
 42

Document Engineering for e-Business
Robert J. Glushko

School of Information Management
and Systems

University of California, Berkeley
+1 650 533 4369

glushko@sims.berkeley.edu

Tim McGrath
School of Information Communication and Technology

 University of Notre Dame Australia
Fremantle

+61 893352228
tmcgrath@portcomm.com.au

ABSTRACT
It can be said that “document exchange" is the "mother of all
patterns" for business (and for e-business). Yet, by itself this view
isn't sufficiently prescriptive. In this paper, we present additional
perspectives or frameworks that make this abstraction more
rigorous and useful. We describe an approach to artifact-driven
analysis, model refinement, and implementation for document-
intensive systems that unifies the “document analysis" approach
from publishing and the "data analysis" approach from
information systems. These traditionally contrasting approaches to
understanding documents are unified in an "Analysis Spectrum"
in which presentational, structural, and content components
assume different weights or status. Our methodology emphasizes
reuse with a "Reuse Matrix," in which both business process (or
document exchange) patterns and document schema patterns are
organized by different levels of abstraction and scope. Enterprise-
level patterns like "supply chain" and "marketplace" can fit into
this matrix along with process patterns like "RosettaNet PIP" and
document patterns like the "XML Common Business Library."
Taken together, these concepts form the foundation of a new
discipline: “Document Engineering for e-Business.”

Categories and Subject Descriptors
I.7.5 [Document and Text Processing]: Document Capture –
document analysis; I.7.2 [Document and Text Processing]:
Document Preparation – markup languages; H.2.1 [Database
Management]: Logical design

General Terms

Design, Standardization

Keywords
XML, Document Engineering, Document Analysis, Business
Process Modeling, Patterns, Reuse, e-Business

1. INTRODUCTION
It is natural to conceptualize business relationships as a chain of
document exchanges. Businesses have long dealt with each other
by exchanging documents like catalogs, orders, invoices, and
receipts. For example, in 355 BCE, when an Aramaic farmer

named Halfat paid his taxes he was issued a receipt imprinted on a
clay pot. Over 2000 years later, we have a record of Halfat’s
business transaction, frozen in time on a shard of pottery [4].

Figure 1 An Aramaic Tax Receipt

Even though pottery has been replaced by paper and paper has
mostly been replaced by electronic documents, the idea of
documents as interfaces has persevered. Using documents as
interfaces enables a business to present a clean and stable
relationship to its business partners despite changes to its
technology or internal business processes. Today, as more and
more business has become “e-business,” electronic documents
hide the specific implementation details of e-business applications
and web-based services.
For example, if Business A sends a purchase order to Business B
and B can fulfill it, B might respond with an purchase order
acknowledgment, or perhaps with an invoice and a shipping
notice. As long as A and B can understand each other's
documents and can produce and respond with the documents
appropriate for each other's business processes, they need not
reveal how they produce these documents they send nor how they
process the documents that they receive. The documents - and
only the documents - serve as the public interfaces to their
respective business processes.
This loosely coupled architecture reduces the cost of designing
and implementing new applications, which is essential as e-
businesses experiment with business models. “Document
exchange” is the "mother of all patterns" out of which
marketplaces, supply chains, and other more complex patterns are
composed. Electronic documents are thus the foundation for the
compelling vision of a “plug and play” Internet economy ([5],[6]
in which “virtual enterprises” or “information supply chains” [3]
are created by building on and interconnecting services offered by
businesses around the globe.
For example, an Internet business like Amazon.com’s can be
modeled using a “direct to customer” or “drop-shipment” pattern

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DocEng’02, November 8-9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-594-7/02/0011…$5.00.

 43

[13] that coordinates the activities of four enterprises: a retailer
whose catalog offers products to customers, a supplier or
warehouser who maintains product inventory, a bank that accepts
the customer’s payment, and a shipment service that picks up the
product from the warehouse and delivers it to the customer. While
this coordination may be invisible or appear seamless from the
customer’s perspective, it requires a complex choreography of
document exchanges.
Furthermore, with careful design the same documents can be
reused in different business processes. For example, the simple bi-
directional exchange pattern of purchase order <=> purchase
order response can itself be a component of an “auction” pattern
that consists of iterations of multiple simultaneous exchanges with
a single seller or single buyer (for reverse auctions).
But even if we can conceive of business models in terms of
document exchanges, by itself this view isn't sufficiently
prescriptive. We need a more complete perspective on document
engineering that answers questions like these:

• How do we identify, specify, and deploy the appropriate
documents?

