
Patterns and Reuse in Document Engineering
Keywords: Document Engineering, Document Analysis, Data Analysis, Data Modeling, Patterns, Reuse,
Methodology

Robert Glushko
University of California
Berkeley
California
US
glushko@sims.berkeley.edu
http://www.sims.berkeley.edu/~glushko

Biography

Bob Glushko is a lecturer at the University of California at Berkeley in the School of
Information Management and Systems and an Engineering Fellow at Commerce One. He
founded or co-founded three companies, the last of which was Veo Systems in 1997, which
pioneered the use of XML for electronic commerce before its 1999 acquisition by
Commerce One.

Tim McGrath
University of Notre Dame, Australia
Fremantle
Western Australia
Australia
tmcgrath@portcomm.com.au

Biography

Tim is recognised as a leader in the introduction of Internet technologies to the EDI and e-
commerce marketplace in Australia. More recently, Tim led the Quality Review Team for
the ebXML initiative, was a member of the ebXML Steering Committee and is a co-author
of Professional ebXML Foundations from Wrox Press. Tim is currently the Chair of the
Library Content subcommittee of the OASIS Universal Business Language (UBL).

Abstract

"Document Engineering" is evolving as a new discipline for specifying, designing, and implementing
the electronic documents that request or provide interfaces to business processes via Web-based
services. The essence of Document Engineering is the analysis and design methods that yield formal
models to describe the information these processes or services require. Good Document Engineering
practice emphasizes the reuse of existing models wherever possible and requires that new models be
described in ways that encourage their reuse by others.

Page 1 of 13Patterns and Reuse in Document Engineering

10/15/2002file://C:\Documents%20and%20Settings\glushko\My%20Documents\xml%20conference...

Reusable patterns in Document Engineering are found at both the implementation level in the form of
EDI and XML libraries and also at the conceptual level in terms of libraries of models that describe
common business processes and the organization of activities between businesses. Re-using patterns at
these more abstract levels facilitates interoperability between different technology implementations.

Table of Contents

Introducing "Document Engineering"
Analysis Foundations for Document Engineering
 Document Analysis
 Data Modeling
 Contrasting Document Analysis and Data Modeling
Unifying Document Analysis and Data Modeling in Document Engineering
 A Document-centric Version of the Classical Analyze/Design/Refine Approach
 Three Kinds of Components and Their Relationships
 Identifying "Good" Content Components and Component Assemblies
 Functional Dependency and Normalization
 Normalized Relational Models
 Assembling Hierarchical Document Models
 Organizing Patterns to Facilitate Reuse
 The Reuse Matrix
Applying the Methods of Document Engineering
Bibliography

Introducing "Document Engineering"

Businesses and individuals have long used documents to interact with each other and to describe their
relationships, and there are hundreds of different types of documents in common use (for a colloquial
list of document types, see Roget's Thesaurus [RO 1962] ; for more formal lists, see the United Nations
Standard Messages (UNSMs) in EDIFACT [UN Web] or the XML schemas registered at xml.org [XO
Web]). While businesses always strive to differentiate themselves, their common goals for profitability
and growth, common external forces like competition and regulation, and overlapping business
relationships with common suppliers or customers drive them to do things in similar ways. In particular,
the fundamental requirement that their documents must be mutually intelligible for a business
relationship to be possible inevitably causes both the document models and the sequence of exchanges
between businesses to follow regular patterns.

As companies increasingly move their existing activities to the Internet and experiment with new ways
of doing business, it is even more beneficial to treat documents as interfaces [GL 1999] . Doing so
presents a clean and stable relationship to business partners and customers that is insulated from changes
in either the processes that create and consume the documents or in the technology with which these
processes are implemented. Furthermore, when businesses exchange information using documents, their
well-defined structure should enforce an interpretation or context in an unambiguous and efficient
manner.

Many kinds of documents are essential to business. Some, like catalogs, brochures, and datasheets, assist

Page 2 of 13Patterns and Reuse in Document Engineering

10/15/2002file://C:\Documents%20and%20Settings\glushko\My%20Documents\xml%20conference...

buyers in locating and selecting products and services. Others, like user guides, reference information,
and maintenance manuals, are needed to make effective use of products and services after they are
purchased. In its early days the Web was used primarily as a publishing or distribution medium for these
kinds of non-transactional documents. Later, when the Web joined existing EDI technologies to conduct
business, transactional documents like orders, invoices, and payment instructions evolved from printed
forms to become important electronic document types.

