
KMS: A Distributed Hypermedia
System for Managing Knowledge
In Organizations
Robert Akscyn, Donald McCracken, Elise Yoder

Knowledge Systems Incorporated
4750 Old William Penn Hwy, Murrysville, PA 15668

ABSTRACT

KMS is a commercial hypermedia system developed by Knowledge Systems for networks of
heterogeneous workstations. It is designed to support organization-wide collaboration for a broad
range of applications, such as electronic publishing, software engineering, project management,
computer-aided design and on-line documentation. KMS is a successor to the ZOG system
developed at Carnegie Mellon University from 1972 to 1985.

A KMS database consists of screen-sized WYSIWYG workspaces called frames that contain text,
graphics and image items. Single items in frames can be linked to other frames. They may also be
used to invoke programs. The database can be distributed across an indefinite number of file servers
and be as large as available disk space permits. Independently developed KMS databases can be
linked together.

The KMS user interface uses an extreme form of direct manipulation. A single browser/editor is
used to traverse the database and manipulate its contents. Over 85% of the user’s interaction is
direct--a single point-and-click designates both object and operation. Running on Sun and Apollo
workstations, KMS accesses and displays frames in less than one second, on average.

This paper describes KMS and how it addresses a number of hypermedia design issues.

INTRODUCTION

For the past six years, we have been developing a commercial hypermedia system (KMS) based on
our previous research with the ZOG system at Carnegie Mellon University. This paper describes
KMS and how it addresses a number of hypermedia design issues, particularly issues concerning
what data model to use. Section 1 provides some historical background on ZOG and KMS. Section
2 gives an introductory description of KMS. Section 3 describes some hypermedia design issues and
how KMS addresses them. Section 4 concludes by reiterating the importance of the KMS data
model--how it permeates the overall design of the system.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that.copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-340-X/89/001 l/O001 $1.50

November 1987 Hypertext ‘87 Papers

1. BACKGROUND

We have been developing hypermedia systems for over a decade, first at Carnegie Mellon University
with the ZOG Project, and now at Knowledge Systems with the commercial development of our
Knowledge Management System @MS).

We have been zealous users of hypermedia. While developing ZOG and KMS, we used them
extensively for our work--logging over 10,000 person-hours as users, and creating over 50,000
frames (nodes). Throughout this period we have applied what we have learned to iterate the design
of these systems, creating scores of intermediate versions.

Early ZOG efforts at CMU. Work on ZOG began at CMU in 1972. What we now call ZOG-1 was
developed for a summer workshop for researchers in cognitive science. It allowed the participants to
easily interact with one another’s simulation programs by providing a uniform menu-selection
interface. After the workshop, ZOG-1 was shelved because the technology used was inadequate (300
baud hard-copy terminals!). Work on ZOG was rekindled in 1975, after Allen Newell and George
Robertson observed the PROMIS system at the University of Vermont. PROMIS was a menu system
based on rapid-response touch-screen terminals, applied to the task of hospital management
[Schu79]. Newell and Robertson were struck by the qualitative difference of the rapid-response
PROMIS interface over traditional human-computer interfaces, and began an ONR-sponsored
research project to study the general characteristics of large, rapid-response, menu-selection systems.
From 1975 to 1980, the ZOG group developed a series of ZOG versions for PDP-lOs, Vaxes, and
even for an experimental multi-processor machine, Cmmp pobe8 1 b].

ZOG on the USS CARL VINSON. By 1980 we felt ZOG was sufficiently mature to be tested in
the real worfd. So we embarked on a major ZOG application project+0 build a computer-assisted
management system for the Navy’s newest nuclear-powered aircraft carrier, the USS CARL
VINSON. This was a joint project between the ZOG Group at CMU and the officers of the CARL
VINSON. The development phase of the project ended in March, 1983, when the CARL VINSON
left on her first deployment with a distributed ZOG system running on a network of 28 PERQ
workstations. ZOG supported four applications:

n On-line policy manual (Ship’s Organization and Regulation Manual)

. Interactive task managment system (for analyzing and tracking complex tasks)

9 On-line maintenance manual with interface to videodisk (for weapons elevators)

n Interface to the AirPlan expert system (developed at CMU by McDermott, et.al.)

We continued to work with the crew of the CARL VINSON until the end of the ZOG project in
December 1984. The project and some of the lessons we learned are described in [Newegl],
[Aksc84b] and [Newe85].

Knowledge Systems and KMS. In 1981, at the request of Westinghouse, we formed a company
(now called Knowledge Systems) to develop a commercial version of ZOG. Westinghouse was
interested in applying ZOG technology to the problem of providing operators of nuclear power plants
access to emergency operating procedures. This initial work led to our first commercial version of
ZOG (called KMS) in 1983. Since then we have worked with a number of other organizations to
apply KMS to various large-scale knowledge management tasks.

2 Hypertext ‘87 Papers November 1987

Applications we have explored. We have found ZOG and KMS to be useful in a surprising number
of applications over the years. At Knowledge Systems we use KMS for almost everything we do
with computers. Below, we list the applications we have explored. More information about these
applications can be found in [Aksc84a], wcCr841, and [Newe8 11.