• How do we preserve our investments in older
technologies for document exchange while taking
advantage of new ones?

• How do we preserve our investments in business
processes and relationships while creating new ones?

These are not new questions, but the discipline of "Document
Engineering for e-Business" is emerging as a more comprehensive
and coherent approach to answering them. This new discipline for
designing, specifying and deploying the electronic documents can
apply to all business models from speeding the flow of
information through supply chains, to hosted e-marketplaces and
auctions to the aggregation, customization, and syndication of
content. These documents allow us to automate end-to-end
transactions and apply Internet technologies for dramatic
economic benefits.

2. Analysis Foundations for Document
Engineering
Published documents are essential to business. Documents like
catalogs, brochures, and datasheets assist buyers in locating and
selecting products and services. Other types of documents like
assembly instructions, reference manuals, and troubleshooting
guides assist buyers in using and maintaining the things they have
bought. Transactional documents like orders and invoices,
traditionally embodied as printed business forms but more
commonly now as electronic messages, directly invoke business
processes or respond from them.

2.1 Document-Centric Analysis
Because of the essential role of documents in business, it is
natural that document analysis will form a major part of any
document engineering methodology for e-business. Document
analysis techniques developed by publishing experts emphasize
the study of published documents as artifacts that are perceived as
a rendition – a combination of information and format
([8],[9],[15]).
This kind of document-centric analysis has been central to the
design of text processing, publishing or hypertext systems [7]. Its

primary focus has been on printed publications and more recently,
web page layouts. While the distinction between information and
format may be blurred by WYSIWYG user interfaces, various
markup languages have been developed that make it possible to
separate document content from the format. This gave rise to the
insight that markup could be used to facilitate functions other than
formatting, such as classification, retrieval, and reuse.
Document analysis is often conducted with the goal of abstracting
a logical model from heterogeneous instances and encoding it as
an SGML or XML schema. The schema enables the replacement
of ad hoc, inconsistent or incomplete formatting with a stylesheet
that applies presentation semantics in a consistent fashion to any
instance that conforms to the schema.

2.2 Data-Centric Analysis
But increasingly the documents most important in e-business are
not traditional publications but data-centric electronic messages.
Such documents are far more regular in their logical structures
and have minimal or arbitrary presentation features. They are
optimized for consumption by applications and not for people.
For these kinds of documents, the traditional document analysis
methods are not well suited. Instead, we have turned to data
analysis methods from information systems engineering for
description and design techniques that we can reapply to the
document domain.
Data-centric analysis has its heritage in information systems
design. Here, the focus is on computer data files and databases.
Skills developed from crude hierarchical data models to more
sophisticated relational models that described associations
between data objects. The principles of normalization and
relational theory evolved and ensured that database schemas
minimized redundancy and prevented inadvertent errors or loss of
information. At about the same time the insight emerged that
methods and processes could be associated with data objects to
create an object-oriented view.

2.3 Unifying the Document-Centric and Data-
Centric Perspectives
The document and data analysis perspectives come from different
disciplines, use different tools, terminology and techniques and
arguably different cultures. Both offer valuable insight into
designing effective documents but until now they have had little
intersection.
The challenge is to unify these two schools of thought into a
common approach. We seek to describe documents with formal
models comprising of data objects that have well-defined
properties and associations with each other. Our methods must
yield coherent and consistent definitions across the spectrum of
business document types. The synthesis of these two perspectives
is the essence of Document Engineering.

3. The Document Engineering Approach
In Document Engineering when we look at e-business systems
and services the primary objects in our models are the documents
and the components from which they are assembled. We have
taken a classical analyze-design-refine modeling methodology and
reshaped it to better fit the domain of documents (Figure 2).