But how do we know what specific information these documents must contain and how do we ensure
that their recipients understand them? For the non-transactional types of documents, those that are
traditionally called "publications," the analysis and modeling techniques used to answer these questions
are usually described as "document analysis" (see, for example [MA 1996] , [MU Web]). In contrast,
transactional documents are optimized for use by business applications and differ in other substantial
ways from traditional user-oriented publications. The methods used to answer these questions for
transactional documents are often described as "data modeling" (see, for example [CA 2001] , [HA
1996]). Neither analysis approach as currently described and taught is well suited for the other kind of
document.

"Document Engineering" is evolving as a new discipline for specifying, designing, and implementing
the electronic documents that request or provide interfaces to business processes via Web-based services
[GL 2002b] , [MC 2002] . The essence of Document Engineering is the analysis and design methods
that yield formal models to describe the information these processes or services require. The methods of
Document Engineering are practical and effective for both transactional and non-transactional document
types. The resulting models must be carefully designed to contain enough structure and semantics to
convey meaning while not being so general (as are relational data models) that they allow too many
interpretations. These models must also find a balance between the optimal document designs for a
business's internal processes and the need for those documents to be understood by other businesses.
This tension induces document designers to reuse existing models wherever possible and reinforces
them if they describe any new models they create in ways that encourage their reuse by others.

A focus on the patterns in document models and in document exchanges doesn't preclude consideration
of other kinds of patterns that businesses follow. For example, business activities can be organized by
common function, product line, customer segment, geography, and so on, and each of these exhibits
characteristic patterns in an organization chart. Likewise, how a business works can be described in
terms of the architecture by which its software components are implemented and interconnected, with
patterns for distinct styles of system communication or integration (N-tier, message oriented
middleware, etc.). But we believe that the inherently static organizational perspective is less useful in
discussions of web services and "virtual enterprises" created by building on and interconnecting the
activities of businesses around the globe. Similarly, we believe that understanding the patterns in
document models and document exchanges is a pre-requisite for making decisions about software
architecture and not vice versa.

Analysis Foundations for Document Engineering

Document Analysis

Most document analysis is conducted with the goal of abstracting a logical model from existing
instances of a single document type and then encoding the model in an SGML or XML schema. The
optimal prescriptive model for the class of documents is that which best satisfies the requirements of
current and prospective users for carrying out specific tasks with new instances. When the document
types are "publications" of one sort or another, the new schema separates the description of a document's

Page 3 of 13Patterns and Reuse in Document Engineering

10/15/2002file://C:\Documents%20and%20Settings\glushko\My%20Documents\xml%20conference...

structure and content from its presentational characteristics. These include the fonts, type sizes, and
formatting attributes that are used to represent or highlight various structural or content distinctions.
Once this separation is accomplished, one or more stylesheets can be used to assign formatting or
rendering characteristics in a consistent manner to any valid instance.

The term "document analysis" is a misnomer because a good analyst usually interviews current and
prospective users and considers the technology contexts of the document lifecycle. But the term sticks
because documents often serve as proxies for the domain expertise that is the standard source of
requirements information.

Because of the complex ways in which publications merge presentation with structure and content, the
document analysis techniques developed by publishing experts emphasize the study of documents as
artifacts that must each be studied very carefully. The more heterogeneous the instances of a given type,
the more document analysis becomes descriptive rather than prescriptive, and the purpose of analysis is
to identify the markup for "text encoding" that captures the specific and idiosyncratic character of each
instance. This is especially the case when the document instance is so unique or important that we know
it by name: Magna Charta, Don Quixote, Declaration of Independence, Gettysburg Address. While
these could be analyzed as instances of document types like Contract, Novel, FormalStatement, and
CommemorativeSpeech, respectively, what makes these document instances distinctive can't be
captured in a formal model and can't easily be reused in new documents.

Data Modeling

Data modeling has its roots in philosophy and linguistics but in its current incarnation as a methodology
for designing information systems data modeling is primarily devoted to understanding and describing
the logical structure of data objects that have various properties and associations with each other. The
typical goal of data modeling is to define one or more categories or schemas that organize these
properties and associations efficiently for creating, revising, or deleting data objects or for finding those
with specific characteristics.

