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1. INTRODUCTION

Development of hypermedia systems1 is a complex matter. The current
trend toward open, extensible, and distributed multiuser hypermedia sys-
tems adds additional complexity to the development process. As a means of
reducing this complexity, there has been an increasing interest in hyper-
base management systems (HBMSs) [Campbell and Goodman 1988;
Schnase 1992; Schütt and Haake 1993; Wiil and Leggett 1992; Zobel et al.
1991] that allow hypermedia system developers2 to abstract from the
intricacies and complexity of the hyperbase layer and fully attend to
application and user interface issues.
Most current-generation HBMSs impose unnecessary complexity (or re-

strict desired flexibility) on the hypermedia system developer by providing
fixed data models (hypermedia objects and operations) [Wiil and Leggett
1992]. Relying on fixed services in the hyperbase layer can force developers
to make undesirable compromises in the design of the application and user
interface layers [Akscyn et al. 1988; Wiil 1992]. Developers have to deal
with the question “How do I make the best use of the services provided in
the hyperbase layer?” In other words, the developer has to think in terms of
the provided HBMS support when designing the other layers of the system.
This often requires inelegant and inefficient workarounds in the develop-
ment process to compensate for inadequate HBMS features.
This article presents the design, development, and deployment experi-

ences of a dynamic, open, and distributed multiuser hypermedia system
development environment called Hyperform. Hyperform is based on the
concepts of extensibility, tailorability, and rapid prototyping of hypermedia
system services. Hyperform provides a framework of general building
blocks that can be extended and tailored (through object-oriented tech-
niques) to match the specific HBMS needs of advanced hypermedia sys-
tems. By having extension facilities in the hyperbase layer, hypermedia
system developers can avoid making undesirable design trade-offs due to
fixed HBMS support and turn the above question into “Which services
would I like the hyperbase layer to provide.” Hyperform introduces exten-
sion facilities in both the hyperbase and application layers, enabling
developers to optimally partition hypermedia functionality.3

1The term “hypermedia system” is used to describe a collection of tools (one or more) that
include hypermedia functionality (anchoring and linking). A “tool” is any computer program/
application that helps an end-user perform a specific task (e.g., text editors, drawing tools,
spreadsheets, and mail tools).
2A “hypermedia system developer” is a person who constructs hypermedia systems to be used
by end-users. Hypermedia systems basically can be developed in two distinct ways: by adding
hypermedia functionality to existing (third-party) tools or by developing new hypermedia tools
from scratch. Either way, tools must store and retrieve hypermedia data, and thus hyperme-
dia system developers must deal with the complexity of the storage subsystem.
3In other words, Hyperform can assist hypermedia system developers in the process of
constructing the hyperbase layer (of tools) and the parts of the application layer (of tools) that
include hypermedia functionality.
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Section 2 presents important data management issues that distinguish
hypermedia systems from other information systems. We continue in
Section 3 by presenting an overview of the Hyperform development envi-
ronment. Section 4 presents a case study of the use of Hyperform in an
(object-oriented) implementation of the Dexter Hypertext Reference Model
[Halasz and Schwartz 1994]. In Section 5, we show how our work relates to
other research in the hypermedia literature, and in Section 6, we discuss
experiences and usability aspects of Hyperform. Section 7 concludes and
provides an overview of future plans.

2. HYPERBASE RESEARCH ISSUES

Hypermedia systems pose several difficult data management problems.
Most of these ultimately can be derived from the fact that hypermedia is a
complex amalgam of information, structure, and behavior [Schnase et al.
1993b]. Data management facilities in hypermedia systems are usually
found in the hyperbase layer of the architecture. Five broad categories of
issues must be addressed in future HBMS research [Leggett et al. 1993;
Schnase et al. 1993a]:

(1) Models and Architectures. Issues of scalability, extensibility, architec-
tural openness, computation, interoperability, distribution, and plat-
form heterogeneity are of critical importance [Leggett and Schnase
1994].

(2) Node, Link, and Structure Management. Data management facilities for
hypermedia must address issues relating to object identity and naming,
as well as constraints to ensure object and structure integrity. In
addition, support for object composition, contexts, and views is critical
[Halasz 1988]. The management of data types including spatial, tempo-
ral, image, sequence, graph, probabilistic, user defined, and dynamic is
essential. The effective management of behavioral entities will be
important in many settings.

(3) Browsing/Query and Search. Optimizing the synergy between hyper-
media’s navigational approach to data access and traditional query and
search must be addressed at the hyperbase level. Important issues
include the introduction of multilevel store indexing techniques,
agency, hyperbase heterogeneity, extensibility, and optimization.

(4) Version Control. Effective support for versioning requires an under-
standing of precisely which entities need to be versioned and when
version creation occurs. In hypermedia, there are opportunities to
version structure as well as information. It is also important to under-
stand how version control should be partitioned between the hyperbase
and application levels [Hicks 1993].

(5) Concurrency Control, Transaction Management, and Notification. The
types of interactivity and operations that characterize hypermedia
systems create a requirement for managing short, long, and very long
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hyperbase transactions. HBMS support for collaboration and sharing of
information is of critical importance [Wiil and Leggett 1993].

Although current-generation HBMSs address some of the above issues,
research on HBMSs is still in the experimental phase. We have yet to see
the first successful commercial HBMS addressing all of the above issues.
Many ideas and technologies from the database, information retrieval, and
information systems fields are being modified and reused in HBMS devel-
opment.

3. THE HYPERFORM DEVELOPMENT ENVIRONMENT

Hyperform provides an open development environment that supports rapid
prototyping of hypermedia data models, HBMSs, and hypermedia system
architectures. The Hyperform development environment is comprised of
multiple instances of four component types (see Figure 1): (1) the HBMS
server, (2) the tool integrator, (3) editors (currently the EHTS Editor [Wiil
1991; 1992] and GNU Emacs [Stallman 1984]), and (4) participating tools.

Fig. 1. Components of the Hyperform development environment. The tool integrator is an
extensible and tailorable interface component between the HBMS server and the participating
tools.
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Hyperform uses the Exodus Storage Manager [Carey et al. 1993] to manage
physical storage.
The HBMS server is based on an internal computational engine that

provides an object-oriented extension language which allows new data
model objects and operations to be added at run-time. As discussed in the
introduction, these capabilities give the hypermedia system developer the
power, flexibility, and opportunity to decide where functionality should
exist in the overall architecture, even to the point of modifying the
underlying data model of the hyperbase. The HBMS server has a number of
built-in classes (a library of reusable object-oriented software routines) that
provide basic tool-independent HBMS features such as concurrency control,
notification control (events), access control, version control, and query and
search. These classes can be specialized using multiple inheritance to form
virtually any type of HBMS support needed in hypermedia systems. It is
possible to have more than one data model and HBMS configuration
running in the HBMS server at the same time. We distinguish between a
data model, which consists of a number of objects and their associated
operations, and an HBMS configuration, which is a data model with
policies and mechanisms for concurrency control, notification control, ac-
cess control, version control, and query and search (or a subset of these
features) built into the objects and operations. This allows heterogeneous
hyperbases to coexist concurrently and makes Hyperform the first multi-
hyperbase system.
Hyperform is based on an extended client-server architecture which

supports the development of dynamic, open, and distributed systems (see
Figure 1). The extended client-server architecture introduces a new compo-
nent, the tool integrator. The tool integrator serves two major purposes.
First, it supports the dynamic integration of (third-party) tools with the
development environment. Second, it allows developers to experiment with
different hypermedia system architectures such as centralized client-server
architectures or distributed multihyperbase architectures.
During the development process, the provided editors allow multiple

hypermedia system developers to collaborate on design, development, and
deployment of HBMSs. The two integrated editors allow developers to
retrieve built-in classes, edit class descriptions, and install new classes in
the environment at run-time. By allowing developers to tailor and extend
the built-in classes of the HBMS and tool integrator dynamically, the
editors enable rapid prototyping of alternate hypermedia data models,
HBMSs, and hypermedia system architectures. In the following, we give a
detailed overview of the individual components of the Hyperform develop-
ment environment.

3.1 The HBMS Server

Hyperform provides an HBMS server implemented around the Elk (Exten-
sion language kit) interpreter [Laumann 1993]. Elk is based on a Scheme
dialect compatible (to a very high degree) with the Scheme standard
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[Clinger and Rees 1992]. In addition, Elk contains many features that
make it suitable as the basis for the HBMS server. Since Elk supports
dynamic loading of object files, it is possible to extend Elk with features
written in other languages. Elk can be compiled to run on a wide range of
Unix architectures, and Hyperform is currently running on Sun Sparcsta-
tions.
The design of Hyperform attempts to address both efficiency and flexibil-

ity aspects of HBMS development. The performance-critical parts of the
HBMS server (such as network and storage management) are written in an
efficient language, while the remainder of the system (such as data-
modeling facilities) has the flexibility of an interpreted language. The
HBMS server has gone through several design-experiment iterations before
reaching the present partition of functionality between efficiently coded
libraries and Scheme-based functionality. The tendency in these iterations
has been to move functionality from Scheme to the libraries to improve the
performance of the HBMS server. Many of the specialized Scheme compo-
nents have been replaced by calls to a set of general library operations
without compromising the flexibility of the HBMS server. In this way,
Scheme is used to glue general library operations together into more
powerful HBMS server components. Example libraries built in this fashion
include the Exodus Storage Manager Library and the Networking Library.
Additional usage of Hyperform is likely to result in further optimization.

