10: endElement("person")

5: characters(char[] , start , length)
 evaluates to "Nazmul Idris"
6: endElement("name")

11: endElement("addressbook")

12: endDocument()

7: startElement("email" , attribs)

8: characters(char[] , start , length)
 evaluates to "xml@java-xml.com"

9: endElement("email")

2: startElement("addressbook" , attribs)

SAX Tutorial 1 developerlife.com

9/21 Author Name : Nazmul Idris

DTDHandler interface

The DTDHandler interface methods deal with entity and notation declaration sections in the
DTDs of the XML documents that you reading. The SAX parser is not required to do anything
with these notation and entity declarations, if you wish to do something with these things then you
have to write a class that implements the DTDHandler interface and tell the SAX parser to use it.
The DTDHandler interface has the following methods: notationDecl(String name , String publi-
cId, String systemId), and unparsedEntityDecl((String name, String publicId, String sys-
temId, String notationName).

If you choose to do something useful with entity and notation declarations, you have to tell the
SAX parser to use your class as a DTD handler. The following code snippet does this:
org.xml.sax.Parser.parser = //create a SAX parser

DTDHandler handler = //instantiate your DTDHandler implementation

parser.setDTDHandler(handler);

EntityResolver interface

The EntityResolver interface deals with allowing you to create customized InputSource objects
for external entities. These external entities could be DTDs that are located by using a URI to a
remote resource or any other resource that is external to your local system. These external entities
or resources are located using URIs and by implementing the EntityResolver interface you can
define custom code for creating an InputSource given an external entity. The EntityResolver
interface only has one method: InputSource resolveEntity (String publicId, String systemId).

If you choose to provide customized behaviors for creating InputSources from external entities,
you have to tell the SAX parser to use your class that implements the EntityResolver interface.
The following code snippet does this:
org.xml.sax.Parser.parser = //create a SAX parser

EntityResolver handler = //instantiate your implementation

parser.setDTDHandler(handler);

HandlerBase class

Now, instead of implementing each method in the 4 interfaces (DocumentHandler, EntityRe-
solver, DTDHandler and ErrorHandler) you can make your SAX handler class extend the
org.xml.sax.HandlerBase class. The HandlerBase class provides empty implementations for each
of the 4 SAX handler interfaces (DocumentHandler, EntityResolver, DTDHandler and ErrorHan-
dler). Extending the HandlerBase saves a lot of time because you can only override the implemen-
tations for the methods that you are interested in using. I will demonstrate how to create an
AddressBook from an XML document by extending the HandlerBase class.

Building the actual object model (using DocumentHandler)

In converting the address book XML document (described in the “Three steps to SAX” section), I
use a DocumentHandler to create Person objects that I insert in one AddressBook object (the code

SAX Tutorial 1 developerlife.com

10/21 Author Name : Nazmul Idris

for these classes is given in the “Step1: Creating a custom object model” section). Instead of cre-
ating a DocumentHandler class by implementing the DocumentHandler interface directly, I
choose to extend the HandlerBase class (as it saves a lot of time). I am only going to use three
methods that are available in the DocumentHandler interface: startElement(...), endElement(...)
and characters(...).

Now, and address book contains person elements, which in turn contain name and email elements.
This is how I have to think in order to write a DocumentHandler:
• each person element has to be converted into a Person object and inserted into one Address-

Book object.
• the lastname, firstname, company and email elements have to be converted to String objects

and put inside a Person object.

So as you can see, my DocumentHandler implementation must create one AddressBook object
and many Person objects (using the information in the XML document). The SAX parser reports
this information to my DocumentHandler by making a sequence of method calls as shown in Fig-
ure 1. I must use this sequence of method calls and remember “where” in the XML document I am
in order to create Person objects (and add them to the AddressBook object).