Data modeling shares the goal with document analysis of creating a formal description of a class of
instances, but its methods apply best when there are a limitless number of essentially identical instances,
often produced mechanically to represent some state of an activity or business process. Such documents
or messages are extremely regular in their logical structures, have strongly typed content, and have
minimal or arbitrary presentation features. Furthermore, a great deal of theory has evolved to guarantee
that models are optimal with respect to their use in information systems.

Contrasting Document Analysis and Data Modeling

One important way in which document analysis and data modeling techniques differ is in the nature of
information reuse they facilitate. When applied to technical publications or similar document types,
document analysis can identify reusable boilerplate content or reusable structures for things like tables,
notes, lists, or phrase-level markup. In contrast, much greater reuse and finer granularity can typically be
enabled by data analysis techniques because of the greater amount of structure and regularity exhibited
by transactional documents. Furthermore, by their nature transactional documents often arise as
transformationally related request-response pairs or as a result of correlated business activities, implying
the need to model the overlapping content that is reused as it "flows" from one document type to
another.

The rapid evolution in the past few years of the document-centric architecture for the Internet and web

Page 4 of 13Patterns and Reuse in Document Engineering

10/15/2002file://C:\Documents%20and%20Settings\glushko\My%20Documents\xml%20conference...

services has also exposed weaknesses in traditional document analysis techniques. Some of the
modeling and design methods for document analysis have been constrained by the well-known
limitations of DTDs for encoding models. DTDs have weak datatyping and define most content as text.
This reflects the DTD's heritage in publishing, but it becomes a severe limitation when the domain of
document analysis is more data-intensive and a richer type repertoire is required. The limits of DTDs
aren't limits of document analysis per se, of course, since the design of a document model is logically
prior to its encoding in SGML or XML syntax. But to the extent that the tools most used by document
analysts for developing and testing models evolved from publishing and rely on DTDs, the limits are
real. No similar constraints on what can be modeled are embodied in the traditional tools of data
modeling.

In addition, the paradigm shift in distributed computing introduced legions of software designers to
XML document design, to which they looked for methods similar to those they used in the design of
database schemas or object classes. They wanted to apply object-oriented techniques to define one
element to be a template or archetype for another and to use concepts of extension and inheritance to
reuse definitions in an efficient way across a set of related document types. Unfortunately, DTDs were
not "programmer-friendly" in these ways and while more expressive schema languages for XML now
exist, little of the new modeling capabilities they enable has been embraced by traditional document
analysis practice.

Unifying Document Analysis and Data Modeling in Document
Engineering

The document analysis and data modeling perspectives come from different disciplines and use different
tools, terminology and techniques. "Document" people and "data" people haven't known how to talk to
each other and haven't often recognized the overlap in their goals, if not in their methods. Both offer
valuable insight into designing effective documents but until now they have had little intersection.
Document Engineering can unify these two perspectives by identifying and emphasizing what they have
in common rather than highlighting their differences.

A Document-centric Version of the Classical Analyze/Design/Refine Approach

Almost every book about systems design introduces some variation of an Analyze/Design/Refine
methodology. According to this classical approach, the artifacts of the "real world" are analyzed and the
results of this analysis are represented in a physical model that captures the characteristics of the
artifacts as they exist in some context and expressed in a particular technology. Then the model is
progressively refined into a more conceptual, logical model by identifying repeating or reoccurring
structures, removing redundancies and technology constraints, and otherwise creating a more abstract,
concise, and context-free representation of the essential characteristics. Finally, the refined model is
implemented "in the real world" by expressing it in technology appropriate for the contexts in which it
will be used.

This classical approach is familiar to data modelers but can seem somewhat alien to document analysts.
The traditional subject domain for data modelers consists of large numbers of identical instances, so the
analysis activity isn't as document driven as it was when there are fewer and more heterogeneous
instances to study. It is harder to "let go" of the artifacts and create logical models when the artifacts are
more salient. In addition, document analysts, especially those who learned the skill when only DTDs
were available to encode models, are more likely to think in terms of the modeling restrictions imposed
by this syntax and thus are less inclined to spend significant time refining models at conceptual level.

Page 5 of 13Patterns and Reuse in Document Engineering

10/15/2002file://C:\Documents%20and%20Settings\glushko\My%20Documents\xml%20conference...