 44

Figure 2 The Document Engineering Roadmap

3.1 Document Models
We analyze real world artifacts by creating models. These may be
mental image pictures, scale replicas or architectural diagrams.
We populate these models of documents by capturing meta-data,
descriptions of the things that make up the model.
Because of the distributed architectures of e-business and web
services we need a modeling approach that is consistent with them
- loosely coupled and non-prescriptive. For businesses to “do
business” their business systems must interoperate, and thus their
models must also, so an efficient modeling approach actively
strives to reuse and revise rather than to reinvent.
Document Engineering models of e-business systems describe the
business processes that produce and consume documents. These
processes convey the context in which our document structures
and their components exist. For example, the details of a product
on a Purchase Order sent by a supplier in a vendor managed
inventory business process may contain less descriptive
information than is required on a Purchase Order sent by the
buyer.
Finally, it is both a theoretical and practical innovation in
Document Engineering to use XML schemas as the format for
encoding models for both the documents and the business
processes in which they participate.

3.2 Classifying Components
When we look at a document, the “fodder” for its logical model
comes from three categories of information it contains:

• Content components – the pieces of information in the
document; the “what is it” information, or the “gray
matter”

• Structure components – the arrangement of the content,
the “where it is” information, or the "skeletal matter".

• Presentation components – the formatting or rendering
of both structure and content components; the “what
does it look like” information; much of the time it
“doesn’t matter” except as cues to help identify
components of the other two types.

Analyzing documents in terms of these three kinds of components
can be subtle. For example, a DateOfBirth is a content
component meaning, "the date on which you were born", but is
also a structural component that contains a DayOfMonth, Month
and Year component. Finally, there may be one or more
presentation components that apply to the other components.
DateOfBirth might be formatted as 11-01-1980, but Americans
understand this as MM-DD-YYYY and Europeans as DD-MM-
YYYY, which illustrates that presentation rules can involve both
structure and content.
The hybrid or composite skill of component analysis in Document
Engineering combines the skills of the data-centric data analyst,
who focuses on content components, with the skills of the
document analyst, who traditionally focuses on structure and
presentation. Together they cover the Document Analysis
Spectrum.

3.3 The Document Analysis Spectrum
Our synthesis of document-centric and data-centric analysis
implies a broad scope in the kinds of documents that can be
analyzed. These can be viewed on a continuum known as the
Document Analysis Spectrum.
At one end of this spectrum are idiosyncratic or one-of-a-kind
documents whose presentational components are highly designed,
which makes them artifacts requiring careful study. For example,
the Oxford English Dictionary uses a complex set of fonts, type
sizes, and formatting attributes like boldface and italics to
distinguish the sub-structures of each entry [10]. Likewise, the
Engineering Data Compendium, an encyclopedia of human
factors in design, is a complex and concrete merger of
presentational and structural information, with a two-page facing
spread for each entry and numerous layout and typographical
conventions [7].
At the other end of the spectrum are data-intensive electronic
documents as used in e-business – transaction documents. Here,
content becomes all-important and each document follows a well-
defined and regular schema. Structural components are often just
pure “containers” for content components, and presentational
components are less important
In between these endpoints are documents that exhibit regularity
in data content but for which presentation remains important.
Product catalogs or lecture slides are good examples.
The challenge for a methodology of Document Engineering is to
be able to analyze documents at all points in the spectrum. .1

3.4 Analysis of Documents
Initially, our document models will be tightly coupled to the
physical implementation as it appears in the artifacts being
studied. This will be probably be influenced by the technology
involved in its production. For example, if the printed document
artifact we are analyzing has a three line address description, it
seems natural to model this as three lines of address description.

1 We have found that the presentational complexity and diversity

of document-centric artifacts makes them useful for teaching the
skills needed to analyze and design more data-centric ones,
where the presentational cues are less detectable and less
intrinsic.

 45

Yet this structure may have been determined by the space
available on the original form.
The models that contain these technological constraints or
features are the “physical” models. Physical models reflect the
technology used to implement the documents or processes. This
technology view shows HOW things work. As we progress to a
more logical model, we remove presentational features. For
example, while the content and the structural components in
DateOfBirth matters, the formatting of the three fields is not
instrinsically significant. “November 1st 1980” is the equivalent to
“11-01-1980” and “the first of November 1980”.
Good analysis encourages us to look beyond the physical model,
to ask WHY things work. This is the conceptual view, not
constrained by technical features. Here we can see beyond the
three line address description constraint and recognize address
descriptions as a concept. We want to look at the concepts behind
the component, to find out why is it doing these things. These
results represent 'logical' models. This is shown in Figure 2 as the
move to a higher layer of Analysis on the left hand side of the
diagram. Now we try to separate content from structures, to
establish their independent meaning. For example, why is “11-
01” just a different presentation for “the first of November”?
Because each contains a DayOfMonth, Month and Year?
Because each of these components has meaning outside the
DateOfBirth and can be used for other purposes.