In order to remember “where” in the XML document I currently am in, I use a String to remember
the name of the last tag that was encountered. Every time an startElement(“person” , ..) method
is called on my handler (by the SAX parser), I create a new Person object (and save a reference to
it). Thereafter, when I get endElement(“person” , ..) method called on my handler, I add the cur-
rent Person object to my AddressBook object.

In between the startElement(“person” , ...) and endElement(“person” , ...) method calls I get 4
more startElement(...) and endElement(...) method calls for the “lastname”, “firstname”, “email”
and “company” tags. I have to save the values that are contained inside each of these 4 elements in
4 Strings, and add these values to the current Person object that I just created.

In a nutshell, this is how you have to interpret the sequence of method calls in order to create your
object model. You can think of this process as a document -> event -> method -> object model
mapping. You have to provide the document and the object model and the method handler. SAX
only takes care of the event generation and method invocation (on your handler implementations).

This all sounds a lot more complicated than it really is. Here a partial listing of the code for my
DocumentHandler implementation (and HandlerBase subclass) that I call SaxAddressBookHan-
dler.java:
import java.io.*;

import org.xml.sax.*;

import org.xml.sax.helpers.ParserFactory;

import com.sun.xml.parser.Resolver;

public class SaxAddressBookHandler extends HandlerBase{

// data members

private AddressBook ab = new AddressBook();

private Person p = null; //temp Person ref

SAX Tutorial 1 developerlife.com

11/21 Author Name : Nazmul Idris

private String currentElement = null; //current element name

// AddressBook accessor method

public AddressBook getAddressBook(){ return ab; }

// HandlerBase method overrides. This is SAX.

/*

This method is called when the SAX parser encounters an open element

tag. Must remember which element tag was just opened (so that the

characters(..) method can do something useful with the data that is

read by the parser.

*/

public void startElement(String name , AttributeList atts){

 if(name.equalsIgnoreCase("LASTNAME")) {

 currentElement = "LASTNAME";

 }

 else if(name.equalsIgnoreCase("FIRSTNAME")) {

 currentElement = "FIRSTNAME";

 }

 else if(name.equalsIgnoreCase("COMPANY")) {

 currentElement = "COMPANY";

 }

 else if(name.equalsIgnoreCase("EMAIL")) {

 currentElement = "EMAIL";

 }

 else if(name.equalsIgnoreCase("PERSON")) {

 p = new Person();

 }

}

/*

This method is called when the SAX parser encounters a close element

tag. If the person tag is closed, then the person objec must be

added to the AddressBook (ab).

*/

public void endElement(String name){

 if(name.equalsIgnoreCase("PERSON")) {

 ab.addPerson(p);

SAX Tutorial 1 developerlife.com

12/21 Author Name : Nazmul Idris

 p = null;

 }

}

/*

This method is called when the SAX parser encounters #PCDATA or CDATA.

It is important to remember which element tag was just opened so that

this data can be put in the right object.

I had to trim() the textual data and make sure that empty data is

just ignored.

Also the start index and length integer must be used to retrieve only

a portion of the data stored in the char[].

*/

public void characters(char ch[], int start, int length){

 //dont try to read ch[] as it will go on forever, must use the

 //range provided by the SAX parser.

 String value = new String(ch , start , length);

 if(!value.trim().equals("")) {

 if(currentElement.equalsIgnoreCase("FIRSTNAME")) {

 p.setFirstName(value);

 }

 else if(currentElement.equalsIgnoreCase("LASTNAME")) {

 p.setLastName(value);

 }

 else if(currentElement.equalsIgnoreCase("COMPANY")) {

 p.setCompany(value);

 }

 else if(currentElement.equalsIgnoreCase("EMAIL")) {

 p.setEmail(value);

 }

 }

}

This class is what makes it all happen. In your projects, you will have to do something very simi-
lar. This is a simple example by its very design to show you the basic idea. In your real world
projects, the code in your DocumentHandler implementation might be very complex in order to
deal with a complex XML document.