What we call Document Engineering is at its core a "document-centric" version of the
Analyze/Design/Refine methodology. We have introduced it to people familiar with either document
analysis or data modeling (but not both) and it seems successful at bridging the two perspectives. We
have also been encouraged by the emergence of a new generation of XML and modeling tools like XML
Spy that share features with integrated programming environments. These provide more native support
for data modeling, emphasize XML schemas rather than DTDs, and better integrate XML document
models with database schemas and programming language class development. We believe that such
tools will assist those with more traditional document analysis experience to rapidly acquire the
complementary skills of data modeling and vice versa.

Three Kinds of Components and Their Relationships

Documents contain three kinds of information components: content, structure, and presentation. Content
components are always the most fundamental, but it is usually important to analyze the relationships of
the other types of components as well. Structural components like chapters, sections, tables, headers and
summaries, usually have some implicit semantic value because of their conventional use to reinforce a
logical content hierarchy. A critical task in document analysis is determining the rules by which
presentational information identifies or signals components of the other two types, because the visual
design of printed or rendered instances can be highly complex.

Fig. 1 illustrates how analysis is the process of identifying and separating these three types of
components. It also suggests how the idiosyncratic characteristics of document instances need to be
carefully analyzed in order to identify "good" logical components for potential reuse.

Page 6 of 13Patterns and Reuse in Document Engineering

10/15/2002file://C:\Documents%20and%20Settings\glushko\My%20Documents\xml%20conference...

Analyzing Documents To Identify Component Types

In data modeling, because the structural organization of content is more regular and because the binding
of presentational information to structure and content is less intrinsic for data-centric document types,
analyzing structure and presentation is often seen as an afterthought. This contrast makes the vocabulary
and methods of document analysis and data modeling seem more different than they actually are.

We have found that the presentational complexity and diversity of traditional publication types like
encyclopedias, dictionaries, and reference manuals makes them good subject matter for teaching
document analysis and design skills that can be transferred to transactional document types where the
presentation cues are weaker. We have also emphasized the similarity between applying different
presentation styles to document instances and generating different views or reports for collections of
data. It is pedagogically helpful to discuss both in terms of "applying transformations" to the logical
model and emphasizing the role of stylesheeting (e.g. XSLT) in both cases.

Identifying "Good" Content Components and Component Assemblies

Each of the three component types has a different set of principles for achieving a quality design. We
focus here on those or content components, and explain concepts and methods that applicable to a broad
range of document types.

Content components can be identified at three levels [CC Web] :

1. "Atomic" components that hold individual pieces of information and that are typically represented
by primitive data types (e.g., "string," "Boolean," "date") or datatypes readily derived from these.

2. "Aggregate" components that hold logically related groups of atomic components and sub-
aggregates.

3. "Document" components that assemble atomic and aggregate components to form a self -contained
logical unit of work; the clearest examples are transactional messages within a business process.
The business process context provides the requirements for which documents are to be assembled.

The hardest level at which to identify good components is at the aggregate level. There is little doubt
that we need some grouping of elements at the sub-document level both in our logical models and our
schemas, but if we do this on an ad hoc and intuitive basis we might not identify the optimal patterns for
re-use. For example, it might "sound right" to group Name, Address and DateOfBirth into an
aggregate component of Person. But what is it about the relationships among these three components
that makes them into a good aggregate?

The answer comes from conventional data modeling practice, which includes formal rules for designing
logical structures and establishing what data analysts call functional dependencies in order to create
modular and self -contained groups that lend themselves naturally to re-use. Much of what document
analysts have done in the past, albeit informally, is applying similar principles to identify reusable
components in logical models of documents. In Document Engineering we make this practice explicit so
as to apply the same rigor to document schema design that we have customarily applied to data
modeling.

Functional Dependency and Normalization

Dependency means that if the value of one component changes when another component's value
changes, then the former set is functionally dependent on the latter. For each Person we identify, there is

Page 7 of 13Patterns and Reuse in Document Engineering

10/15/2002file://C:\Documents%20and%20Settings\glushko\My%20Documents\xml%20conference...

a different Address and DateOfBirth component because the values of each of these components
functionally depend on the identity of the Person in question.

Data analysts use a formal technique for identifying and defining these dependencies, known as
normalization [DA 1981] . Normalization is a series of analytic steps that:

1. Ensures that all data elements in a group are discrete, i.e., can only take a single value. This means
we won't find lists of repeating values in any logical group.