3.1.1 Extending Elk into an Object-Oriented Database. Hyperform
achieves dynamic (run-time) extensibility at both the data model level and
kernel level in the HBMS server by combining the metaclass concept with
the idea that fundamental database features should be provided as classes
in the HBMS server. The data model level provides data model objects and
operations, while the kernel level provides fundamental database mecha-
nisms such as concurrency control and version control. The metaclass
concept allows hypermedia system developers to extend the HBMS server
at the data model level, since developers can use objects (classes) to
describe and extend the behavior of the hyperbase itself. By providing
fundamental database features as built-in classes in the HBMS server,
developers can tailor and extend the HBMS server at the kernel level as
well as by specializing existing classes.
The heart of the HBMS server is an object-oriented data-modeling facility

implemented in Scheme as an extension to the Scheme language. Basic
object-oriented database (OODB) features such as object persistency, object
identity, attribute and procedure encapsulation, object specialization by
multiple inheritance, class (type) evolution by class versioning, and method
invocation by message passing are supported. The HBMS server treats all
instances and classes as objects and is self-contained, since all class
descriptions (metadata) are saved as objects in the database.
The built-in classes of the HBMS server provide a general set of services

without introducing special design policies. The classes specify a well-
defined method interface to encapsulated data and behavior, enabling
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hypermedia system developers to abstract from basic implementation de-
tails. Developers can concentrate on tailoring and extending the provided
services into an HBMS configuration that fulfills the chosen design policies.
The following sections explain the extension of the Elk Scheme inter-

preter into an OODB that has been specialized for hypermedia. We will
deal with important object-oriented issues, such as the object concept,
object persistency and identity, object specialization, attribute and proce-
dure encapsulation, class evolution, and message passing. We will also
touch upon some basic database mechanisms to deal with system matters,
such as managing database access control. The purpose of the present work
is not to invent new OODB technology or reinvent old OODB technology.
Hyperform uses existing OODB techniques, where appropriate, in a
straightforward manner. However, Hyperform combines different object-
oriented techniques and database techniques in novel ways to address the
difficult data management problems posed by hypermedia systems (see
Section 2).

Object Concept. The object approach taken in the HBMS server is based
on the fact that objects in hypermedia systems basically consist of a
number of default attributes, dynamically allocated attributes, and a
number of operations on these attributes. The basic object class of the
HBMS server supports five categories of attributes: read-only (similar to
“static” class variables), read-write (similar to instance variables), write-
once, calculated, and dynamic. There is no restriction on the size and
contents of attributes, and all attributes can be assigned an initial value in
the class description. The value of read-only attributes remains the same in
all instances of the class; read-write attributes can differ from instance to
instance; write-once attributes can differ from instance to instance (but can
only be written once); calculated attributes can contain any Scheme expres-
sion (which is evaluated when reading the attribute); and dynamic at-
tributes can be added on-the-fly. Dynamic attributes can be read-write,
write-once, or calculated. The former two categories of attributes have their
origin in object-oriented programming languages and databases, while the
latter three are added to deal with special requirements of hypermedia
systems. For example, the presence of calculated attributes allows hyper-
media system developers to address the concept of virtual structures, such
as computed composites and computed links, in a very fundamental way
[Halasz 1988]. Instead of storing the exact collection of components of a
composite or the exact endpoint(s) of a link, the use of calculated attributes
allows composite contents and link endpoint(s) to be stored as queries
(Scheme expressions) that are evaluated at access time. The object class
contains seven basic methods: three instance methods, get-instance, set-
instance, and delete-instance, and four attribute methods, get-attribute,
set-attribute, add-attribute, and delete-attribute.

Object Persistency, Identity, and Encapsulation. Every new object in the
HBMS server is assigned a unique object identifier by the Exodus Storage
Manager to ensure the uniqueness of objects in their entire lifecycle.
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Objects are saved in Exodus every time they change to ensure data
integrity. Every class in the HBMS server has its own environment in
which the methods of the class are evaluated (and bound). Class environ-
ments are built when the HBMS server begins execution and when new
classes are loaded into the HBMS server with the set-class method of Meta
Class (see section Class Evolution). This solution enables fast method
lookup and evaluation, since class descriptions are cached in the HBMS
server and do not have to be retrieved from Exodus every time they are
used.

Object Specialization. The Object class is the root of the class inheri-
tance hierarchy. The object class can be specialized in two ways to define
new object types in the HBMS server: (1) by adding new methods, which is
similar to adding methods in a subclass, and (2) by adding default at-
tributes. These attribute names will always be present in instances of that
specific object type (subclass). Default attributes can be read-only, read-
write, write-once, or calculated. A subclass inherits all methods and default
attributes from its superclass(es) with the restriction that each method and
attribute have a unique name. Notice that an attribute can be specified as
read-only at one level and changed to calculated in a subclass.

Message Passing. Messages can be sent to objects in the following way:

(send object message . args)

The send mechanism performs method lookup and initiation. send can be
used transparently over the network from the tool integrator and editors or
from methods of the HBMS server classes.

Class Evolution. Meta Class provides basic operations on the class
inheritance hierarchy: get-class, set-class, delete-class, and create-
instance. These operations retrieve class descriptions, create new classes
and new versions of existing classes, delete classes, and create instances of
classes. The metaclass facility allows hypermedia system developers to
extend the behavior of the HBMS server by implementing and refining a
data model. Multiple versions of classes are maintained to allow classes,
except the three basic classes (Meta Class, System Object, and Object), to
evolve over time. The class-versioning facility allows developers to main-
tain multiple versions of data models to experiment with alternate data
model designs and implementations. Since many of the fundamental data-
base features are provided as built-in classes in the HBMS server, the
metaclass and class-versioning concepts also allow developers to experi-
ment with alternate HBMS configurations (e.g., policies and mechanisms
for concurrency control).
A new (version of a) class is created by sending the set-class message to

Meta Class containing a class description consisting of two parts: a list of
default attributes and specifications of methods operating on the at-
tributes. The following example shows a simplified description of the access
control (AC) Object:
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((class-name AC-object)
(write-once-att (owner ()) (created ()) )
(read-write-att (modified-by ()) (modified ()) (permission “gsdgwgw”) (group ()) )
(super-class object)
(methods
(define (AC-init self . args). . . )
(define (change-permission self permission). . . )
(define (change-group self group). . . )
(define (get-permission self). . . )
(define (set-permission self). . . )
(define (delete-permission self). . . ) ))

The basic part of class descriptions must be written in the Scheme-based
object-oriented extension language. Since the HBMS server allows dynamic
loading of object code, parts of new classes (typically the body of methods)
can be written in other languages for reasons of efficiency. In this way,
method specifications in class descriptions are reduced to interfaces be-
tween the message-passing mechanism in the HBMS server and the
functions provided in the object code.

Basic Database Mechanisms. The System Object manages access control
at the database level by storing information on valid end-users, groups of
end-users, and superusers (hypermedia system developers) and by provid-
ing methods to maintain this information. System information is kept
persistently in an instance of System Object. The connect and disconnect
methods are located here, as well as methods that deal with other system
matters such as permissions to operate on the metadata (classes) in the
HBMS server. By default Hyperform is an open development environment
allowing all users (database administrator, hypermedia system developers,
and end-users) access to all facilities. Therefore, when users are not
distinguished as end-users and superusers, all users have superuser privi-
leges. The database administrator can decide to limit the access to a small
group of users by maintaining lists of valid end-users and superusers.
End-users can only operate on the instances (data) in the HBMS server,
while superusers are also allowed to work on classes (metadata) and to
maintain information on end-user groups.

3.1.2 Object Subclasses. To help address the difficult data manage-
ment problems posed by advanced hypermedia systems (see Section 2), we
introduced five subclasses of Object to provide basic tool-independent
HBMS support in the areas of concurrency control (CC Object), notification
control (NC Object), access control (AC Object), version control (VC Object),
and query and search (QS Object). Initially, the five subclasses of Object
were developed from scratch using the object-oriented kernel (Meta Class
and Object class) [Wiil and Leggett 1992]. After incorporation of the Exodus
Storage Manager in Hyperform, the functionality of the concurrency con-
trol, version control, and query and search classes were modified to rely (to
some extent) on the facilities of Exodus. Since Exodus does not provide
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support for notification control or access control, these classes remained
unmodified.
To our knowledge, no OODB has libraries that are specialized to hyper-

media without introducing specific policies. Therefore, Hyperform uses
Exodus, rather than a full-fledged OODB, to provide efficient storage and
retrieval of objects as well as low-level database transactions that ensure
data integrity. In addition, Hyperform adds object-oriented data manage-
ment facilities that have been designed to meet the specific requirements of
hypermedia.
We want to emphasize that Hyperform does not introduce a specific data

model. The development of the five subclasses of Object is an attempt to
implement as much support for hypermedia systems as possible without
introducing data-modeling policies. Ideally, these basic building blocks
should not introduce design decisions or in any way restrain the data-
modeling and HBMS configuration process. Reaching a level of support in
the building blocks that is both powerful enough to be useful in advanced
hypermedia systems and at the same time general enough to be used in
different types of tools is indeed difficult. What is considered to be general
hypermedia data management services to some types of tools can be too
specific or too general to others. The development of the five subclasses of
Object has gone through numerous iterations before reaching the present
set of services.
The services of the five subclasses of Object have been kept general,

based on the idea that future usage of Hyperform will build a large library
of useful hypermedia data models and HBMS configurations. Currently,
the library consists of a number of classes that implement different data
models (e.g., the Dexter model [Halasz and Schwartz 1994]) and HBMS
configurations (e.g., Aalborg University’s HyperBase [Wiil 1993a]). There
are two types of library classes: those that specialize the functionality of
the five subclasses of Object and those that implement hypermedia data
model components such as anchors, links, nodes, and composites. Library
classes can be reused in other development scenarios, saving development
time and adding to the size of the library. In the following, we will briefly
describe the most important services of the five subclasses of Object.