Now that you have seen the object model creation (using SAX from XML documents) part, the
next step involves displaying this information to your users using a presentation layer (in our case,
Swing and Servlet).

SAX Tutorial 1 developerlife.com

13/21 Author Name : Nazmul Idris

Presentation layers for the object model

Once the SAX document handler and Java object models have been created, the presentation layer
becomes important. Here is where the user will “see” the object model (that came from the XML
document via the SAX document handler you write). The presentation layer is the View (in an
MVC context). The view should be independent of the model, so we can create any number of
presentation layers (or views). Two are shown here, one is Swing based for local display, another
is for web based display using HTML and Servlets. Both of the presentation layers shown below
are read-only or view-only layers, they don’t allow editing of the address book XML document.
In future SAX tutorials, I will show you how to create editable presentation layers.

Presentation Layer 1: Swing

In order to display the object model (AddressBook) using Swing, I choose to use a JTable to dis-
play it in. This simply involves the creation of a TableModel implementation class (that sits on
top of the AddressBook class). I call this TableModel implementation class AddressBookTa-
bleModelAdapter and it is a TableModel (interface) adapter for the AddressBook. This adapter
class simply implements the TableModel, but the methods for the TableModel implementation
are actually implemented by making use of methods available to the AddressBook class.

Here is a listing of the AddressBookTableModelAdapter class:
import java.awt.*; //AWT classes

import java.awt.event.*; //AWT event classes

import java.util.*; //Vectors, etc

import java.io.*; //Serializable, etc

import java.net.*; //Network classes

import javax.swing.*; //Swing classes

import javax.swing.event.*; //Swing events

import javax.swing.table.*; //JTable models

import javax.swing.tree.*; //JTree models

import javax.swing.border.*; //JComponent Borders

public class AddressBookTableModelAdapter

implements TableModel {

// Data Members

protected java.util.List listeners = new ArrayList();

protected static final Class[] colClasses = {

 String.class ,

 String.class ,

 String.class ,

 String.class

SAX Tutorial 1 developerlife.com

14/21 Author Name : Nazmul Idris

 };

protected static final String[] colNames = {

 "LASTNAME" ,

 "FIRSTNAME" ,

 "COMPANY" ,

 "EMAIL"

 };

protected static final int LASTNAME_COL = 0 ,

 FIRSTNAME_COL = 1 ,

 COMPANY_COL = 2 ,

 EMAIL_COL = 3;

protected AddressBook addressBook;

// Constructor

public AddressBookTableModelAdapter(AddressBook a){

 addressBook = a;

}

// TableModel impl

public int getRowCount(){

 return addressBook.getSize();

}

public int getColumnCount(){

 return colClasses.length;

}

public String getColumnName(int c){

 return colNames[c];

}

public Class getColumnClass(int c){

 return colClasses[c];

}

public boolean isCellEditable(int r, int c){

 return false;

}

SAX Tutorial 1 developerlife.com

15/21 Author Name : Nazmul Idris

public Object getValueAt(int r, int c){

 //row corresponds to person

 Person p = addressBook.getPerson(r);

 //column corresponds to person field

 if(c == LASTNAME_COL) {

 return p.getLastName();

 }

 else if(c == FIRSTNAME_COL) {

 return p.getFirstName();

 }

 else if(c == COMPANY_COL) {

 return p.getCompany();

 }

 else if(c == EMAIL_COL) {

 return p.getEmail();

 }

 else return "No value for this col";

}

public void setValueAt(Object v, int r, int c){

 if(r == addressBook.getSize()) return;

}

public void addTableModelListener(TableModelListener l){

 if(!listeners.contains(l)) {

 listeners.add(l);

 }

}

public void removeTableModelListener(TableModelListener l){

 if(listeners.contains(l)) {

 listeners.remove(l);

 }

}

// Event Utility Methods

SAX Tutorial 1 developerlife.com

16/21 Author Name : Nazmul Idris

public void fireTableChanged(){

 TableModelEvent e = new TableModelEvent(this);