2. Establishes the primary identifier of each logical group.
3. Aggregates groups of components that are fully dependent on each value of the primary identifier,

i.e., for each instance of the set.
4. Ensures that all members apart from the primary identifier are independent of one another.

Normalization yields models that describe the network of relationships between logical groups of
components in optimal ways that minimize redundancy and prevent inadvertent errors or information
loss when components are added or deleted.

Normalized Relational Models

For example, if we analyze the business processes of a university we might identify two models for
aggregate components called Student and Course. The standard business rules for universities allow a
given Student to enroll in many Courses and for a given Course to be enrolled in by many Students.
The principles of normalization would lead us to create a third aggregate component, which we might
call StudentCourse, to represent the cross-reference between these two other components. A relational
database organized in this way would allow us to retrieve the courses that any given student was taking
(the student's Transcript or CourseList) or the students who were enrolled in any given course (the
CourseRoster).

In another domain such as procurement, an Order may contain many Products (such as seen on a
PurchaseOrder document) or a Product may be on many Orders (such as seen on a SalesReport).
Normalization would introduce a LineItem component to reconcile these many-to-many relationships.

Assembling Hierarchical Document Models

Two-way relationship patterns like these are common in relational data models and they provide great
flexibility in the way we can maintain our information. They are an attempt to reflect the complex
network or web of associations that exist in the real world.

However, when we want to exchange information with others, this flexibility amounts to ambiguity. We
do not want to show all the relationships among the information components, only those that are
relevant to the business context we are in. This context-specificity is best achieved by creating (or
assembling) a hierarchical view out of the relational representation. Hierarchical views introduce
container structures to impose a particular interpretation on the information we want to exchange.

Of course, we can assemble several alternate hierarchical views of the same relational model, as we saw
with Student and Course (Transcript vs CourseRoster) and Order and Product (PurchaseOrder vs
SalesReport). If we need to create a schema for a PurchaseOrder document type we would start at
Order and list all LineItems and their associated Products. If we wanted a SalesReport document type
schema we would start at Product and list all LineItems and their associated Order. The contrasting
document schemas reuse the same components but assemble them in two different container structures,

Page 8 of 13Patterns and Reuse in Document Engineering

10/15/2002file://C:\Documents%20and%20Settings\glushko\My%20Documents\xml%20conference...

one the inverse of the other.

In this way, the hierarchical view both enforces integrity rules and prevents ambiguity in the meaning of
the data. What we are saying when we assemble a hierarchical view is "we want to emphasize one
context in which you are to understand the data this way." This additional step of assembling relational
components into hierarchical documents to establish context is what makes Document Engineering a
distinctive methodology and not just a style of data modeling. Fig. 2 illustrates the roles of analysis,
model refinement, and assembly in the methodology of Document Engineering.

The Methodology of Document Engineering

Once it is assembled by following a one-way path through the relational model, the hierarchical model
can be directly implemented as an XML schema. This document schema need not show all components
and their relationships as described in the relational model, only the ones pertinent to our business
context. Put another way, what this means is that logical components are patterns that can be re-used by
assembling them into document schemas based on the context of their use.

Organizing Patterns to Facilitate Reuse

Reuse of patterns has the immediate benefit of reduced design and maintenance effort, encouraging and
reinforcing consistency and standardization. Effective analysis enables us to recognize when a pattern
can be reused, when a new pattern should be created, and what contexts distinguish one pattern from
another.

Page 9 of 13Patterns and Reuse in Document Engineering

10/15/2002file://C:\Documents%20and%20Settings\glushko\My%20Documents\xml%20conference...

Patterns useful in Document Engineering are found at both the implementation level in the form of EDI
and XML libraries and also at the conceptual level in terms of libraries of models that describe common
business processes and the organization of activities between businesses. Re -using patterns at these
more abstract levels facilitates interoperability between different technology implementations.

The Reuse Matrix

Models and patterns vary in both their level of abstraction and in the granularity with which they view
business, so it is helpful to organize all of them in a single framework, which we call the "Reuse
Matrix" (Fig. 3).