. Electronic publishing . Group presentations via large screen projectors
n On-line technical manuals n Financial modelling
n On-line instruction manuals n User interface to videodisk-based materials
n On-line help for other software . User interface to expert systems
. Project management . Software engineering
B Issue analysis m Computer-assisted foreign language translation
B On-line policy manuals n Operating system shell

2. INTRODUCTION TO KMS

Our primary design goal for KMS is to create a general-purpose software environment that helps an
organization manage its knowledge. We are concerned not only with the productivity of the
individual, but also the productivity of groups--from small workgroups up to an entire organization.
We are especially concerned about the problem of building and maintaining large databases, since
this activity is often the principal bottleneck in many uses of computers.

We am shaping KMS to exploit what we believe will be the dominant architecture for organizational
computing environments of the 1990’s: wide-area networks of large-screen, diskless workstations.
We believe networked workstations offer quantum leaps in productivity over what is possible with
today’s personal computers.

In this section, we give a brief overview of the two major components of KMS--its data model (how
knowledge is represented in KMS), and its user interface. Additional details about KMS are woven
into the following section on hypermedia design issues, where we describe how KMS addresses
particular design issues.

KMS data model

A KMS database consists of a set of interlinked, screen-sized workspaces. These workspaces, called
frumes, may contain any arrangement of text, graphics, and image items. Each individual text item
within a frame can be linked to any other frame. As with ZOG, text items may also activate
programs. These programs may range from atomic KMS operations to lengthy KMS animations
(written in the KMS Action Language), as well as conventional programs that normally run from the
operating system.

November 1987 Hypertext ‘87 Papers

Frame format. Strong conventions have evolved for the format of frames. These conventions are
illustrated by the example frame in Figure 1.

Frame
title

Tree
items

Command

items b

KMS: A Distributed HypertextConf 1

For the past six years, we have been developing a commercial
hypermedia system (KMS) based on our previous research with
the ZOG system at Carnegie Mellon University. This paper
describes KMS and how it addresses a number of hypermedia
design issues...

o 1. Background
0 2. Introduction to KMS
o 3. Hypermedia Design Issues
0 4. Conclusion
o Acknowledgements
o References

o @TitlePage y
o @Notes

@Draft 7

Save Exit Rest Rev Next Home Goto Info Disp Linear Rid..

Figure 1: Example KMS frame

L Frame name

1 Frame body

H Special items

Every frame has a unique name. This frame name consists of two parts: an alphabetic part and a
numerical part. The alphabetic part is the name of the frameset of which the frame is a member. (A
frameset is the set of frames related to a specific topic as defined by the user, such as an individual
document, software program, or project. Users are free to create a new frameset whenever they
create a new frame.) The numerical part of the frame name is provided automatically. The frame
name in the example above is “HypertextConfl”.

Thefiame title is located in the upper left comer of the frame. It provides a short description of the
knowledge contained in the frame. The frame title in the example is “KMS: A Distributed . ..I’.

Next comes what we call the frame body. For upper-level frames in a hierarchy, the frame body is
usually a short paragraph expanding on the topic described by the frame title. Lower-level frames
usually contain more text, graphics, and images.

Below the frame body are text items called tree items, which are linked to lower-level frames. When
a link is present, an item is displayed with a small circle to its left. The tree items in the example are:

4 Hypertext ‘87 Papers November 1987

o 1. Background
0 2. rntroduction to KMS
o 3. Hypermedia Design Issues
0 4. Conclusion
o Acknowledgements
o References

On the lower right side of the frame are the special items, which begin with the character “@“.
Special items are used for miscellaneous purposes such as notes, comments, and document
formatting keywords. As a result, special items have the connotation of being meta-level items.
Special items are linked to other frames where appropriate. The special items in the example are:

o @TitlePage
o @Notes

@Draft 7

At the bottom of the KMS window (not actually part of the frame) is a customizable command menu
containing command items. The default menu shown here contains 19 items. These items are used to
invoke programs, from simple KMS operations to complex external programs. Invoking programs is
discussed further in the following section on the “KMS User Interface.”

Linked frames. KMS permits a frame to have an unlimited number of linked items, each of which
may be linked to any frame (including itself). This flexibility permits KMS databases to have any
structure the users desire, even a ‘bowl of spaghetti’ structure. In practice, however, KMS databases
usually have a hierarchical backbone. This backbone is embellished with meta-level constructs in the
form of special items such as user comments, formatting instructions, and cross-reference links. The
use of hierarchy as the principal organizing paradigm is a strong factor in helping KMS users remain
oriented.

Figure 2 illustrates a fragment of a KMS database. In this example we show part of the hierarchy of
frames representing this paper.

November 1987 Hypertext ‘87 Papers

< 1

1

Hypertext ‘87 Papers November 1987

KMS User Interface

Users interact with a KMS database by ‘navigating’ from frame to frame, manipulating the contents
of frames, creating new frames, and invoking programs.

Navigation. The central metaphor in KMS is that the database is like a universe of connected spaces
through through which users rapidly travel, like pilots navigating spacecraft in the real universe.
Users navigate from frame to frame by pointing the mouse cursor at an item linked to another frame
and clicking one of the mouse buttons (KMS uses a 3-button mouse). KMS accesses the designated
frame and displays it in the same window in less than one second, on average. Thus, KMS is
replacing the currently displayed frame as though the user had physically travelled to a new location
in the real universe.

Manipulating the contents of frames. A user can directly manipulate the contents of a fi-ame at any
time. This is done by moving the mouse cursor to the desired location on the screen and clicking
buttons on the mouse, or in the case of text input, typing keys on the keyboard. There is no mode
boundary between navigation and editing.