 ArrayList copy = new ArrayList(listeners);

 for(int i=0; i<copy.size(); i++) {

 ((TableModelListener)copy.get(i)).tableChanged(e);

 }

}

}//end class AddressBookTableModelAdapter

The AddressBookFrame class (that is provided with the source code for this tutorial) can be run in
order to see this Swing user interface in action. The AddressBookFrame does the following
things:
• uses the SaxAddressBookConverter to create an AddressBook (using SAX); the actual

AddressBook.xml document that is used is located at http://beanfactory.com/xml/Address-
Book.xml

• takes this AddressBook object and creates an AddressBookTableModelAdapter class with it
• creates a JTable with this AddressBookTableModelAdapter as its TableModel
• displays the JTable to a JFrame (after putting it in a JScrollPane).

Figure 2 is a screenshot of what this Swing program looks like.

Presentation Layer 2: Servlet

In order to display the AddressBook to HTML (by using a Servlet), it is possible to generate the
HTML by using the AddressBook object itself. Instead of doing this, I choose to use the Address-
BookTableModelAdapter that has already been written. By reusing the adapter class, I can save
myself a lot of coding because the adapter (which implements the TableModel) can easily be con-
verted into HTML with very little work.
import java.util.*; //Vectors, etc

import java.io.*; //Serializable, etc

import java.net.*; //Network classes

import javax.servlet.*; //Servlet classes

import javax.servlet.http.*; //Servlet classes

Figure 2 : Screenshot of Swing presentation layer of the AddressBook

SAX Tutorial 1 developerlife.com

17/21 Author Name : Nazmul Idris

public class AddressBookServlet extends HttpServlet {

// doGet() method

protected void doGet(HttpServletRequest req,

 HttpServletResponse res)

throws ServletException, IOException{

 //create an AddressBook obj using a SaxAddressBookConverter

 AddressBookTableModelAdapter model =

 new AddressBookTableModelAdapter(

 new SaxAddressBookConverter().getAddressBook());

 //output the HTML to the res.outputstream

 res.setContentType("text/html");

 PrintWriter out = new PrintWriter(res.getOutputStream());

 out.print("<html>");

 out.print("<title>");

 out.print("SAX Tutorial Part 1");

 out.print("</title>");

 out.print("<center>");

 out.print("<head><pre>");

 out.print("http://beanfactory.com/xml/AddressBook.xml");

 out.print("</pre></head><hr>");

 //format the table

 out.print("<table BORDER=0 CELLSPACING=2 ");

 out.print("CELLPADDING=10 BGCOLOR=\"#CFCFFF\" >");

 out.print("<tr>");

 //display table column

 for(int i=0; i < model.getColumnCount(); i++){

 out.print("<td><center>" +

 model.getColumnName(i) +

 "</center></td>");

 }

 out.print("</tr>");

 //need to iterate the doc to get the fields in it

SAX Tutorial 1 developerlife.com

18/21 Author Name : Nazmul Idris

 for(int r=0; r < model.getRowCount(); r++) {

 out.print("<tr>");

 for(int c=0; c < model.getColumnCount(); c++) {

 out.print("<td>");

 out.print(model.getValueAt(r , c));

 out.print("</td>");

 }//end for c=0...

 out.print("</tr>");

 }//end for r=0...

 out.print("</table>");

 out.print("<hr>Copyright The Bean Factory, LLC.");

 out.print(" 1998-1999. All Rights Reserved.");

 out.print("</center>");

 out.println("</body>");

 out.println("</html>");

 out.flush();

}

}//end class AddressBookServlet

The AddressBookServlet does the following things:
• uses the SaxAddressBookConverter to create an AddressBook (using SAX); the actual

AddressBook.xml document that is used is located at http://beanfactory.com/xml/Address-
Book.xml

• takes this AddressBook object and creates an AddressBookTableModelAdapter class with it
• iterates through the AddressBookTableModelAdapter and creates an HTML table by running

through each row of the TableModel.