Concurrency Control Object. Concurrency control is an important issue
for database systems, and much work has been done in this area [Barg-
houti and Kaiser 1991; Bernstein and Goodman 1981], but the results
cannot be directly adopted for HBMSs. HBMSs must provide special
support for collaborative work [Halasz 1988; Wiil and Leggett 1993],
requiring adjustments to normal database notions of concurrency control.
The HBMS server provides enhanced support for collaborative use. CC
Object provides short database transactions combined with user-controlled
locking. User-controlled locks provide support for long-duration updates to
objects in the database and are shared, fine grained (attribute-level), and
persistent.
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A (long) collaborative update session in Hyperform is initiated with an
explicit lock request. Each operation in the session (such as frequent saves)
is performed within short database transactions in the Exodus Storage
Manager. Locked objects can be read by other users, and granted locks are
stored persistently. In this way, Hyperform is able to recover from both
client and server crashes within long collaborative sessions [Wiil and
Leggett 1993].
Typically, transactions are used to group basic database methods to-

gether into more powerful atomic operations at the application level. In
Hyperform, atomic operations involving more than one method are sup-
ported by moving the operation from the application level to the HBMS
using the provided dynamic data model extension facilities. Hyperbase-
level operations in Hyperform make use of the transaction mechanism in
Exodus to ensure atomicity and recoverability. This technique speeds the
operation, since internal database operations are much faster than applica-
tion-level operations over the network.

Notification Control Object. Notification control allows end-users/tools
to be notified of important actions on the shared network of nodes and links
performed by other end-users/tools of the system [Halasz 1988]. A notifica-
tion control mechanism is necessary for supporting collaboration [Wiil and
Leggett 1993]. NC Object provides a powerful event notification mechanism
that uses the expressive power of the Scheme language in event subscrip-
tions. The event mechanism is asynchronous and fine grained (attribute
level), and event subscriptions are kept persistently. Events can be any
Scheme expression and have access to all variables, functions, and objects
in the HBMS server. For example, the following simple expression

(event (lambda ()
(if (and (equal? NC-attribute “data”)

(equal? NC-operation “Write”))
(list NC-entity user)
#f)))

stipulates that all write operations performed on data attributes will cause
an event specifying the target object and the end-user performing the
operation. Event expressions are evaluated when the send-events method
is invoked. All expressions evaluating to anything other than false cause an
event to be generated and transmitted to the subscribing user. send-events
can be included in all methods in subclasses created in the HBMS server
and is (by default) invoked when using the methods of Meta Class and
System Object, since these cannot be versioned or subclassed. send-events
can also be invoked with specific parameters allowing “high-level” events to
be generated (for instance, events describing actions performed in the tool
integrator instead of the HBMS server).
The event mechanism provides many capabilities. The mechanism can be

used to make the HBMS server an active hyperbase. Specific operations
can trigger other operations which, for instance, could update variables and
objects in the HBMS server. Since the event mechanism has access to all

Hyperform: A Hypermedia System Development Environment • 11

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.



the computational power in Hyperform, it can be used to trigger arbitrarily
complex internal computations such as creating virtual structures [Halasz
1988].

Access Control Object. As hypermedia systems evolve from single-user
to multiuser systems, the need for controlling end-user access to shared
objects arises. The simple read/write protection scheme is not appropriate
and should be augmented with at least a third level of protection—
annotate—allowing end-users to attach links to objects to which they have
read (but not write) access [Catlin et al. 1989].
The design of AC Object general services was influenced by the protection

mechanism in Unix. We support three different levels of object protection,
get, set, and delete which correspond to the basic operations on instances
and attributes, and we adopt the notion of “user/group/others” from Unix.
Since there is no predefined notion of nodes, links, and composites in the
HBMS server, it is not possible to talk about annotation rights as being
part of the general services of AC Object. Basically, annotation rights can
be implemented with set access. Once a data model is loaded into Hyper-
form, AC Object can easily be specialized to include an annotate access
right (or other levels of protection).

Version Control Object. Versioning is an important feature for hyperme-
dia systems [Halasz 1988]. Until recently, little research had been done to
uncover appropriate versioning models for hypermedia [Halasz 1991]. The
requirements of versioning in hypermedia systems can be categorized into
two main areas: versioning data and versioning structure [Hicks 1993].
Versioning data has its parallel in version control, while versioning struc-
ture has its parallel in configuration management [Rohrbach and Seiwald
1988].
Versioning structure is heavily dependent on the hypermedia data model

used in the system. It is impossible to provide general HBMS support for
versioning structure in hypermedia without introducing a hypermedia data
model. Versioning data is independent of the hypermedia data model, but
still requires policies to be introduced. For instance, the versioning model
used might be timeline, tree, network, or a new hypermedia versioning
model. VC Object was created to address data-versioning issues. Since
structure is contained in the attributes of data model objects in the HBMS
server, it is likely that structure versioning would be done by subclassing
VC Object (or one of its variants) once a particular data model is intro-
duced.
The data-versioning support in VC Object was inspired by RCS [Tichy

1985] and Gypsy [Cohen et al. 1988] and is based on the tree model. VC
Object builds on the simple support for multiple versions of objects in the
Exodus Storage Manager. VC Object supports revisions, variants, and
releases of objects in delta or fully constituted form. It is possible to
check-out instances of objects for update and later check them in as new
revisions, variants, or releases of the instance. VC Object manages version
numbering based on the type of instance versioning requested at check-out
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time. At check-in time, one can specify whether the previous version of the
object should be stored as a delta or as a complete copy. At any time a
message can be sent to objects that changes the method of storage. Versions
of an instance are kept in version groups, and earlier versions can be
retrieved through the query mechanism. We use a specialized form of
backward delta storage (geared toward the storage method in the HBMS
server) combined with the object version facilities of the Exodus Storage
Manager to reduce the amount of storage required and to allow flexible
access to previous versions of the instance.
A small number of researchers are currently addressing hypermedia

versioning issues [Haake 1992; Hicks 1993; Østerbye 1992]. Hyperform,
due to its extensible nature, can be used as a research vehicle for experi-
menting with different versioning models for hypermedia. In particular,
Hyperform’s rapid prototyping facility can be used for addressing the issue
of partitioning version support among the various architectural layers (e.g.,
hyperbase versus application) [Hicks 1993].

Query and Search Object. The basic information access metaphor in
hypermedia is navigation. In general, navigation becomes inefficient as the
hypermedia information space grows larger and larger. Techniques from
database and information retrieval (IR) systems should be incorporated
into hyperbase technology to provide alternate ways of accessing informa-
tion in hypermedia. Halasz [1988] suggests query-based mechanisms sup-
porting both content and structure search. Content search involves IR
techniques such as keyword, index, and full-text retrieval and database
techniques such as query-based retrieval. Structure search involves a
special structural query language capable of retrieving specified subgraphs
of the network and therefore depends on the data model in the system.
We provide basic content search facilities in the HBMS server that can be

extended to provide support for more powerful IR methods. The content
search mechanism of QS Object is list-based and supports the use of all
list-manipulating functions of the Scheme language. In addition, we pro-
vide a general filtering function capable of matching specific values in
attributes (remember, all information in the HBMS server is stored in
attributes) and basic list operations such as union, intersect, and subtract.
We can also access all internal indexes of the HBMS server, retaining
information on classes, instances, locks, events, etc. These basic methods
(inspired by Fuller et al. [1991]) can be composed into very powerful
content searches using the composing mechanisms of the Scheme language
(control structures such as IF, COND, and CASE and operators such as
AND, OR, and NOT).
QS Object builds on the Exodus Storage Manager support for indexes (B1

trees and linear hashing). Exodus indexes are used to maintain internal
HBMS server information. Due to the update overhead of indexes, we only
maintain information that is frequently accessed (e.g., the coherence be-
tween classes and their instances). Hypermedia system developers can
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make use of the indexing capabilities of the Exodus Library when designing
data models and HBMS configurations.
We do not provide direct support for structure search, since we do not

want to introduce a fixed data model. Although, since all structural
information is stored in attributes in the HBMS server, structure search
mechanisms can be built on top of the basic content search facilities once a
data model is introduced.

3.1.3 Attribute Cache and Libraries. First experiences with Hyperform
indicated that large attributes were not handled very efficiently in the Elk
Scheme interpreter. To improve the performance of the HBMS server, we
have created a special cache to handle large attributes in objects. When a
message arrives, the network library interface moves large attributes from
the message into the cache and replaces the attributes in the message with
cache identifiers. Before the object is forwarded to the storage manager
library, cache identifiers are replaced by the actual data in the storage
manager interface. In this way large data objects are transparently han-
dled in efficiently coded libraries all the way from the network to the
storage manager and vice versa. We avoid spending valuable time convert-
ing large attributes to and from Elk Scheme format. Only in special cases,
such as reading (evaluating) calculated attributes, is it necessary to trans-
form such attributes into Elk Scheme format.