The Reuse Matrix

We depict four levels of abstraction or model types, varying from highly abstracted logical or conceptual
models to specific instances of documents needed to implement a model. The center of this dimension is
where the "sweet spot" of patterns is found; patterns here have enough abstractness to be reusable, but
enough concreteness to be prescriptive. For example, IBM's "Patterns for e-business" [AD 2001] falls
squarely in the cell for conceptual business and business process patterns and Silverson's "Data Model
Resource Book" [SI 2001] is a set of patterns for conceptual information components

Against the levels of abstraction we also have the depth at which we describe the patterns of document
exchanges that are required by each model. These descriptions range from patterns of document
exchange viewed at the "business to business" level, such as "vendor managed inventory" or "build to
order," to patterns of exchange from the perspective of a single business (such as a RosettaNet Partner
Interface Process [RN Web]), to the most granular perspective that shows the re-use of components
such as the common Address structure in XML schema libraries like xCBL [XC Web] .

The common goals but different approaches of document analysis and data modeling can be depicted in
the Reuse Matrix, as can the relationship of these two approaches to information analysis to business
process analysis. We suggest that document analysis typically starts from the lower right (where
instances of data components in document artifacts can be found), while data modeling generally starts
from the lower left (focusing on logical models of objects and associations). Business Process analysis
typically starts from the upper left (abstract views of high level business models). Note that all three of

Page 10 of 13Patterns and Reuse in Document Engineering

10/15/2002file://C:\Documents%20and%20Settings\glushko\My%20Documents\xml%20conference...

these approaches need to reach the same place in the Reuse Matrix, the point at which most reusable
patterns exist. In practical terms this convergence depicts the key principles of Document Engineering
that models for documents and business processes need to be developed at the same time, with the same
care, and to compatible levels of detail.

The concept of context, which we described when we explained the assembly of document models, can
also be represented in the Reuse Matrix as the increased specificity of models as we move to the right in
any row. For example, in the top row what starts in the upper left corner as the abstract business model
of "supply chain" becomes a more prescriptive pattern for "vendor managed inventory" in the context of
retailing for packaged consumer goods as we move to the right (see [SC Web]). In the bottom row at
the information model level, the common Address structure at the conceptual level would, in the
context of an Order XML Schema, be implemented as an AddressType. This is a pattern that may be
re-used as ShipToAddress or BillToAddress, for example. At the further right hand side, we would
find specific instances of this implementation. These would be in the context of specific addresses to be
shipped or billed to, as they appeared on the Orders.

Applying the Methods of Document Engineering

We first tested this new methodology of Document Engineering in a graduate course titled "Document
Engineering for E-business" at the University of California, Berkeley, in the Spring of 2002 taught by
the first author [GL 2002a] . Students were taught document analysis and data modeling skills,
introduced to business-to-business, business process, and document patterns, and applied the principles
of Document Engineering in the design of an "electronic university."

An early assignment required students to apply the patterns of "build to order" (used so successfully by
Dell Computer as a manufacturer of personal computers [KR 1996]) and "marketplace" to the operation
of the university, which of course has more than once been called a "degree factory." Some students at
first resisted the extent of commercialization implied by viewing students as product consumers and
their professors as suppliers of those products. Later, though, after applying the commercial patterns to a
new domain, most students appreciated that a "Dell-iversity" might offer them more course choices and
customized majors, though perhaps only by eliminating tenure and research activity, which can be
viewed as "friction" in the supply chain.

Another assignment required students to develop a set of related models for three document types along
with a library of components that could be used by all of them. Some students were assigned highly
regular transactional document types like CourseRosters and Transcripts while others were given
document types like GraduationRequirements that had less transactional character. Students were able
to reuse the same aggregate components like Student and Course by assembling them in different
hierarchies. As might be expected, the modeling tasks were more difficult for those whose document
sets contained the non-transactional documents because the document instances for those types were
more heterogeneous and yielded less reusable aggregate components.

In a third assignment students modeled the process of selecting and enrolling in courses to the point in
the semester where they receive a bill from the university. They were required to use PIPs from the
RosettaNet directory [RN Web] as patterns for the business transactions needed in their model. Despite
the fact that these PIPs were designed to standardize the business processes in information technology
and semiconductor product supply chains, students were quite successful in reusing them in the
university "supply chain." Students used PIPs for querying product information, requesting availability
information, creating and managing purchase orders until the buyer and supplier have an agreement, and
sending invoices. That's the pattern of procurement whether one is buying steel, paper clips, or

Page 11 of 13Patterns and Reuse in Document Engineering

10/15/2002file://C:\Documents%20and%20Settings\glushko\My%20Documents\xml%20conference...

university courses.