KMS makes use of contextual distinctions so that users can invoke the most frequent operations with
a single point-and-click of the mouse. The location of the cursor (for instance, whether it’s in empty
space or inside a text item) determines which functions are available via the mouse buttons. As an
aid to users, the cursor images include text labels indicating which function is currently available on
each button.

Three years of testing this approach shows that users have little trouble knowing what functions the
mouse buttons perform--they can always read the labels. KMS novices rely heavily on these cursor
labels to learn the system. KMS experts continue to rely on the labeis, but their attention is subli-
mated to a perceptual level. Figure 3 illustrates several KMS cursors.

Reduced command set. The move command is an example of how we have tried to streamline the
KMS user interface by unifying multiple operations into a small set of commands. Pointing the
cursor at an object causes the “Move, Copy, Delete” cursor to appear. Clicking the Move button at
this point causes the cursor to latch onto the object. The user can drag the object around--not only
within the current frame, but also across the window boundary into the other frame. In addition,
while in this dragging state, the user can still perform some top-level commands, such as typing text,
moving to other frames, and even creating new frames. This unification eliminates the need for a
clipboard construct and the operations of cutting and pasting.

This single Move operator can perform the KMS equivalents of the following functions in other
computing environments:

n Rearranging text and graphics within a diagram or page

n Moving a text string to another location in text

m Rearranging the order of sections in a document

n Moving data from one file to another

n Moving a directory or file to another directory

November 1987 Hypertext ‘87 Papers

cursor Context Available Functions

?I

BLR
ai e
cnc
ket

When the cursor is Left: Go back to the
not pointing at previous frame
any item on the frame

Center: Create line or point

Right: Create rectangle

When cursor is inside Left: Goto frame (if linked)

& OR ,f$;~~~~;~~;e, 5%;

if linked if not linked Center & Right: Delete
the item(s)

Figure 3: Several KMS mouse cursor images

Invoking programs. Another category of user interaction is invoking programs by clicking on items
linked to programs. These programs range from simple KMS operations, such as those provided by
the customizable command menu at the bottom of a KMS window, to large conventional programs
that normally run from the operating system.

A common function of KMS-based programs is to process a hierarchy of frames. For example, the
program called Linear takes the contents of a hierarchy of frames and paginates it into a linear
document, while automatically creating a table of contents, index, etc. Another program does a text
search through a hierarchy of frames. With this program, a user can first narrow a search down, by
going to the top of the appropriate hierarchy, before invoking the program.

3. HYPERMEDIA DESIGN ISSUES
In this section we examine a set of issues for the design of hypermedia systems. Some of these issues
have been discussed in Conklin’s summary of the hypertext field [Conk87], and in papers describing
specific systems, such as Intermedia [Garr87], NoteCards [IIala87], Neptune [Deli861 and TIES
[Shne86]. Other issues on our list haven’t received as much discussion in the literature, but they have
become important for the development of ZOG and KMS. We have concentrated on issues that
highlight differences between KMS and other hypermedia systems. The issues are organized into
four categories:

8 Hypertext ‘87 Papers November 1987

Hypermedia Design Issues

Data Model Issues

1. What is the appropriate data model for a node?
2. What is the best size for a node?
3. What types of nodes should there be?
4. What sort of data object should be used as the source for a link?

5. What sort of data object should be used as the destination of a link?
6. What types of links should there be?
7. Should a link have internal structure?
8. How can data be aggregated into large structures?

User Interface Issues

9. What style of user interface should be used?
10. How should the information in nodes be presented on the display?
11. How should a link source/destination be represented on the display?
12. How fast should the system respond when following a link?
13. How should the system support browsing?
14. Should graphical representations of the node linkage structure be provided?
15. How can disorientation be prevented or reduced?

Authoring Issues
16. How can authoring of large databases be facilitated?
17. How can material from a database be converted to paper form?

Multiple User Issues
18. How can information be jointly authored and shared by multiple users?
19. How can interference between multiple users be prevented?
20. How can access to sensitive data be restricted?

Data Model Issues

[I] What is the appropriate data model for a node?

You will recall that KMS uses a screen-sized, two-dimensional space for a node (called a frame),
containing any arrangement of text, graphics and image items. This capability is flexible enough,
when combined with the ability to link frames together, to allow users to represent a wide variety of
knowledge structures (documents, drawings, programs, etc).

One source of the flexibility of KMS is the way it treats space. Like space in the real world, space in
frames ‘exists’ whether or not’anything occupies it. Thus a frame may be completely empty. This is
distinct from the degenerate way space is represented by most text-oriented programs (e.g., word
processors and mail systems). Space to the left of text is usually some mixture of space characters
and tabs, while space to the right usually has no representation at all.

November 1987 Hypertext ‘87 Papers

The spatial nature of frames is a fundamental feature of KMS that has important implications for the
user:

It helps chunk items. White space provides a visual aid to perceiving the separate items on the
frame. By convention, each individual text item is surrounded by white space, and therefore is easy
to recognize as a separate chunk. In some hypermedia systems, a link is embedded in a larger piece
of text, thus requiring some form of highlighting for the link.

It is easy to reposition items. The space in a frame provides a background on which objects can be
positioned independently of one another, as is the case with graphics programs. Rearranging objects
within a frame (for instance, linked text items representing a document’s sections) is a moment’s
work.