3.2 The Tool Integrator

The tool integrator (TI) is an extensible, tailorable interface between the
HBMS server and participating tools. The TI is also based on Elk, giving it
extension features similar to those of the HBMS server. Since Elk can be
extended on-the-fly, the TI supports dynamic integration of new tools into
Hyperform making the architecture dynamic, open, and distributed. The TI
has object-oriented data-modeling capabilities similar to those of the
HBMS server. In fact, the data-modeling component in the TI is a modified
version of the object-oriented kernel (Meta Class and Object class) in the
HBMS server. The main difference is that the TI uses the HBMS server
Object class to provide persistent storage for instances and to store its class
descriptions. When the TI is invoked, relevant class descriptions are
retrieved from the HBMS server and installed (evaluated).
The extended client-server architecture supports extensibility at two

levels in systems: hyperbase and application, leaving it up to the hyperme-
dia system developer to decide in each case where extensions give best
results in terms of flexibility and efficiency. In some cases it might be best
to place the extensions in the HBMS server (if they require access to many
objects) and in other cases in the TI (to save network communication). More
specific features can be put into the HBMS server than the TI, since it is
easier to determine the necessary support at the hyperbase level than at
the application level. The support at the hyperbase level should be tool
independent while the support at the application level should focus on
providing features that are common for participating tools. Since we cannot
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foresee the nature of participating tools, common features must be imple-
mented by the hypermedia system developer using the extension (object-
oriented data-modeling) facilities of the TI.
The TI supports integration of both external and internal tools. External

tools can be integrated via the Unix and network libraries. Internal tools
can be integrated by loading them into Elk via the dynamic object file-
loading facility. The Scheme extension language is used to facilitate com-
munication among different tools and between tools and the HBMS server.
It may be difficult to integrate independently written tools, since they have
been developed as standalone programs. Noninteractive tools can be in-
voked via the Unix library, and interactive tools can be extended to
communicate with the TI via the network library.
We can distribute the HBMS server across several machines in the

network. The architecture has also been designed with multiple HBMS
servers in mind. The TI can be extended to interact with multiple HBMS
servers or other storage devices (e.g., CD-ROM and optical disc) and data
repositories (e.g., file systems and databases). In this way, the HBMS
servers will not have to change to provide a truly distributed heterogeneous
HBMS incorporating several different data repositories. The TI allows
hypermedia system developers to experiment with different hypermedia
system architectures including centralized, client-server architectures and
distributed, multihyperbase architectures.
An additional advantage of the TI is that it can maintain a shared

representation (cache) of important hyperbase data and structure (based on
events from the HBMS server) used by different tools. Different views
(editor, graphical browser, other browsers, etc.) on the data and structures
can be based on the common cache which speeds operations in the tools,
saves internal memory and network communication, and reduces the
server load in event-driven approaches to data distribution [Wiil 1992].
Another example of specific TI functionality is protocol transformation.
Independently written tools may use a storage (network) protocol different
from that of the HBMS server. The TI can be used as an intermediate
component transforming to and from the HBMS server protocol. In other
words, the TI can be used to introduce storage (network) transparency
similar to Unix Network File Systems (NFS).

3.3 The Editors

The Hyperform development environment supports the use of two editors
for customization of the provided HBMS services into new data models and
HBMS designs: GNU Emacs [Stallman 1984], the well-known extensible
editor and, EHTS Editor [Wiil 1991; 1992], a multiuser hypermedia text
editor. These two editors represent two different development styles avail-
able in the Hyperform development environment.

3.3.1 GNU Emacs. GNU Emacs [Stallman 1984] was the first editor
interfaced to the Hyperform development environment. The send mecha-
nism can be used transparently from Emacs over the network to the HBMS
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server (either directly over the network or through a tool integrator). In
this way hypermedia system developers can use the powerful editing
facilities of Emacs when developing class descriptions for Hyperform
(HBMS server or tool integrator). When a class description is ready to
submit to Hyperform (HBMS server or tool integrator) as a new (version of
a) class, the send mechanism is used to communicate the message and
install the new class. Thereafter, the send abstraction can be used to test
the facilities of the new class (version) from within Emacs. Emacs uses the
Unix file system to store Hyperform class descriptions. When the EHTS
editor was ported from Aalborg University’s HyperBase [Wiil 1993a] to
Hyperform, Emacs was used to develop and test the class definitions used
to implement the HyperBase data model in the HBMS server. This experi-
ment is described in detail in Wiil [1993b].

3.3.2 EHTS Editor. The EHTS Editor [Wiil 1991; 1992] is based on
Epoch [Kaplan et al. 1992] (an extension to GNU Emacs). The EHTS Editor
provides two interesting extensions to the Emacs-based development style
in the Hyperform development environment.

Hypermedia System Developers Can Collaborate in the Design Process.
The EHTS Editor enables a group to collaborate on a shared task. Changes
made on shared data by one developer are immediately visible to all other
members of the group. Group members can communicate in real-time and
can send asynchronous messages within the editor, thus enabling collabo-
ration among members separated by time as well as space. The EHTS
Editor provides contention resolution at the level of attributes in nodes and
links and allows any number of users to simultaneously read and display
the data field of a given node in a window on the screen. The EHTS Editor
allows locked objects to be read by any number of users; however, permis-
sion to make modifications to the data field is restricted to one user at a
time. Locks are allocated when the user invokes the editor lock command
(e.g., by simply typing on the keyboard) indicating a change in mode from
browse to edit. Locks are deallocated when either the editor unlock com-
mand is invoked or when the window is closed. All readers are notified as
soon as possible that a data field they are accessing may be changed.
Readers are provided with four types of modification notices:

(1) Intention. All readers are notified when one person signals intention
to modify the data field of the node by obtaining a lock. The readers also
get the name of the person, enabling contact through use of the internal
talk mechanism (real-time communication). Readers can then subscribe
to the event corresponding to when the writer unlocks the data field.

(2) Update. When the writer actually writes the modified data field of the
node onto the shared database, all readers of the data field automati-
cally get the contents in the data field display updated with modifica-
tions made by the writer (real-time monitoring).
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(3) Completion. When the writer is finished modifying the data field of a
node, users having subscribed to this event get notified that the data
field of the node has been unlocked and is write accessible.

(4) Deletion. When a node is deleted, the display of the node is removed
from the screens of all readers.

Hypermedia System Developers Can Link Together Related Design Mate-
rial. In contrast to Emacs, the EHTS Editor is an integrated part of the
Hyperform development environment and uses the data storage and data-
sharing capabilities of Hyperform to store class descriptions. In the EHTS
Editor, hypermedia system developers can link together different versions
of class descriptions, as well as test data and documentation of classes to
the class descriptions. Class descriptions, test data, and documentation
originating from a specific development process can therefore be stored in
Hyperform and made accessible as a hypermedia network interconnecting
all relevant documentation inside Hyperform.
It is possible to customize and extend all parts of the EHTS Editor. The

Hyperform development environment provides both the source code imple-
menting the EHTS Editor and the source code implementing the Hyper-
Base data model in the HBMS server.

4. A CASE STUDY IN HBMS DEVELOPMENT

Development of an HBMS in Hyperform typically consists of the following
five steps:

(1) Analyzing the Problem Domain. The problem could be to provide
hypermedia services for a particular hypermedia system (a set of
hypermedia tools), to provide hypermedia capabilities (anchoring and
linking) to a set of nonhypermedia tools, or to simulate the functionality
of an existing hypermedia data model or HBMS. This step typically
results in a list of requirements that the HBMS must fulfill.

(2) Designing the Hypermedia Services. This step involves mapping the
list of requirements to a set of data model objects and operations
fulfilling the requirements. In this step the hypermedia system devel-
oper must determine to what extent the built-in classes can be used in
the implementation of the hypermedia services and what services need
to be developed from scratch. This step typically results in a list of data
model objects, a sketch of how they relate to each other in terms of
inheritance, and a specification of operations available on the individ-
ual objects. Hyperform allows the hypermedia system developer to
partition the functionality of the hypermedia data model between the
hyperbase layer (the HBMS server) and the application layer (the tool
integrator). A layered design will result in two design specifications,
one for the HBMS server and one for the tool integrator.

(3) Writing the Class Descriptions. In this step the hypermedia system
developer writes the descriptions of the specified classes in the Scheme-
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based object-oriented development language. The developer can decide
to use either of the provided editors in the coding process.

(4) Installing the Class Descriptions. When the class descriptions have
been fully or partially implemented, the hypermedia system developer
can install them in either the HBMS server or the tool integrator by
sending a message to the Meta Class of the particular component. The
developer can decide to fully implement the classes before installing
(and testing) them or to develop the classes in a number of iterations
adding on more and more of the specified operations.

(5) Testing the Class Descriptions. Before the hypermedia data model is
used with the desired tools, the functionality of the classes may be
tested by sending messages from the editors to the classes. The final
test is, of course, when the tools start to use the developed hypermedia
services.