SAX Tutorial 1 developerlife.com

19/21 Author Name : Nazmul Idris

Figure 3 is a screen shot of what this servlet looks like.

Source code

All the source code on the site is provided in one zip file. The com.developerlife.saxtutorial1
package contains the classes used in this tutorial. A description of these classes are provided in
Table 1.

Table 1: Source code classes and descriptions

Source file Description

Package com.developerlife.saxtutorial1 Contains all the classes for this tutorial

AddressBook.java Object model for information store in the
address book XML document

AddressBookFrame.java This class displays the Swing based user
interface for the address book

AddressBookServlet This class is the Servlet that displays the
address book as an HTML document

Figure 3 : Screenshot of Servlet presentation layer of the AddressBook

SAX Tutorial 1 developerlife.com

20/21 Author Name : Nazmul Idris

Running the programs

In order to run the Swing or Servlet program you must download the zip file that contains all the
sources and unzip it to some folder on your harddrive (and make sure to recreate all the folders
contained in the zip file).

Swing

If you are trying to run the Swing program, then make sure you have JDK1.2 VM on your
machine. Using the Java2 VM, run the following from the command prompt:
java com.developerlife.saxtutorial1.AddressBookFrame

Please make sure that you are in the folder in which you unzipped the source archive. If you are
behind a firewall, then this program will not work because it tries to load an XML document from
http://beanfactory.com/xml/AddressBook.xml. In order to make this program work behind a fire-
wall, you must tell the Java2 VM that you are behind a firewall by doing the following:
java -DproxySet=true -DproxyHost=PROXYSERVER -DproxyPort=PORT
com.developerlife.saxtutorial1.AddressBookFrame

where PROXYSERVER is the hostname or IP address of your proxy server and PORT is the port
number of the proxy server.

Alternatively, you can run the following code before you use URL.openStream() method:
System.getProperties().put("proxySet", "true");

System.getProperties().put("proxyHost", "PROXYSERVER");

AddressBookTableModelAdapter This class is an adapter that fits the
TableModel interface on top of the
AddressBook class

Person This class contains information stored in a
person element of the address book XML
document

SaxAddressBookConverter This class creates a SAX parser and reads
an XML address book document, and uses
the SaxAddressBookHandler to create an
AddressBook object

SaxAddressBookHandler This class implements most of the Docu-
mentHandler SAX interface and is respon-
sible for converting the address book
XML document into an AddressBook
object

Table 1: Source code classes and descriptions

Source file Description

SAX Tutorial 1 developerlife.com

21/21 Author Name : Nazmul Idris

System.getProperties().put("proxyPort", "PORT");

Using either of the 2 ways shown above, your Java VM will try to use the proxy server that is
installed in your network.

Servlet

If you are trying to run the Servlet program, make sure you have a Servlet 2.0 compliant Servlet
engine and webserver installed on your machine. Then you have to make sure to copy the
com.developerlife.saxtutorial1 package to your servlet engines servlet class folder. Then invoke
the servlet from your web browser by using the following URL:
http://HOST:PORT/servlet/
com.developerlife.saxtutorial1.AddressBookServlet

where HOST is the hostname or IP address of the machine running the servlet engine and PORT
is the port number of the servlet engine. Now some servlet engines might require you to put in a
different URI than what I have shown above. Regardless of what your servlet engine expects you
to do, you must specify the Servlet class that must be run by using com.developer-
life.saxtutorial1.AddressBookServlet.

If you are behind a firewall you should put the following lines of code in your Servlet:
System.getProperties().put("proxySet", "true");

System.getProperties().put("proxyHost", "PROXYSERVER");

System.getProperties().put("proxyPort", "PORT");

where the PROXYSERVER is the hostname or IP address of the proxy server and PORT is the
port number of the proxy server.

I hope you enjoyed this tutorial, I will have more complicated SAX tutorials online at a later time.