It provides room for peripheral items. Empty space in a frame provides a handy place for
peripheral items such as a note or a reviewer’s comment about the contents of the frame. In KMS,
creating such items is as simple as moving the cursor to an empty area in the frame and starting to
type. As long as the note or comment is not unduly large, it can happily coexist with the other items
in the frame. In the case of a lengthy note, the bulk of it can be placed on additional linked frames.
(By convention, these items are prefaced with “@“, which suppresses them from appearing in the
hardcopy version of the material.)

It maps directly onto white space on paper. We know that white space on paper is a good thing, so
why not in hypermedia? This is especially useful when we want to print out hypermedia-based
material. If the desired white space for the printed version cannot be directly represented, how will it
be supplied? (See also Issue [171.)

It provides a convenient command context. Since space in KMS is an actual construct, it provides
another context for interaction. KMS exploits this context by using it as a means for creating new
objects. Thus, when the cursor is in empty space, the user can directly create new points, lines,
rectangles and text items. The navigation command “Back” is also available when the cursor is in
empty space In many systems, input in empty space is an error condition!

[Z] What is the best size for a node?

KMS fixes the size of a frame to a width of 1140 pixels and a height of 820 pixels. These limits
allow a whole frame to be displayed on most large screen displays, with some room left for window
boundaries and a small message window.

The main reason we limit the size of a frame is to avoid scrolling, which we feel is an inefficient way
to navigate in a database.

[3] What types of nodes should there be?

KMS has only one type of node--the frame. We have not found it necessary to have more than one
type of node because of the generality of frames. Frames can contain any arrangement of text,
graphics, and images. This generality plus the ability to link frames together (especially into
hierarchies) makes it straightforward to represent a broad range of knowledge structures such as
documents, programs, drawings, and conversations.

10 Hypertext ‘87 Papers November 1987

Implicitly, users can define frame types by placing distinctive data items in the frames and by
developing distinctive frame formats. However, since KMS won’t enforce these informal frame
types, any processing of these frames that relies on this ‘typing’ is subject to error. We think it is a
good tradeoff to accept the possibility of such errors, in return for the simplicity of a single
system-supported node type.

[4] What sort of data object should be used as the source for a link?

The source for a KMS link is an individual text item in a frame. The text of the item describes what
it’s linked to. Although the text can range from a single character to a whole paragraph of text, it is
most common to use a single line of text.

Links are not embedded within text as in traditional hypertext. Experimental work with TIES
purports to show the superiority of embedded links over separate links [Shne87]. However, these
results probably do not apply to ZOG and KMS, where the links are always visible on the same
screen as the text, due to the small grain size of the node.

Using individual items as link sources decouples the contents of a frame from the links to other
frames. In systems where links are embedded in text, the phrases in the text must fit into the context
of the material as well as serve as links to other nodes. Also, if the material is to be transformed into
a linear document, the linked phrases must appear in the order required in the document. These
constraints make it more difficult to author the material. In KMS, the links can be treated separately,
and can be given whatever text seems appropriate for them.

[5] What sort of data object should be used as the destination of a link?

The destination for a KMS link is a whole frame. Some hypermedia systems use an individual point
within a node, or a ‘region’ within a node. We have never felt the need for such a capability within
KMS.

[6] What types of links should there be?

KMS users do not think in terms of links per se, but rather in terms of linked items --that is, items that
are linked to other frames. There are two types of linked items. Tree items have the connotation of
being linked to lower-level frames in a hierarchy, such as a chapter of a book, or a procedure within a
program. Special items are linked to peripheral material, such as comments and cross-references.
These items are simply prefaced with the “@” character, which makes it easy to change the type of a
linked item. The “@” is used by KMS utility programs to distinguish between the two types of
links, especially for the common case of processing a hierarchy of frames.

[7l Should a link have internal structure?

In some systems, links are objects with internal structure which provides more information about the
destination of the link. In KMS a link is not an object, but rather a property of a text item. Thus

November 1987 Hypertext ‘87 Papers 11

links do not have any internal structure, other than the frame name representing the destination of the
link. We have found that the text of the linked item can provide enough information about the des-
tination of the link. This avoids the need for mechanisms to view and edit the internal structure of
links. In addition, we feel the rapid response of KMS makes it just as practical to follow the link as it
would be to see a ‘preview’ of the destination.

[8] How can data be aggregated into larger structures?

In KMS, aggregates can be built from regular frames. The primary way of aggregating data is to
create hierarchies of frames by linking them together via pee items. Since frames can perform the
indexing role normally provided by directories as well as the content-holding function of files, KMS
users need not employ operating system directories as a mean of organizing their work. Users find
this approach very natural. Many KMS utility programs are designed to work on hierarchies as input
and create hierarchies as output.

User interface issues

User interface issues have always been a major focus of our work. In fact, we usually referred to
ZOG as a “human-computer interface system.” The ZOG Group created a User Studies Laboratory
and conducted detailed studies of ZOG users. Some of this work is reported in [Robe8 la],
[Robe8lb], and [Yode84]. Both ZOG and KMS are instrumented to collect low-level usage data.
Over the years we have collected data on nearly 400,000 user sessions.

Below we discuss several important user interface issues that apply generally to hypermedia systems:

[9] What style of user interface should be used?

Because of the potential for innovation, we believe that the user interface for a hypermedia system
should be designed from scratch. Consequently, we have attempted to leave behind most of our
biases about user interfaces. Instead of adopting an existing style such as multiple, overlapping
windows on a desktop with pull-down menus and icons, we have tried to completely open up the
design of the user interface. This has proved extremely difficult.