3.5 Document Design
Experience tells us that defining these conceptual models is where
we start to understand the true nature of something. It is this
understanding that leads to the possibility of improvement that is
design. Indeed, at several points during our analysis a voice cries
out "There must be a better way”. It is when we study the logical
model of the existing system that we start to formulate what that
better way may be. This may mean removing redundant processes
or data, standardizing on one process or rationalizing a
document's structure. In Figure 2 we are now moving across the
top part of diagram as part of the Design process.
Well-engineered document schemas have clear, unambiguous
definitions of data, a recognition of the logical sets (or containers)
in which they belong and the way these sets are related to each
other. These definitions allow us to minimize redundancy,
localize dependencies and ensure that information can be
maintained in logical sets that reflect the constraints of the real
world.
Defining the reusable data structures in documents is something
that can be done intuitively. It might sound right to group Name,
Address and DateOfBirth into a Person container. However, if
we want to have strongly re-usable structures we need a more
formal and consistent approach for grouping components.

3.5.1 Normalization
Conventional data modeling practices include formal rules for
designing logical structures. In fact, much of what document
analysts have done in the past, albeit informally, is establishing
what data analysts call functional dependencies. In Document
Engineering we apply the same rigor to document schema design
that we have customarily applied to database design.

Functional dependency means that if the value of an attribute
changes when another attribute value changes, then the former set
is dependent on the latter. For example, suppose the price per
sheet of printer paper is reduced if the pack size changes from
reams to cartons. This means pricing per sheet is functionally
dependent on pack size. The values for Name, Address and
DateOfBirth date of birth are all functionally dependent on the
specific Person in question.
In database theory, a formal technique for identifying and defining
functional dependencies is known as normalization [2].
Normalization is a series of analytic steps that:

1. Ensures that all data elements in a group are discrete,
i.e., can only take a single value. For example, no
Person can have more than one DateOfBirth.

2. Establishes the primary identifier of each logical group.
For Person, this would be the Name of the Person.2

3. Establish groups of data that are fully functionally
dependent on each value of the primary identifier, i.e.,
for each instance of the group. For example, each time
we introduce a new Person by adding a Name, we can
also have a DateOfBirth and Address.

4. Ensures that all members apart from the primary
identifier are functionally independent of one another.
For example, the value of the DateOfBirth does not
affect the Address and vice versa.

For database designers, normalization yields sets of relational
tables. For Document Engineers, normalization yields the logical
containers that put structure or “depth” into document schemas.
The rationale is the same: “recognizing functional dependency is
an essential part of understanding the meaning or semantics of
the data” [2, pp.240-242].
Nornalization makes it easier to re-use existing patterns from
other logical models. This is a formal way of stating what we do
intuitively when we apply familiar patterns for structures such as
Address. We take implicit patterns from postal labels, existing
forms and maybe libraries of various business vocabularies.

3.5.2 Limits of Normalization
However, while the principles of normalization can be applied to
the design of document schemas to achieve similar goals as in
database design, these are not identical goals. Database models
and document schemas are different in key ways [12]. Most
apparent is that while most databases are built using relational
structures, documents are generally hierarchical in structure.
Therefore we must bear in mind that the actual implementation of
normalized data structures will differ. In addition, XML document
schemas may employ additional containers to preserve their
historical structural integrity, that is applying the same assembly
rules (e.g. page boundaries). This is often required when printed
and electronic documents co-exist and you need to be able to
produce paper on demand.
Many of these types of design decisions are pragmatic and based
on the business rules of the required application. However,

2 A person’s name is not really a practical identifier since some

names are duplicates (like John Smith), so we generally
fabricate an identifier, such as Employee Number or SSID.

 46

having the normalized model as a reference allows us to make
these design decisions consciously and formally rather than on an
ad-hoc basis. Not every database or document collection needs a
data model that has been fully normalized – but it helps to know
why it isn’t.