When the hypermedia data model is operational, the developer can refine
the model by repeating as many of the above steps as desirable. Each step
will create a new version of the hypermedia data model in Hyperform.
Reasons to refine the data model could be to include additional functional-
ity not anticipated at the time of development or to improve the perfor-
mance of the data model by optimizing certain time-consuming operations.
As mentioned, bodies of operations can be implemented in an efficient
(compiler-based) language and interfaced in the class descriptions to im-
prove the overall performance.
We now turn our attention to a case study that demonstrates the use of

Hyperform in a data model and HBMS development process. We have
chosen to base the case study on the most influential hypermedia reference
model in the literature—the Dexter Hypertext Reference Model [Halasz
and Schwartz 1994].

4.1 The Dexter Hypertext Reference Model

The Dexter model was developed by a group of leading hypermedia re-
searchers in a series of workshops from 1988 to 1990. The Dexter model is
an attempt to capture some of the best design ideas from that time’s most
prominent hypermedia systems. The goal of the Dexter model is to provide
a basis for comparing systems as well as for developing interchange and
interoperability standards [Halasz and Schwartz 1994].
The Dexter model divides hypermedia systems into three layers having

well-defined interfaces as illustrated in Figure 2. The runtime layer de-
scribes the mechanisms supporting the end-user’s interaction with the
hypertext. The storage layer describes the network of nodes and links that
is the essence of hypermedia. The within-component layer covers the
content and structures within hypermedia nodes. The focus of the model is
on the storage layer as well as the mechanisms of anchoring and presenta-
tion specification that forms the interfaces between the storage layer and
the within-component and runtime layers, respectively.
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The storage layer provides a basic, persistent object type, component.
Components are generic containers of data and consist of two parts:
component information and component contents. Component information is
comprised of a set of attributes, a presentation specification, and a set of
anchors. Component contents are the actual data stored in the component.
Every component has a globally unique identity which is captured by its
unique identifier. The Dexter model specifies three component subtypes:
atomic, link, and composite. The atomic component type is an abstraction
over the node concept. Link components include a list of specifiers, each
consisting of a presentation specification, a direction (from, to, bidirect, or
none), and component and anchor identifiers. Composite components pro-
vide a hierarchical structuring mechanism. A hypertext is a network
composed of hierarchies of data-containing components which are intercon-
nected by relational links.
The within-component layer is purposefully not elaborated within the

Dexter model. No attempts are made to provide interpretation of compo-
nent contents and internal structure. The tools using the HBMS are
responsible for maintaining internal component data such as content
selections for link anchoring.
The interface between the storage and within-component layers is based

on the notion of anchors. Anchors provide a mechanism for addressing
locations or items within the content of an individual component. Anchors
consist of an identifier that can be referred to by links and a value that
picks out the anchored part of the material.
The runtime layer is responsible for handling components, anchors, and

specifiers at runtime, thus capturing the dynamic and interactional aspects
of the hypermedia system. The runtime layer supports sessions that man-
age interaction with particular hypertexts and instantiations that manage
interaction with particular components. The runtime layer provides user
interface facilities through basic functionality for accessing, viewing, and
manipulating hypermedia networks.
The interface between the runtime and the storage layers is based on the

notion of presentation specifications which determine how components are
presented at runtime. Presentation specifications might be dependent on
the presentation tool, the component itself, or on the access path to the

Fig. 2. An overview of the Dexter Hypertext Reference Model layers and interfaces.
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component (on the link) and might include information on screen location,
size of the presentation window, or presentation modes (such as read-only
or edit).

4.2 Implementing the Dexter Model in Hyperform

This section presents a brief overview of the object-oriented implementa-
tion of the Dexter model in Hyperform. We have only implemented the core
model to avoid unnecessary interpretations of the semantics of the model
[Leggett and Schnase 1994]. Further elaboration of the concepts and
semantics of the core model pertain to a particular hypermedia system.
The layered HBMS approach in Hyperform provides a perfect foundation

for the Dexter model approach to hypermedia systems. The within-compo-
nent layer corresponds to the Exodus Storage Manager; the Dexter storage
layer corresponds to the HBMS server; and the runtime layer corresponds
to the tool integrator in Hyperform.
The Exodus Storage Manager provides efficient support for storage of

different media types. It is the responsibility of participating tools to
maintain internal component data stored in the Exodus Storage Manager.
Dexter storage layer concepts are implemented in the HBMS server

using the object-oriented data-modeling facility (see Figure 3). We have
separated anchor and specifier information from components; therefore,
component subtypes store anchor IDs instead of the actual anchor data,
and links store specifier IDs instead of the actual specifier data. All classes

Fig. 3. Dexter storage layer classes in the HBMS server. All classes are subclasses of the
persistent “Object” class. The “Component” class is a client of the “Anchor” class. The “Link”
class is a client of the “Specifier” class, and the “Hypertext” class is a client of the “Atom,” the
“Composite,” and the “Link” classes.
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are persistent, since they are subclasses of the persistent object class. The
“Hypertext” class conforms to the Dexter model concept of a hypertext.
Dexter runtime layer facilities are implemented in the tool integrator

(see Figure 4). We have separated link markers from instantiations which
implies that instantiations maintain a list of link marker IDs. Tool integra-
tor classes are nonpersistent. This matches the requirements of the Dexter
model: runtime layer classes use the facilities of the storage layer to obtain
persistency. The “Session” and “Read-Only Session” classes conform to the
Dexter model runtime specifications. A read-only session is a session that
keeps no history and does not support create, save, and delete operations on
the hypertext.
Typically, a hypermedia system will require several extensions to the

core model, such as

(1) dealing with multiuser, collaboration, and versioning issues,
(2) dealing with different data types, different semantic relations between

data types, and different aggregation mechanisms, and
(3) dealing with issues of openness and integration of different indepen-

dently written (third-party) tools into the hypermedia system frame-
work.

Elaborations and extensions to the core model can easily be performed in
Hyperform, based on the current Dexter model implementation. Addressing
the first set of issues would require using the built-in services for concur-
rency control, notification control, version control, access control, and query
and search to enhance the facilities of the anchor and component classes in
the HBMS server. Addressing the second set of extensions would require
adding anchor, atom, link, and composite subtypes to provide a richer set of
hypermedia data model objects. Anchor, atom, link, and composite subtypes

Fig. 4. Dexter runtime layer classes in the tool integrator. All classes are subclasses of the
nonpersistent “Object” class. The “Read-Only Session” class is a client of the “Instantiation”
class, which in turn is a client of the “Link Marker” class.
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can be added to the Dexter model storage layer by creating new classes in
the HBMS server inheriting from the core Dexter storage layer classes
shown in Figure 3. Aspects of openness and integration of third-party tools
can be achieved by extending the runtime layer in the tool integrator to
handle communication with different types of tools. This would be accom-
plished by adding new classes that specialize the behavior of the core
Dexter runtime layer.

4.3 Important Results

Hyperform is well suited for implementing the Dexter model. The layered
approach to HBMSs in Hyperform with object-oriented data-modeling
facilities in both the HBMS server and the tool integrator constitutes a
very powerful development environment. Hyperform supports partitioning
of hyperbase (data model) functionality between the hyperbase and appli-
cation layers—matching the partitioning of functionality between the stor-
age and runtime layer in the Dexter model.
During the experiment, GNU Emacs was used to develop and test class

descriptions for both the HBMS server and the tool integrator. Classes
were stored in the Unix file system and sent to either the tool integrator or
the HBMS server (via the tool integrator) whenever they were ready for
testing. Tests were then performed by invoking methods from within
Emacs.
The case study made the rapid prototyping facilities of Hyperform

evident. The Dexter model was developed in less than two weeks by an
experienced Hyperform developer. This effort included analysis of the
Dexter model [Halasz and Schwartz 1994], design, implementation, and
test. Less experienced Hyperform developers would, of course, have to put
more effort into the design and implementation phases. The Dexter model
classes each consist of 10 to 100 lines of Scheme code, for a total of 22KB of
code in the entire experiment (13KB to implement the storage layer in the
HBMS server and 9KB to implement the runtime layer in the tool integra-
tor).

5. COMPARISON WITH RELATED WORK

Recently there has been an increasing interest in developing formal models
for hypermedia. Among the most notable are those presented in Afrati and
Koutras [1990], Delisle and Schwartz [1986], Furuta and Stotts [1990],
Garg [1988], Halasz and Schwartz [1994], Lange [1990], Schnase et al.
[1993a], Schütt and Streitz [1990], and Tompa [1989].
Many hypermedia models have been implemented in HBMSs. Prominent

HBMS projects include work on the Hypertext Abstract Machine (HAM)
[Campbell and Goodman 1988], GMD-IPSI’s HyperBase [Schütt and Streitz
1990] and Cooperative Hypermedia Server (CHS) [Schütt and Haake 1993],
University of North Carolina’s Distributed Graph Server (DGS) [Shackel-
ford et al. 1993], Texas A&M University’s HB1 [Schnase et al. 1993a;
1993b], HB2 [Schnase 1992], and HB3 [Leggett and Schnase 1994], RMIT’s
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Hyperion [Zobel et al. 1991], and Aalborg University’s HyperBase [Wiil
1993a]. The Dexter model has previously been implemented as part of the
DeVise Hypermedia project at Aarhus University [Grønbæk and Trigg
1992; Grønbæk et al. 1993].
Unlike the above HBMS approaches, Hyperform implements no specific

data model. Instead, we provide a rich set of basic tool-independent HBMS
features that can be specialized to match the specific needs of advanced
hypermedia systems. Hyperform is unique in its support for development
and experimentation of hypermedia data models, HBMS configurations,
and hypermedia system architectures through a rapid prototyping ap-
proach. Hyperform can be used to implement a wide variety of existing
formal models and simulate existing HBMSs. Currently, we have an
implementation of Aalborg University’s HyperBase and the Dexter model
in Hyperform.
Hyperform promotes an open hypermedia architecture allowing existing

and future tools to be integrated under a common information system
model. Other approaches to open hypermedia architectures and systems
include Sun’s Link Server [Pearl 1989], Proxhy [Kacmar and Leggett 1991],
HB1 [Schnase et al. 1993a; 1993b], HB2 [Schnase 1992], HB3 [Leggett and
Schnase 1994], Multicard [Rizk and Sauter 1992], DHM [Grønbæk and
Trigg 1992; Grønbæk et al. 1993], Microcosm [Davis et al. 1992], DHT [Noll
and Scacchi 1991], and ABC [Smith and Smith 1991].