Thus KMS today is the result of slowly unlearning many concepts and assumptions. Mostly, this has
meant learning to do without things that seemed necessary before. We are trying to provide the KMS
user with an environment in which there are few conceptual distinctions. Thus we dispensed with
the distinction between files and directories, use a single node type, and restrict the explicit link types
to just two. Also, we eliminated the mode boundary between navigating and editing, thereby
dispensing with a separate “editor.” Users may make changes to a frame at any time; when they leave
the frame, the changes are saved automatically.

We have chosen to develop a user interface for KMS based on the direct manipulation paradigm. We
have also chosen to develop the interface around the capabilities of the three button mouse. By
exploiting every contextual distinction we thought natural, we have developed an interface in which
over 85% of the user’s interaction requires just a single point-and-click (i.e., no intermediate menu
selection). As a result, KMS users can interact more than twice as efficiently as with interfaces
dominated by menu selection.

12 Hypertext ‘87 Papers November 1987

[IO] How should the information in nodes be presented on the display?

There are two approaches commonly used by other hypermedia systems: (1) Bach node in a separate
window, with multiple overlapping windows, perhaps of different sizes; and (2) A single, linear text
display, where each node that is represented is expanded “in place.”

KMS’s choice is distinctly different: Two nodes, each taking up a full half of the display surface, or,
at the user’s option, one node taking up the entire display. There are no other possibilities. When a
user selects an item linked to another frame, the currently displayed frame is replaced by the new
frame. Because KMS can follow a link very quickly, you can think of it as using the time dimension
to keep linked nodes close together, rather than trying to keep them visible on the display at the same
time.

[ll] How should a link source/destination be represented on the display?

Some hypermedia systems use various forms of highlighting to represent a link source on the display,
e.g., italics, boldface, color, video-reversing, or a box. Unfortunately this usurps the normal use of
such highlighting by the author.

Systems that use an embedded icon of some kind are prone to clutter. By themselves, icons often do
not provide enough information to enable the user to make a good decision about whether or not to
follow the link. In addition, these icons are often small targets, which require more time to select.

KMS uses whole text items as link sources. A linked item is displayed with a small circle to its left
indicating the existence of a link. Since the text item is normally surrounded by a sea of empty
space, the range or region of the link source is defined implicitly. The content of the text item can
provide as much semantic information about the link as is needed. Also the average size of linked
items makes them easy to point to them.

Since KMS links are one-way, and the destination of a link is a whole frame, there is no need to
denote the destination of a link.

[12] How fast should the system respond when following a link?

We believe that fast system response to selecting a link is one of the most important parameters in a
hypermedia system. Even though the average time a user spends at a node will usually be many
seconds, there will be frequent bursts of rapid navigation, when response time becomes critical. Our
experience with a variety of hypermedia systems has shown that the difference between one system
with a response of several seconds and another with sub-second response is so great as to make them
seem qualitatively different. Our design goal for KMS is to be able to access and display a random
frame across a wide-area network in less than .25 seconds on average.

In the early 1970’s, researchers at the PROMIS laboratory produced a hypermedia system capable of
0.25 second reponse 70% of the time, using specialized hardware [Schu79]. Our early versions of
ZOG, created in 1976, ran on DEC time-sharing machines with 1200 baud terminal links and
provided response times of 5 to 10 seconds. When we graduated to 9600 baud around 1979, response
was improved to about 2 or 3 seconds, and it seemed like a major breakthrough for users. Our PERQ
version of ZOG, completed in 1983, gave an average response of about 0.7 seconds for frames local

November 1987 Hypertext ‘87 Papers 13

to the machine, and 1.5 seconds for frames accessed over the Ethernet. Users again experienced a
dramatic improvement over the previous version, but they quickly adapted to the new speed and still
hungered for more.

We have also had experience with response speeds at the very fast end of the scale--O.05 to 0.1
seconds. In 1978, as part of the ZOG effort at CMU, we built two special ZOG terminals using a
high-speed vector graphics display, a touch screen, and a fast drum, attached to one of the DEC
PDP-11 processors in the experimental multiprocessor called C.mmp. We were not able to study the
use of this system in any detail, because it had no editor available, it was difficult to download
material from our main working environment on a PDP-10, and the hardware was unreliable. But we
did satisfy ourselves that we had bounded the optimal response time from below. In fact, without
some explicit cue, 0.05 second response may be too fast--we had trouble noticing whether or not the
screen had changed, especially if we blinked at the wrong time!

In making the initial leap from ZOG to KMS, we took a step backward in response speed. This
happened because frames tended to become larger and more complex as we took advantage of larger
bit-mapped displays. Also, we began using a separate file for each frame, for added flexibility.
Fortunately, KMS has benefitted greatly from the faster hardware now available, so that KMS once
again has sub-second average response times.

KMS’s responsiveness is mostly a function of the amount of material in the average frame (1 Kbyte),
the graphics performance of the window system, and the speed of the storage device. Interestingly,
frames stored remotely on a file server with a fast disk can often be accessed more quickly than
frames stored locally on a slower disk.

The larger memories now available in workstations (4 Mbytes being typical) have allowed us to
implement a frame caching mechanism that further speeds the response by eliminating file accesses
for frames already in the cache. In Figure 4 we show typical response times for KMS running on a
Sun-3/50 with 4 Mbytes of memory, using a locally-attached small disk.