We are encouraged by the success we've had in creating a systematic methodology of Document
Engineering. We've been able to bridge the traditional gap between document analysis and data
modeling with methods that are practical and effective for both transactional and non-transactional
document types. Our Reuse Matrix appears to be a useful framework for organizing models and patterns
of different levels of abstraction and in the granularity with which they view business.

We are now applying Document Engineering principles and methods to problems of larger scale,
including the effort to develop a Universal Business Language ([UB Web] , [MC 2002]) and the E-
Berkeley initiative [EB Web] at the University of California, Berkeley.

Bibliography

[AD 2001]
Adams, J., Koushik, S., Vasudera, G., and Galambos, G. IBM Patterns for e-business: A Strategy
for Reuse. IBM Press, 2001.

[CA 2001]
Carlis, J., and Maguire, J. Mastering Data Modeling. Addison Wesley, 2001.

[CC Web]
Context and reusability of core components. 10 May 2001.
http//www.ebxml.org/specs/ebCNTXT.pdf

[DA 1981]
Date, C.J. An Introduction to Database Systems 3rd Edition. Addison-Wesley, 1981

[EB Web]
http://eberkeley.berkeley.edu/

[GL 1999]
Glushko, R., Tenenbaum, J. and Meltzer, B. An XML framework for agent-based e-commerce.
Communications of the ACM, (March 1999, 42(3), 106-114).

[GL 2002a]
Glushko, R. Document Engineering for e-Business, University of California, Berkeley, Spring
2002. http://www.sims.berkeley.edu/academics/courses/is290-4/s02/

[GL 2002b]
Glushko, R., and McGrath, T. Document Engineering for e-Business. ACM Symposium on
Document Engineering, 2002.

[HA 1996]
Hay, D. Data Model Patterns: Conventions of Thought . Dorset House Publishing, 1996.

[KR 1996]
Kraemer, K., Dedrick, J., and Yamahiro, S. Refining and Extending the Business Model with
Information Technology: Dell Computer Corporation. The Information Society, 16, 5-21.

[MA 1996]
Maler, E, and Andaloussi, J. Developing SGML DTDs: From Text to Model to Markup. Prentice
Hall, 1996.

[MC 2002]
McGrath, T., and Glushko, R. Universal Business Language (UBL) Position Paper: Library
Content Methodology. 26 June 2002. http://oasis-open.org/committees/ubl/lcsc/doc/position-
mcgrath-methodology-01.doc

[MU Web]
Mulberry Technologies, Inc. Data Modeling and XML Vocabulary Development.
http://www.mulberrytech.com/papers/xmlvocab.pdf

Page 12 of 13Patterns and Reuse in Document Engineering

10/15/2002file://C:\Documents%20and%20Settings\glushko\My%20Documents\xml%20conference...

[RN Web]
RosettaNet PIP Directory
http://www.rosettanet.org/rosettanet/Rooms/DisplayPages/LayoutInitial?
Container=com.webridge.entity.Entity%5BOID%
5B9A6EEA233C5CD411843C00C04F689339%5D%5D

[RO 1962]
The Original Roget's Thesaurus of English Words and Phrases. Dell Publishing, 1962. (See
especially Section 520, "Publication" and Section 589 "Book")

[SC Web]
Supply-Chain Council. Supply-Chain Operations Reference-model: Overview of SCOR Version
5.0. 2001. http://www.supply-chain.org/slides/SCOR5.0OverviewBooklet.pdf

[SI 2001]
Silverston, L. The Data Model Resource Book Volumes I and II. John Wiley and Sons, 2001

[UB Web]
UBL: The Next Step for Global E-Commerce. http://www.oasis-
open.org/committees/ubl/msc/200112/ubl.pdf

[UN Web]
UN/EDIFACT Standards http://www.unece.org/trade/untdid/directory.htm

[XC Web]
XML Common Business Library. http://www.xcbl.org/about.html

[XO Web]
XML.ORG Registry. http://www.xml.org/xml/registry.jsp

Page 13 of 13Patterns and Reuse in Document Engineering

10/15/2002file://C:\Documents%20and%20Settings\glushko\My%20Documents\xml%20conference...