6. DISCUSSION

This section takes a closer look at some of the features that make the
Hyperform approach distinctive. We describe our experiences and discuss
usability aspects of Hyperform.

6.1 Experiences

In addition to the development of the Dexter model and simulation of
Aalborg University’s HyperBase, Hyperform has been used in several
development projects both inside and outside Aalborg University. The
experiences from these experiments have some common characteristics.
Most important, experiments have supported the claim that the Hyper-

form development environment greatly reduces the effort required to
develop customized HBMS support for distributed hypermedia systems.
The rapid prototyping facilities of Hyperform makes experimentation with
new hypermedia data models and HBMS configurations a matter of weeks
of effort rather than months or years. The development of Aalborg Univer-
sity’s HyperBase showed the time it takes to simulate a HAM generation
HBMS in Hyperform is on the order of weeks compared to the two
man-years it took to develop HyperBase. The Hyperform simulation is
performed by 13KB of Scheme code compared to 350–400 KB of HyperBase
C11 code [Wiil and Leggett 1992]. The Dexter, HyperBase, and other
experiments show that the functionality of the built-in classes are at a level
of generality that allows different hypermedia models to be developed. At
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the same time the built-in services provide a library of hypermedia data
management functions that increase the effectiveness in experimentation
and development of hypermedia models. The built-in services make Hyper-
form an effective testbed for research on the five categories of HBMS issues
mentioned in Section 2.
Hyperform allows developers to partition functionality between the hy-

perbase and the application level, based on flexibility and efficiency consid-
erations. The provided extension facilities at both the hyperbase and the
application level can be used to experimentally determine the optimal
partitioning of functionality. For example, in the HyperBase simulation
experiment, we used this flexibility to gain efficiency by moving complex
operations (e.g., operations that require a set of objects to be identified and
then certain of their attributes retrieved) from the application to the
hyperbase level, thus saving network communication time. Simulating
existing HBMSs (such as Aalborg University’s HyperBase) and developing
existing hypermedia data models (such as the Dexter model) in Hyperform
requires good knowledge of the existing systems and models. Hyperform
developers must know about hypermedia objects, operations, and the exact
functionality of the operations to be able to simulate the system (model).
Since Hyperform classes are implemented in Scheme, a good knowledge of
Scheme is required as well.
Hyperform has limited debugging support, since Elk has no integrated

debugging facilities. When an error is encountered, Hyperform quits the
operation, displays an error message, and continues to execute the next
incoming message. Some debugging aids have been built into the basic
classes of Hyperform. This makes it possible to trace errors to specific
methods in classes and, thereafter, inspect variables. Ideally, errors should
be corrected using a source-level debugger supporting breakpoints, step-
ping through single lines of the source code, examining and altering
variables, etc.
The object-oriented approach to data modeling in Hyperform treats the

metaclass, built-in classes, and data model classes as standard database
objects. The object-oriented property supports the refinement of default
system behavior using specialization and inheritance. The database prop-
erty means that classes can be stored and accessed using the data-modeling
facility. The Hyperform approach has three major advantages:

(1) Extensibility. Because the system itself is described with the object-
oriented approach, it can be seen as a core of facilities that may be
tailored to specific tools.

(2) Accessibility. Data held at the class level (metadata) are available like
any other data in the system because classes are proper objects.

(3) Uniformity. The same tools are used to query, relate, and specialize
data and metadata. Because there is no new mechanism to learn and no
distinction made between data and metadata, the designer’s only
concern is the level of abstraction at which to work.
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Normally, metaclasses do not facilitate kernel extensions, since they exist
at the model level, above the structures that specify kernel services and
policies (concurrency control, access control, etc.). By introducing kernel
services as built-in classes, Hyperform allows developers to define policies
at all hyperbase levels.
On the other hand, working with metaclasses can make Hyperform more

difficult to understand, since the hypermedia system developer must cope
with three levels of objects when designing hypermedia models: instances,
classes, and the metaclass. Obviously, the Hyperform development environ-
ment is not intended to be used by a typical end-user or application
programmer. Development of hypermedia models requires good knowledge
of object-oriented techniques and expert knowledge of the hypermedia,
hyperbase, and database fields. Even for a skilled hypermedia data man-
agement system developer, Hyperform requires different levels of expertise
ranging from development of hypermedia data models through HBMS
configurations to hypermedia system architectures. The three levels can be
exemplified by (1) a Hyperform developer that creates a hypermedia data
model using the built-in classes as is, (2) a Hyperform developer that
specializes the built-in classes to develop a hypermedia data model, and (3)
a Hyperform developer that creates a distributed hypermedia model based
on multiple, distributed HBMSs.
As indicated, development of HBMSs in Hyperform is a quest for both

flexibility and efficiency. Hypermedia system developers want Hyperform
to support many (often exotic) features and at the same time provide fast
and efficient storage, retrieval, and manipulation of Hyperform classes and
objects. The first version of Hyperform provided a high degree of flexibility,
but simply was not efficient enough to store large objects [Wiil 1993b]. The
current version has been updated in several ways to solve this problem
(such as using the Exodus Storage Manager to handle physical storage).
Ongoing and future work (outlined in Section 7.1) will determine if these
changes have given Hyperform a high degree of efficiency as well (first
experiences so indicate).
The inclusion of the Exodus Storage Manager in the Hyperform was a

step in the process of moving functionality from Scheme-based components
to efficiently coded libraries. Exodus was primarily chosen for its capabili-
ties to efficiently store and retrieve large binary objects (and because it is
public domain software). Exodus provides some additional facilities that
allowed functionality to be moved away from Scheme components, further
enhancing the performance of Hyperform. Part of the functionality of
Concurrency Control Object (short database transactions), Version Control
Object (basic version storage handling), Query and Search Object (index-
ing), and System Object (caching and indexing) is now based on Exodus
library functions.
The Exodus Storage Manager provides a set of general functions dealing

with object storage management. This is especially useful in the Hyperform
approach, since generality is a major design aspect of Hyperform. Hyper-
form makes extensive use of the Exodus library to provide a general set of
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hypermedia data management services. In addition, all Exodus functions
are made available inside Hyperform to assist developers in the hyperme-
dia-modeling process. This allows developers to combine the facilities of
Exodus and other Hyperform components in new ways to address impor-
tant hyperbase issues. For instance, the indexing facilities of Exodus can be
combined with the built-in content search operations of QS Object to
provide word-by-word content-based searches and structural searches.

6.2 Usability

The Hyperform development environment’s intended application area is
hypermedia. Within the area of hypermedia we can identify a number of
potential applications, which indicate Hyperform’s broad usability as a
Hypermedia system development environment:

(1) Link Engine for Intertool Linking [Kacmar and Leggett 1991; Meyrowitz
1989; Pearl 1989; Schnase 1992; Schnase et al. 1993a]. Link engines
store information on hypermedia associations and in some cases on the
data involved in the associations. With an appropriate data model and
HBMS configuration implemented, Hyperform can store any kind of
data, including structure information. Thus, Hyperform can simulate
existing link engines [Haan et al. 1992; Pearl 1989] and support
distributed intertool linking. The runtime support for intertool linking
would be located in the tool integrator in the Hyperform architecture.

(2) Data Interchange between Existing Hypermedia Data Models [Leggett
and Killough 1991; Leggett and Schnase 1994]. More than one data
model can be simulated in Hyperform simultaneously. Transformation
(interchange) objects can be created, inheriting functionality from two
data models and providing operations to convert from one format to the
other (and vice versa).

(3) Research Engine for Future Hypermedia Systems. The rapid prototyp-
ing facilities ease development and experimentation with hypermedia
data models, HBMS configurations, and hypermedia system architec-
tures. New models and configurations can be derived from existing ones
and shaped toward new application areas. To date, Hyperform has been
used as an HBMS and hypermedia data model development tool.
Ongoing and future work (outlined in Section 7.1) will use Hyperform to
experiment with different hypermedia system configurations. As previ-
ously mentioned, the tool integrator is the central component of such
experiments.

Hyperform also has research potential in other application domains:

(1) Extensible OODB [Batory et al. 1990; Carey et al. 1990; Haas et al.
1990; Stonebraker and Rowe 1986; Wells et al. 1992]. Hyperform can
be classified as an extensible OODB, since we support common OODB
features [Zdonik and Maier 1990] and introduce extensibility into basic
database modules, such as concurrency control and version control.
This view opens a wide range of possible application areas for Hyper-
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form, such as office information systems, CSCW systems, software
engineering systems, and programming systems. Since Hyperform can
be extended and tailored on-the-fly, it can also be useful as a research
engine in addressing future database issues (as discussed by Silber-
schatz et al. [1991]) in a fast prototyping manner.

(2) Scheme OODB Extension. Another way of classifying Hyperform is as
an extension to Scheme supporting OODB facilities (persistent pro-
gramming language facilities). This view opens new types of Scheme
applications, since Hyperform supports persistent, sharable objects
that can be composed of all manner of existing Scheme types and
functions.

(3) GNU Emacs Extension. Existing GNU Emacs applications can be
extended to make use of the Hyperform capabilities. The Hyperform
send abstraction in Emacs enables access to the powerful Hyperform
data-modeling facilities.

To increase the usability of Hyperform in hypermedia system development,
the use of Hyperform could be combined with a hypermedia design method
(such as the Enhanced Object-Relationship Model [Lange 1994]) to assist
the hypermedia system developer in converting a problem specification into
a detailed description of necessary hypermedia data model objects and
operations. A hypermedia design method would give some useful guidelines
in addressing steps (1) and (2) of a Hyperform development scenario
(Section 4).

7. CONCLUSION

Development of HBMSs involves addressing certain critical issues. A data
model must be determined, and decisions concerning the degree of concur-
rency control, notification control, access control, version control, and query
and search support must be made. Once these policies are established the
actual mechanisms must be implemented. The Hyperform development
environment can be valuable in the policy-setting stage as well as the
implementation stage. In the policy-setting stage, one might use the rapid
prototyping features of Hyperform to quickly experiment with alternate
designs. In the implementation stage, Hyperform provides the basic build-
ing blocks for effective implementation of the HBMS.
Efficiency and flexibility are often counteracting factors in system devel-

opment. Therefore, HBMS designers often have to determine whether
efficiency or flexibility should be the main goal of their work. It is
important to notice that efficiency does not automatically rule out flexibil-
ity and vice versa. Reaching a design that has a high degree of both
efficiency and flexibility should have a high priority in future HBMS
development. Hyperform’s design is an attempt to provide a high degree of
both flexibility and efficiency. We have succeeded in addressing the flexibil-
ity aspect. Future application will determine if the current enhanced
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Hyperform development environment succeeds in addressing the efficiency
aspect as well.
The current trend in HBMS development is toward a high degree of

openness, distribution, and heterogeneity in hypermedia system architec-
tures. Hyperform is based on an extensible, open, and distributed architec-
ture, and the HBMS server can accommodate several different hypermedia
data models and HBMS configurations concurrently, thus addressing the
heterogeneity aspect.

7.1 Ongoing and Future Work

The first version of Hyperform was fully implemented in the fall of 1992.
Based on experiences with the first version, we have reimplemented most
components of the system and incorporated the Exodus Storage Manager to
promote efficiency and error handling.
We have an ongoing effort to create a hypermedia data definition

language (DDL) and data manipulation language (DML) on top of Hyper-
form. The DDL allows Hyperform classes to be written in a more natural
language (instead of Scheme), and the DML allows Hyperform data and
structures to be queried and manipulated at a higher level of abstraction
(without any knowledge of the underlying Scheme representation) [Krogs-
gaard et al. 1995].
Hyperform is currently providing a foundation for a hypermedia-based

distributed collaborative computing environment (called HyperDisco) being
developed at Aalborg University [Wiil 1995; Wiil and Leggett 1996]. Hyper-
Disco is a distributed computing environment in which existing single-user
tools can be integrated and extended to handle multiple collaborating users
in a controlled manner. HyperDisco is based on an open hypermedia data
model that supports intertool linking and multiple versions of shared
artifacts. In connection with the HyperDisco project, we have the following
plans for Hyperform:

(1) we will experiment with several system configurations in further ad-
dressing distribution and heterogeneity aspects of the Hyperform archi-
tecture;

(2) we will extend the Hyperform architecture to handle multiple heteroge-
neous hypermedia data repositories.

HyperDisco is an attempt to create a large-scale experimental system.
Hopefully, the HyperDisco experiment can help determine the limits and
bottlenecks of the current Hyperform development environment in terms of
flexibility, efficiency, openness, distribution, heterogeneity, and scalability.

ACKNOWLEDGMENTS

Special thanks to Bob Allen, Paolo Paolini, and the three anonymous
reviewers for their helpful comments. The authors gratefully acknowledge
Randy Trigg for his thorough reading and comments on the dissertation
from which much of this article is based [Wiil 1993b].

28 • Uffe K. Wiil and John J. Leggett

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.



REFERENCES

AFRATI, F. AND KOUTRAS, C. D. 1990. A hypertext model supporting query mechanisms. In
Hypertext: Concepts, Systems and Applications, Proceedings of the European Conference on
Hypertext. Cambridge University Press, Cambridge, Mass., 52–66.

AKSCYN, R., MCCRACKEN, D., AND YODER, E. 1988. KMS: A distributed hypermedia system
for managing knowledge in organizations. Commun. ACM 31, 7 (July), 820–835.

BARGHOUTI, N. S. AND KAISER, G. E. 1991. Concurrency control in advanced database
applications. ACM Comput. Surv. 23, 3 (Sept.), 269–317.

BATORY, D. S., BARNETT, J. R., GARZA, J. F., SMITH, K. P., TSUKAUDA, K., TWICHELL, B. D., AND
WISE, T. E. 1990. Genesis: A reconfigurable database management system. IEEE Trans.
Softw. Eng. (Nov.), 1258–1272.

BERNSTEIN, P. A. AND GOODMAN, N. 1981. Concurrency control in distributed database
systems. ACM Comput. Surv. 13, 2 (June), 185–221.

CAMPBELL, B. AND GOODMAN, J. 1988. HAM: A general-purpose hypertext abstract machine.
Commun. ACM 31, 7 (July), 856–861.

CAREY, M., DEWITT, D., GRAEFE, G., HAIGHT, D., RICHARDSON, J., SCHUH, D., SHEKITA, E., AND
VANDENBERG, S. 1990. The Exodus extensible DBMS project. In Readings in Object-
Oriented Databases. Morgan Kaufmann, San Mateo, Calif., 474–499.

CAREY, M. J. ET AL. 1993. Using the Exodus Storage Manager. Dept. of Computer Science,
Univ. of Wisconsin, Madison, Wisc. Available as ftp://ftp.cs.wisc.edu/exodus/sm/doc/sm3doc.ps.

CATLIN, T. J., BUSH, P., AND YANKELOVICH, N. 1989. InterNote: Extending a hypermedia
framework to support annotative collaboration. In Proceedings of the 2nd ACM Conference
on Hypertext. ACM, New York, 365–378.

CLINGER, W., AND REES, J., Eds. 1992. The revised4 report on the algorithmic language
Scheme. Tech. Rep. CIS-TR-91-25, Dept. of Computer and Information Science, Univ. of
Oregon, Eugene, Oreg. Feb.

COHEN, E., SONI, D., GLUECKER, R., HASLING, W., SCHWANKE, R., AND WAGNER, M. 1988.
Version management in Gypsy. In the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments. ACM, New York, 201–215.

DAVIS, H., HALL, W., HEATH, I., HILL, G., AND WILKINS, R. 1992. Towards an integrated
information environment with open hypermedia systems. In Proceedings of the 4th ACM
Conference on Hypertext. ACM, New York, 181–190.

DELISLE, N. AND SCHWARTZ, M. 1986. Neptune: A hypertext system for CAD applications. In
Proceedings of the ACM International Conference on the Management of Data. ACM, New
York, 132–143.

FULLER, M., KENT, A., SACKS-DAVIS, R., THOM, J., WILKINSON, R., AND ZOBEL, J. 1991.
Querying in a large hyperbase. In Proceedings of the 2nd International Conference on
Database and Expert Systems Applications. Austrian Computer Society, 455–458.

FURUTA, R. AND STOTTS, P. D. 1990. The Trellis hypertext reference model. In Proceedings of
the Hypertext Standardization Workshop. NIST, Washington, D.C., 83–93.

GARG, P. K. 1988. Abstraction mechanisms in hypertext. Commun. ACM 31, 7 (July),
862–870.

GRØNBÆK, K. AND TRIGG, R. H. 1992. Design issues for a Dexter-based hypermedia system.
In Proceedings of the 4th ACM Conference on Hypertext. ACM, New York, 191–200.

GRØNBÆK, K., HEM, J. A., MADSEN, O. L., AND SLOTH, L. 1993. Designing Dexter-based
cooperative hypermedia systems. In Proceedings of the 5th ACM Conference on Hypertext.
ACM, New York, 25–38.

HAAKE, A. 1992. CoVer: A contextual version server for hypertext applications. In Proceed-
ings of the 4th ACM Conference on Hypertext. ACM, New York, 43–52.

HAAN, B. J., KAHN, P., RILEY, V. A., COOMBS, J. H., AND MEYROWITZ, N. K. 1992. IRIS
hypermedia services. Commun. ACM 35, 1 (Jan.), 36–51.