3.6 Context
Analysis and design are two separate activities. We all suffer the
temptation to build a “better way” into our models too early
before we fully determine requirements. This often leads to
inaccurate representations of existing systems and therefore
poorer ultimate designs. For example, collapsing a three line
address from a printed form into a one address field would not be
an elegant design improvement because it would undoubtedly lose
important sub-structure captured by the former.
But how much structure is enough? In the U.S. it may be
sufficient to design Address to include StreetAddress, City,
ZipCode, and State. However, we might also need separate
structures for RoomNumber, Floor Number, BuildingName,
StreetNumber, StreetName and less U.S.-centric structures like
PostalCode and StateOrProvince if we have a wider range of
addresses to encode and requirements to reuse them in other
processes (such as sorting) that require this finer granularity. So
we see that the requirements on the model are given to us by the
context of the business process.
Recognition of context is an important factor to promote re-use of
common patterns using customized refinements. Context can be
applied by extending the component’s name. For example, we
may have a component known as Contact that describes a person
or position that acts as a communication point in an enterprise. In
the context of goods delivery, we may have a ShippingContact
and in the context of payment we may have a BillingContact.
The context of a business process can be specified by a set of
context categories and associated values [1] to promote
consistency and completeness in the models of associated
documents. For example, if a US glue manufacturer is selling to a
French shoemaker, the context values might be as follows:

Figure 3 Context Classifications Example (from [1])

3.7 Assembling Document Definitions
Having defined the components and structures we need, the next
stage is to define the schemas for entire documents. Document
definitions can be viewed as assemblies of structures and
components based on a required business context3.

3 “Document assembly” is sometimes used to describe the process

of constructing a new document instance from fragments or
components (see, e.g. [12]). Note that we are talking about
assembling document schemas here.

Document assembly means creating hierarchical definitions (top-
down and nested trees) as this is still the most practical way to
define a document’s structure.. Most documents have a strong
structural hierarchy (book → chapter → section → paragraph) or
clear divisions based on types of content (header – item details –
summary) .
Assembly is carried out by creating pathways that establish the
top-level structure and then navigating through the logical model
based on rules provided by the context involved. For example, the
context may determine that a ShippingContact structure is not
required in a vendor managed inventory system.
For document types on the "presentational artifact" end of the
Document Analysis Spectrum it is conventional to assemble the
logical document in "document order" – that is, to organize the
elements in the document schema so that their valid order matches
the order in which they would appear in a document instance.
For example, the obvious way to assemble a document schema
defining a book would be something like this, where the order of
the elements follows the structure of the book in print:4
<!ELEMENT Book
 (Forward?,Preface?,Introduction,
Chapter+,Appendix?,Bibliography?,Index?)>
But for document types toward the "data-centric" end of the
document analysis spectrum there are likely to be a variety of
different presentations for instances. These instances may differ in
which information from the instance they present (they may be
queries or views of the instance rather than a one-to-one
rendering) and in the order or structure with which they present it.
For these data-centric schemas, it may be better to assemble the
components of the document model in a way that facilitates
authoring or the subsequent transformations rather than in an
order that reflects the structure of a particular presentation of the
information in the instance.
Put another way, this means that the same pool of components can
be assembled with different container structures that significantly
change the suitability of the document for various purposes.
This observation reminds us that rules for assembling information
components into hierarchical document schemas are analogous to
rules of normalization for database schemas. Normalization
reduces redundancy, increases efficiency, and prevents insertion
and deletion anomalies through which information is
inadvertently lost or duplicated. Likewise, an appropriate
container structure facilitates schema modifications (restrictions
or extensions) or transformations.

3.8 Document Schema Encoding
Having established a new logical model for our documents, we
have to recognize the constraints of the technology in which it
will operate. We know WHAT we want, now we have to decide
HOW it can be built. We are now moving back down Figure 2
into the process of implementation.

4 We use DTD syntax for simplicity here even though the

assembly model we are defining is still a logical one whose
syntactic realization is yet undefined (see Section 3.8).

 47

This will most likely entail encoding the models into a computer
language and inheriting the constraints that this environment
places on the model. Perhaps our technology platform cannot
represent complex data structures or define certain business rules
within its language. These factors need building into our new
physical model. In an architect's plans, these would be the
working drawings.
Increasingly, these models are being expressed as XML schemas.
In these environments, factors such as the use of DTD or XSD
may affect the new physical model.
Finally, our designs for new documents and processes are purely
theoretical unless we take them and put them in the real world. If
documents form the interfaces between applications, then it is
these applications that provide the presentational features of the
document. For example, XML programmers can build stylesheets
to transform our Address description into three lines of text for
the printed form and a different stylesheet for sorting by postal
delivery. Hopefully, we have arrived at our required solution.