Small frame Med. frame Large frame
(- 0.4 Kbytes) (- 1.6 Kbytes) (- 3.5 Kbytes)

From disk 0.34 ’ 1.02 2.60

From cache 0.20 0.28 0.30

Figure 4: Time for KMS to access and display a
frame (in seconds). The average size for KMS
frames is 1 Kbyte.

[13] How should the system support browsing?

We believe that the ability to browse quickly in a hypermedia system is critical to its usability. This is
particularly true of larger-scale hypermedia databases, where it’s necessary to ‘travel’ longer distances.
Although system response time is an important factor for browsing, there are other aspects as well:

14 Hypertext ‘87 Papers November 1987

Standard frame layout. The conventions for the layout of a frame make it easier for the user to
assimilate the information on the frame. As a result, it takes less time to decide what to do next.

Time user takes to select. On average, linked items are large in size (compared with embedded
icons) and segmented spatially. This reduces the time it takes users to point the cursor at them.

No mode boundary between editing and navigation. The user need not cross a mode boundary in
order to switch between editing and navigating. Navigation and editing commands are simul-
taneously available.

Fast backtrack command. Backtracking is a frequent activity--for every movement forward there
tends to be a compensating move back. In KMS, the Back command is available as one of the
buttons of the ‘empty space’ cursor. The user need only move the cursor to an empty area of the
frame to get into the proper context and click the Back button. On average this takes .7 seconds to
do, partly because the cursor often doesn’t need to be moved. This compares with 1.5 seconds to
click on a menu command (such as the command items at the bottom of a KMS window). This small
difference adds up since the Back command may be used several hundred times per hour. From the
user’s perspective, it’s not just the time savings, but the reduced mental and physical effort.

[14] Should graphical representations of the node linkage structure
be provided?

Periodically we consider providing additional views in KMS such as a graph of a portion of the
network. But each time we retreat. We believe such views are unnecessary, except perhaps for large,
essentially non-hierarchical structures. Our own experience indicates that our ‘mind’s eye’ sees
KMS structures as time-travel through familiar frames, rather than as some graphical representation
of the structure. This view is supported by our ZOG user studies, which revealed that users rarely
made use of the multi-node views that were available. The ‘overview-like’ nature of frames, plus
being able to travel in the database rapidly--seems to substantially reduce the need for such structures
in KMS.

[I51 How can disorientation be prevented or reduced?

The classical hypermedia problem is the “getting lost problem,” which becomes more severe as the
database grows larger. However, we have found that getting lost is not much of a problem for KMS
users. KMS has characteristics that help users stay oriented, plus some features that help users
m-orient themselves if they do get lost.

Hierarchical backbone. KMS strongly encourages a top-down, stagewise refinement approach to
organizing material in the database. The resulting hierarchical “backbone” in the database helps
users build a coherent mental model of the database. Also, multiple hierarchies can be constructed to
provide alternative paths through the database.

Special navigation commands. KMS provides several commands that let users go directly to
specific locations in the database. The Goto command lets a user go directly to any named frame.
The Home command displays a user’s home frame. The Info command displays a frame with links
to KMS documentation and utilities.

November 1987 Hypertext ‘87 Papers 15

Marking the item just returned from. KMS flags the item linking to the frame from which the user
has just backtracked with a temporary asterisk.

Richer frames. The use of larger frames provides a richer context in which to assimilate knowledge.
Also, since there are fewer frames, less travel is required.

Fast response. The ability to navigate quickly from frame to frame makes exploration less risky for
users, since they can always backtrack quickly to return to a familiar frame.

Authoring Issues

Below we discuss a couple of issues dealing with how hypermedia databases can be created. These
are important because database creation is a severe bottleneck. A user’s ability to assimilate infor-
mation far outstrips his ability to generate it.

[16] How can authoring of large databases be facilitated?

Small databases are of limited interest. This poses an economics problem for hypermedia system
designers to solve. If it’s too inconvenient to build a hypermedia database users will avoid doing it.
Listed below are some of the approaches we have taken to encourage the development of large-scale
databases:

Rapid navigation. Users need to be able to move around rapidly in order to get to where they wish
to build. This is dso important in the frequent case of moving objects to a different place in the
database.

No editing/navigation mode transition. KMS does not have a mode transition between navigation
and editing (see Issue [9]).

Rapid creation of new frames. To create a frame, all a user has to do is click on an unlinked item.
Typically, the user can be editing a new frame less than two seconds after deciding to create it.

Default operand scope. Editing in KMS is dominated by manipulating individual items. Since the
default scope for operations is the whole item pointed to by the cursor, the vast majority of operations
can be invoked directly, without any explicit scope designation.

Implicit saving of changes. Tentative modifications are limited to the currently displayed frames. If
there are any changes to a frame those changes will be automatically saved when the user moves to
another frame. This default works well in practice. Not only does it eliminate most explicit save
invocations, but it reduces the complexity of the user’s model of the current state of the system.

Use of schemas. Schemas are chunks of data (e.g., a frame or tree of frames) that contain variable
parts. Schemas can be used to build data objects that have some common parts, simply by copying
the schemas and filling in the variable parts manually. Ramakrishna [Rama81] developed schema
mechanisms for ZOG and studied their use experimentally.

Tools for importing external databases. KMS provides a number of tools for mapping in material
from other sources (e.g. text files and bitmap files).

16 Hypertext ‘87 Papers November 1987

Support for multiple users. KMS is a distributed hypermedia system designed to support
simultaneous building of a KMS database by multiple users. (Please see “Multiple User Issues”)

No restriction on the size of the database. KMS databases may be as large as available secondary
memory and may be distributed across any number of workstations and file servers.

Database merging. Independently developed KMS database are easily joined together to form a
single database.

[17] How can material from a database be converted to paper form?

One of the major forces guiding our design efforts has been the desire to create well-formatted
documents from material in the database. Since frames provide a local WYSIWYG view, there is a
natural process for paginating the material: concatenating the contents of frames from a hierarchy in
depth-first order. This default can be supplemented by additional formatting commands (e.g.,
“@NewPage,” “@Figure,” etc.) that are placed on frames to specify additional formatting constructs.
Typically, these items, like other meta-level items such as notes and comments, are placed off in the
corner to keep them out of the reader’s way. This approach is a hybrid between pure WYSIWYG
document systems (in which little structure is represented explicitly) and structured formatting
systems (Scribe and TEX). KMS also offers the flexibility of applying the document formatting
process at any level of a hierarchy of frames, thereby enabling users to get just the portion of a
document they want.

Multiple User Issues

Both ZOG and KMS have been designed from the beginning to support a community of communi-
cating users, where users can jointly develop and share data, rather than simply exchange it. Below
we discuss several of the relevant issues.

[18] How can information be jointly authored and shared by multiple users?

KMS provides to a community of users a single, logical database, physically distributed across
multiple workstations and file servers on a network. The actual physical location of data can be
completely transparent to the users--as if they were all users on a single time-sharing system, but with
vastly improved response and display bandwidth.

Our first real implementation of a distributed system was the version of ZOG running on the PERQ
network on board the USS CARL VINSON, which was completed in 1983. It implemented special
ZOG network servers that managed the locking of individual ZOG frames for modification by one
user at a time. It had a location database, managed by one of the machines designated as the musrer,
with information about which machine each ZOG frameset was actually located on.

Our current version of KMS uses Sun’s Network File System (NFS) to provide access to frames that
reside on remote machines. As with ZOG, there is a ma~tet file server that holds the location of all
frameset. (All file servers containing a portion of the KMS database have automatically-maintained
copies of this location information, to be used in case the master is unavailable).

November 1987 Hypertext ‘87 Papers 17

One of the major benefits of KMS is the ability of multiple users to work simultaneously on a
common project such as proposal or conference paper. Working together on a single document (or
single area of the database), users can easily see what others have done, make comments, print out
any part of the material at any time, etc. There is no strict coordination concerning the evolution of
the database similar to that required in conventional database systems.

This communal approach makes it possible to communicate electronically in a way quite different
from conventional electronic mail. In KMS, conversations simply ‘grow’ in some area of the
database, thus preserving their logical structure.

[19] How can interference between multiple users be prevented?

How can we prevent multiple users from losing changes due to interference, yet avoid the ineffi-
ciencies of locking users out from making changes for long periods of time? In ZOG, we provided
for the locking and unlocking of a frame when the user entered and exited the editor, respectively. In
KMS, we do not lock frames in this way. Instead, we use a weaker form of concurrency control,
called ‘optimistic concurrency control.’ We make the optimistic assumption that since frames greatly
outnumber users, a conflict between users editing the same frame is rare.

All ‘optimistic concurrency’ guarantees is that a KMS user who has successfully saved changes to a
frame cannot subsequently have those changes revoked by another user who had been editing the
same version of the frame. It does not guarantee that if you edit a frame, you will necessarily be able
to save the changes without any problem. At the time you attempt to save your changes, you may be
informed that someone else has already saved changes to the same frame. This means that your
tentative changes cannot be saved, because they would revoke the other user’s changes. What KMS
does in this case is to temporarily save your changes in a newly created frame, so that you can then
map them into the new version of the original frame.

Our experience shows this situation rarely occurs since users are normally working in different areas
of the database, even when they are working on the same document (for example, this paper is
represented by over 200 frames). Whenever users find they are ‘bumping elbows,’ they can cope by
using informal frame ‘locking’ conventions--namely, by placing a text item on a frame that warns the
other users who come to that frame that editing is in progress. Besides being more personal, this
informal locking can be used to alert others you plan to do some work in this area of the database.

On the face of it, optimistic concurrency control may seem unwise, since it is not a foolproof
mechanism for preventing interference between users. But adopting it allowed us some benefits that
we feel well outweigh its drawbacks. The most important benefit was that it facilitated eliminating
the mode boundary between navigating and editing (see Issue [9]).

[20] How can access to sensitive data be restricted?

To prevent access to sensitive data, KMS implements protection of individual frames. Every frame
has an owner--originally, the person who created it. The owner can protect the frame so that others
may access it but not make any modifications, or so that others can’t even access the frame.

18 Hypertext ‘87 Papers November 1987

An intermediate kind of protection (called annotation uccess by the Intermedia researchers [Garr87])
seems like a useful capability to add to KMS. It would allow users to add new items to a frame
without allowing them to modify any of the existing items. For now, we generally leave frames
unprotected to allow free annotation, and simply rely on the good will of users to not delete the work
of other users without permission.

4. CONCLUSION

If there is one central theme to our experience, it is the fundamental importance of a system’s data
model. Our experience with ZOG and KMS has convinced us that the data model underlying an
interactive system strongly determines the nature of its user interface. We believe this because we
have seen the formative influence of the KMS data model on all other aspects of KMS.

In the case of KMS, the properties of a node--its fixed size, its spatial nature, how links are repre-
sented within it, its standard format, etc.--contribute significantly to the global nature of the system
and distinguish it strongly from other hypermedia systems.

Consequently we recommend that interactive systems be developed from the inside out--from the
data model to the user interface--rather than the other way around. This view contrasts sharply with
the philosophy that the user interface should be the dominant system component and thus
standardized across programs. Perhaps hypermedia, with the structural richness it has to offer
human-computer interaction, may eventually overshadow the reigning HCI paradigm, the desktop
interface.

ACKNOWLEDGMENTS

We wish to acknowledge the contributions of many people over the years. Those who were involved
with ZGG at CMU: Allen Newell, George Robertson, Kamila Robertson, Peter Lieu, Sandy Esch,
Patty Nazarek, Marilyn Mantei, Kamesh Ramaluishna, Roy Taylor, Mark Fox and Andy Palay.
Those officers from the USS CARL VINSON who worked with us at CMU: Mark Frost, Paul
Fischbeck, Hal Powell, Russ Shoop, and Rich Anderson. Captain Richard Martin, Cdr. Ted Kral, Lt.
Brian MacKay, and other officers and crew of the USS CARL VINSON. Finally, we would like to
thank the Office of Naval Research for sponsoring the 10 years of the ZOG Project.

REFERENCES

[Aksc84a] Akscyn, R. and D. McCracken, “The ZOG Approach to Database Management,”
Proceedings of the Trends and Applications Conference: Making Database Work,
Gaithersburg, Maryland, May 1984.

[Aksc84b] Akscyn, R. and D. McCracken, “ZOG and the USS CARL VINSON: Lessons in System
Development,” Proceedings of the First IFIP Conference on Human-Computer Interaction
(Interact ‘84), London, U.K., September 1984.

November 1987 Hypertext ‘87 Papers 19

[Conk871 Conklin, J., “A Survey of Hypertext,” MCC Technical Report SIP-356-86, Rev. 1,
February 1987. To appear in IEEE Computer, September 1987.

[Deli861 Delisle, N. and M. Schwartz, “Neptune: A Hypertext System for CAD Applications,”
Proceedings of ACM SIGMOD international Conference on Management of Data,
Washington, D.C., May 1986, pp. 132-143.

[Garr87] Garrett, L., K. Smith and N. Meyrowitz, “Intermedia: Issues, Strategies, and Tactics in the
Design of a Hypermedia Document System,” Proceedings of the Conference on
Computer-Supported Cooperarive Work, Austin, Texas, December 1986, pp. 163-174.

[Hala Halasz, F., T. Moran and R. Trigg, “NoteCards in a Nutshell,” Proceedings of the
ACM Conference on Human Factors in Computing Systems, Toronto, Canada, April 1987.

mant82] Mantei, M., A study of Disorientation Behavior in ZOG, PhD thesis, University of
Southern California, 1982.

[McCr84] McCracken, D. and R. Akscyn, “Experience with the ZOG Human-Computer Interface
System,” International Journal of Man-Machine Studies, Vol. 21, 1984, pp. 293-3 10.

INewe Newell, A., “An On-Going Case Study in Technological Innovation,” in Advances in
Information Processing in Organizations, Sproull, L. and P. Larkey (eds.), 1985.

mewe l] Newell, A., D. McCracken, G. Robertson and R. Akscyn, “ZOG and the USS CARL
~~I+I%$N,” Computer Science Research Review, Carnegie-Mellon University, 1981, pp.

mama811 Ramakrishna, K., Schematizarion as an Aid to Organizing ZOG Information Nets,
PhD thesis, Computer Science Department, Carnegie-Mellon University, I98 1.

Robe821 Robertson, C.K. and R. Akscyn, “Experimental Evaluation of Tools for Teaching the
ZOG Frame Editor,” Proceedings of the International Conference on ManJMachine
Systems, Manchester, U.K., July 1982.

IRobe la] Robertson, C.K., D. McCracken and A. Newell, “Experimental Evaluation of the ZOG
Frame Editor,” Proceedings of the 7th Canadian Man-Compurer Communications Conference,
Waterloo, Ontario, June 1981, pp. 115123.

lRobe8lb] Robertson, G., D. McCracken and A. Newell, “The ZOG Approach to Man-Machine
Communication,” International Journal of Man-Machine Studies, 198 1.

[Schu79] Schultz, J. and L. Davis, “The technology of PROMIS,” Proceedings of the IEEE,
September 1979, pp. 1237- 1244.

[Shne86] Shneiderman, B. and J. Morariu, “The Interactive Encyclopedia System (TIES),”
Department of Computer Science, University of Maryland, College Park, MD, June 1986.

[Shne87] Shneiderman, B . , “User Interface Design and Evaluation for an Electronic Encyclopedia,”
Technical Report CS-TR- 18 19, Department of Computer Science, University of Maryland, March
1987.

[Yode84] Yoder, E., McCracken, D., and R. Akscyn, “Instrumenting a Human-Computer Interface
for Development and Evaluation,” Proceedings of the First IFIP Conference on Human-
Computer Interaction (Interact ‘84), London, U.K., September 1984.

20 Hypertext ‘87 Papers November 1987