HAAS, L. M., CHANG, W., LOHMAN, G. M., MCPHERSON, J., WILMS, P. F., LAPIS, G., LINDSAY, B.,
PIRAHESH, H., CAREY, M., AND SHEKITA, E. 1990. Starburst Midflight: As the dust clears.
IEEE Trans. Knowl. Data Eng. 2, 1 (Mar.), 143–160.

Hyperform: A Hypermedia System Development Environment • 29

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.



HALASZ, F. 1988. Reflections on NoteCards: Seven issues for the next generation of hyper-
media systems. Commun. ACM 31, 7 (July), 836–852.

HALASZ, F. 1991. Hypertext ’91 keynote talk. In the 3rd ACM Conference on Hypertext.
ACM, New York.

HALASZ, F. AND SCHWARTZ, M. 1994. The Dexter hypertext reference model. Commun. ACM.
37, 2 (Feb.), 30–39.

HICKS, D. L. 1993. A version control architecture for advanced hypermedia environments.
Ph.D. dissertation, Texas A&M Univ., College Station, Tex.

KACMAR, C. J. AND LEGGETT, J. J. 1991. PROXHY: A process-oriented extensible hypertext
architecture. ACM Trans. Inf. Syst. 9, 4 (Oct.), 399–419.

KAPLAN, S. M., CARROLL, A. M., LOVE, C., LALIBERTE, D. M., AND ANDREESSEN, M. 1992.
Epoch—GNU Emacs for the X windowing system. Dept. of Computer Science, Univ. of
Illinois, Urbana-Champaign, Ill. Available as http://src.doc.ic.ac.uk/gnu/epoch/epoch-4.2.tar.z.

KROGSGAARD, M., CHRISTIANSEN, M., RASMUSSEN, K. B., HAGEN, J. L., THOMASSEN, H. F., SKOV,
K. Q., AND JENSEN, P. S. 1995. HAL—Hyperform Application Language. Dept. of Com-
puter Science Int. Rep., Aalborg Univ., Aalborg, Denmark. In Danish.

LANGE, D. B. 1990. A formal model of hypertext. In Proceedings of the Hypertext Standard-
ization Workshop. NIST, Washington, D.C., 145–166.

LANGE, D. B. 1994. An object-oriented design method for hypermedia information systems.
In Proceedings of the 27th Hawaii International Conference on System Sciences. IEEE, New
York, 366–375.

LAUMANN, O. 1993. Reference manual for the Elk extension language interpreter. Dept. of
Computer Science, Indiana Univ., Bloomington, Ind. This document is part of the Elk
system available from ftp://ftp.cs.indiana.edu/pub/scheme-repository/imp/elk-3.0.tar.gz.

LEGGETT, J. J. AND KILLOUGH, R. L. 1991. Issues in hypertext interchange. Hypermedia 3, 3,
159–186.

LEGGETT, J. J. AND SCHNASE, J. L. 1994. Viewing Dexter with open eyes. Commun. ACM 37,
2 (Feb.), 76–86.

LEGGETT, J. J., SCHNASE, J. L., SMITH, J. B., FOX, E. A., Eds. 1993. Final report of the NSF
workshop on hyperbase systems. Tech. Rep. TAMU-HRL-93-002, Dept. of Computer Science,
Texas A&M Univ., College Station, Tex. June.

MEYROWITZ, N. 1989. The missing link: Why we’re all doing hypertext wrong. In The Society
of Text: Hypertext, Hypermedia, and the Social Construction of Information. MIT Press,
Cambridge, Mass., 107–114.

NOLL, J. AND SCACCHI, W. 1991. Integrating diverse information repositories: A distributed
hypertext approach. IEEE Comput. 24, 12 (Dec.), 38–45.

ØSTERBYE, K. 1992. Structural and cognitive problems in providing version control for
hypertext. In Proceedings of the 4th ACM Conference on Hypertext. ACM, New York, 33–42.

PEARL, A. 1989. Sun’s link service: A protocol for open linking. In Proceedings of the 2nd
ACM Conference on Hypertext. ACM, New York, 137–146.

RIZK, A. AND SAUTER, L. 1992. Multicard: An open hypermedia system. In Proceedings of the
4th ACM Conference on Hypertext. ACM, New York, 4–10.

ROHRBACH, R. AND SEIWALD, C. 1988. Galileo: A software maintenance environment. In
Proceedings of the International Workshop on Software Version and Configuration Control.
444–456.

SCHNASE, J. L. 1992. HB2: A hyperbase management system for open, distributed hyperme-
dia system architectures. Ph.D. dissertation, Texas A&M Univ., College Station, Tex.

SCHNASE, J. L., LEGGETT, J. J., HICKS, D. L., NÜRNBERG, P. J., AND SÁNCHEZ, J. A. 1993a.
HB1: Design and implementation of a hyperbase management system. Elec. Pub. Orig.
Dissem. Des. 6, 1 (Mar.), 125–150.

SCHNASE, J. L., LEGGETT, J. J., HICKS, D. L., AND SZABO, R. L. 1993b. Semantic data
modeling of hypermedia associations. ACM Trans. Inf. Syst. 11, 1 (Jan.), 27–50.
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SCHÜTT, H. A. AND STREITZ, N. 1990. HyperBase: A hypermedia engine based on a relational
database management system. In Hypertext: Concepts, Systems and Applications, Proceed-
ings of the European Conference on Hypertext. Cambridge University Press, Cambridge,
Mass., 95–108.

SHACKELFORD, D. E., SMITH, J. B., AND SMITH, F. D. 1993. The architecture and implemen-
tation of a distributed hypermedia storage system. In Proceedings of the 5th ACM Confer-
ence on Hypertext. ACM, New York, 1–13.

SILBERSCHATZ, A., STONEBRAKER, M., AND ULLMAN, J. D., Eds. 1991. Database systems:
Achievements and opportunities. Commun. ACM 34, 10 (Oct.), 110–120.

SMITH, J. B. AND SMITH, F. D. 1991. ABC: A hypermedia system for artifact-based collabo-
ration. In Proceedings of the 3rd ACM Conference on Hypertext. ACM, New York, 179–192.

STALLMAN, R. M. 1984. EMACS: The extensible, customizable, self-documenting display
editor. In Interactive Programming Environments. McGraw-Hill, New York, 300–325.

STONEBRAKER, M. AND ROWE, L. A. 1986. The design of Postgres. In Proceedings of the ACM
International Conference on Management of Data. ACM, New York, 340–355.

TICHY, W. F. 1985. RCS—A system for version control. Softw. Pract. Exper. 15, 7 (July),
637–654.

TOMPA, F. W. 1989. A data model for flexible hypertext database systems. ACM Trans. Inf.
Syst. 7, 1 (Jan.), 85–100.

WELLS, D. L., BLAKELEY, J. A., AND THOMPSON, C. W. 1992. Architecture of an open
object-oriented database management system. IEEE Comput. 25, 10 (Oct.), 74–82.

WIIL, U. K. 1991. Using events as support for data sharing in collaborative work. In the
International Workshop on CSCW. Institut für Informatik und Rechentechnik, Berlin,
Germany, 162–176.

WIIL, U. K. 1992. Issues in the design of EHTS: A multiuser hypertext system for collabo-
ration. In Proceedings of the 25th Hawaii International Conference on System Sciences.
IEEE, New York, 629–639.

WIIL, U. K. 1993a. Experiences with HyperBase: A multiuser hypertext database. SIGMOD
Rec. 22, 4 (Dec.), 19–25. HyperBase and EHTS are available from ftp://ftp.iesd.auc.dk/pub/
packages/hypertext/HyperBase/readme.hyperbase.

WIIL, U. K. 1993b. Extensibility in open, distributed hypertext systems. Ph.D. dissertation,
Tech. Rep. 93-2013, Dept. of Computer Science, Aalborg Univ., Aalborg, Denmark.

WIIL, U. K. 1995. HyperDisco: An object-oriented hypermedia framework for flexible soft-
ware system integration. In Proceedings of the 19th IEEE Annual International Computer
Software and Applications Conference. IEEE, New York, 298–305.

WIIL, U. K. AND LEGGETT, J. J. 1992. Hyperform: Using extensibility to develop dynamic,
open and distributed hypertext systems. In Proceedings of the 4th ACM Conference on
Hypertext. ACM, New York, 251–261.

WIIL, U. K. AND LEGGETT, J. J. 1993. Concurrency control in collaborative hypertext
systems. In Proceedings of the 5th ACM Conference on Hypertext. ACM, New York, 14–24.

WIIL, U. K. AND LEGGETT, J. J. 1996. The HyperDisco Approach to Open Hypermedia
Systems. In Proceedings of the 7th ACM Conference on Hypertext. ACM, New York, 140–148.

ZDONIK, S. B. AND MAIER, D., Eds. 1990. Readings in Object-Oriented Database Systems.
Morgan Kaufmann, San Mateo, Calif.

ZOBEL, J., WILKINSON, R., THOM, J., MACKIE, E., SACKS-DAVIS, R., KENT, A., AND FULLER, M.
1991. An architecture for hyperbase systems. In Proceedings of the 1st Australian Multi-
Media Communications, Applications and Technology Workshop. 152–161.

Received March 1994; revised November 1994 and August 1995; accepted November 1995

Hyperform: A Hypermedia System Development Environment • 31

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.