3.9 Practical Document Engineering
Of course, what we have presented is a panoramic view.
Sometimes analysis is all we do, sometimes we repeat the cycle,
or jump in at points along the way. Document Engineering is not
intended to be a prescriptive methodology. Rather it presents a
landscape in which to place our thinking.

4. PATTERNS
Models are valuable tools for identifying repeating or reoccurring
features. We call these features, patterns. Patterns may structural,
presentational or content patterns. They may be generic or
context-specific.
It is by documenting these patterns that we can re-use them, either
within the same model or in models for other systems.
Often these patterns are visible in the model but invisible in the
concrete, real-world objects and functions that the model
describes. For example, in recipes, noticing that the "beef stock"
that is an incidental by-product of cooking beef may be an
ingredient in other recipes or noticing that butter and margarine
appear in identical or similar contexts and may be substitutes for
each other.
Once patterns are identified they provide opportunities for
simplifying structures and processes by replacing low-level
specific descriptions with more abstract ones.

4.1 Patterns and Re-use
In addition to improving designs, patterns promote reuse. Reuse
has the immediate benefit of reduced maintenance, encouraging
and reinforcing consistency and standardization. Re-using
‘logical’ models also enables interoperability between different
systems. For example, imagine if the addressing structures used
by Government agencies all followed the same model and that any
changes to address could be propagated across agencies.

4.2 Libraries for Re-use
If patterns and other reusable artifacts of models are to be
exploited they need to be easy to find. This most often implies a
reuse repository or library of some kind [18]. For example, there
are libraries of business processes such as RosettaNet [11] and

libraries of document components such as xCBL [16] and UBL
[17].
Document Engineered models can serve as the "front end" to
these libraries because they provide the metadata or query
structure to guide searches for appropriate patterns or models.
In reality there are often tradeoffs between using patterns and
creating a model "from scratch.” The effort spent studying and
selecting a pattern should be exceeded by the benefits of using it,
and because there may be "network effects" it can be tempting to
"force fit" a problem into a pattern.
It is a designer’s decision as to whether it is better to conform to a
pattern or to customize a solution to achieve an exact fit.
This decision is complicated when we realize that “standards” for
e-commerce such as UN/EDIFACT, RosettaNet, X12 and UBL
are also libraries of patterns.

4.3 Patterns and Re-use Matrix
Different kinds of businesses vary in both their required level of
abstraction and in the granularity with which they view business.
These two dimensions form a matrix we refer to as the Re-use
Matrix (Figure 4).

Figure 4. The Re-use Matrix

Figure 4 illustrates four levels of abstraction, varying from highly
abstracted meta-models to specific instances of document
themselves
Against the levels of abstraction we also have the depth of the
business model itself. These range from a high-level business
model, such as “vendor managed inventory” [14] or “outsource
indirect procurement to a marketplace” to low level re-use of data
components such as the common Address structure.
We observe that Document Modeling has traditionally started
from the lower right (by analyzing instances of data components),
while Business Process analysis has generally started from the
upper left (abstract views of high level business models).
Document Engineering enables us to reach the middle of the Re-
use Matrix. We want to express our business process models and
business document models with enough details so that they are
implementable and machine processable. By understanding the
business process and business information models concurrently,
we can achieve the best model for both. Effective process
modeling requires an understanding of both the business
information and the business process models. Business processes

 48

and business documents are complementary and should be treated
with the same level of abstraction. We describe this balance as
the ying and yang of e-business.
In practical terms this means developing schemas for business
documents and schemas for business processes at the same time,
with the same care, and to compatible levels of detail.

5. SUMMARY
We started out by describing some foundations for Document
Engineering and how these melded into a view that document
models can cover a spectrum of types, from human readable to
electronic data. Documents can be classified according to their
mix of presentational, structural and content components.
Document Engineering for e-Business focuses on the analysis and
design of the content and structural components and how these are
assembled into the models we know as document definitions. We
saw how these document definitions must be assembled in the
context of their particular business process requirements.
While they may approach their subject from differing angles, a
recurring theme of Document Engineering is the value of
identifying patterns in both data models and business processes.
These patterns, which may be manifested as “standards,”
encourage interoperability through their re-use.
We started our paper by posing the questions:

• How do we identify, specify, and deploy the appropriate
documents?

• How do we preserve our investments in older
technologies for document exchange while taking
advantage of new ones?

• How do we preserve our investments in business
processes and relationships while creating new ones?

Document Engineering for e-Business is proving to be a practical
methodology for solving these problems. We have been
encouraged by its application in both the practical development of
a new e-business vocabulary and the training of a new generation
of document engineers.

6. ACKNOWLEDGMENTS
This framework for Document Engineering for E-business was
developed for a course with the same title taught by the first
author in Spring, 2002, at the University of California, Berkeley.
We thank the brave students for their courage in taking a “first
time ever” course and suggesting numerous mid-course
corrections. We also thank Brian Hayes and members of the UBL
initiative for engaging in many useful discussions and debates
with us.

7. REFERENCES

[1] Context and reusability of core components. 10 May 2001.
http://www.ebxml.org/specs/ebCNTXT.pdf

[2] Date, C.J. An Introduction to Database Systems 3rd
Edition, Addison-Wesley, 1981.

[3] Downes, L. The information supply chain. Chapter 4 of The
Strategy Machine, HarperBusiness, 2002.

[4] Eph'al, I. & Naveh, J. Aramaic Ostraca. Magnes, 1996.
[5] Glushko, R. The plug-and-play economy. Purchasing,

(December 22, 2000, 72-74).
[6] Glushko, R., Tenenbaum, J. & Meltzer, B. An XML

framework for agent-based e-commerce.
Communications of the ACM, (March 1999, 42(3),
106-114).

[7] Glushko, R., Weaver, M., Coonan, T., & Lincoln, J.
"Hypertext Engineering": Practical Methods for
Creating a Compact Disc Encyclopedia. ACM
Conference on Document Processing Systems, 1988,
11-19.

[8] Maler, E, & Andaloussi, J. Developing SGML DTDs:
From Text to Model to Markup. Prentice Hall, 1996.

[9] Mulberry Technologies, Inc. Data Modeling and XML
Vocabulary Development.
http://www.mulberrytech.com/papers/xmlvocab.pdf

[10] Raymond, D., & Tompa, F. Hypertext and the Oxford
English Dictionary. Communications of the ACM, (July
1988, 31(7), 871-879).

[11] RosettaNet PIP Directory
http://www.rosettanet.org/rosettanet/Rooms/DisplayPa
ges/LayoutInitial?Container=com.webridge.entity.Entit
y%5BOID%5B9A6EEA233C5CD411843C00C04F68
9339%5D%5D

[12] Salminen, A., & Tompa, F. Requirements for XML
Document Database Systems. ACM Symposium on
Document Engineering, 2001, 85-94.

[13] Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E.
Designing and Managing the Supply Chain. McGraw-
Hill, 2000.

[14] Supply-Chain Operations Reference-model: Overview
of SCOR Version 5.0. Supply-Chain Council. 2001.
http://www.supply-
chain.org/slides/SCOR5.0OverviewBooklet.pdf

[15] Travis, B., & Waldt, D. The SGML Implementation Guide.
Springer, 1995.

[16] XML Common Business Library.
http://www.xcbl.org/about.html.

[17] UBL: The Next Step for Global E-Commerce.
http://www.oasis-
open.org/committees/ubl/msc/200112/ubl.pdf

[18] XML.ORG Registry.
http://www.xml.org/xml/registry.jsp

	INTRODUCTION
	Analysis Foundations for Document Engineering
	Document-Centric Analysis
	Data-Centric Analysis
	Unifying the Document-Centric and Data-Centric Perspectives

	The Document Engineering Approach
	Document Models
	Classifying Components
	The Document Analysis Spectrum
	Analysis of Documents
	Document Design
	Normalization
	Limits of Normalization

	Context
	Assembling Document Definitions
	Document Schema Encoding
	Practical Document Engineering

	PATTERNS
	Patterns and Re-use
	Libraries for Re-use
	Patterns and Re-use Matrix

	SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES

