
A Data Model and Architecture for Long-term Preservation
Greg Janée

Map & Imagery Laboratory
University of California,

Santa Barbara
+1 (805) 893-8453

gjanee@alexandria.ucsb.edu

Justin Mathena
Map & Imagery Laboratory

University of California,
Santa Barbara

+1 (805) 893-5452
mathena@library.ucsb.edu

James Frew
Donald Bren School of Environmental

Science and Management
University of California, Santa Barbara

+1 (805) 893-7356
frew@bren.ucsb.edu

ABSTRACT
The National Geospatial Digital Archive, one of eight initial
projects funded under the Library of Congress’s NDIIPP program,
has been researching how geospatial data can be preserved on a
national scale and be made available to future generations. In this
paper we describe an archive architecture that provides a minimal
approach to the long-term preservation of digital objects based on
co-archiving of object semantics, uniform representation of
objects and semantics, explicit storage of all objects and semantics
as files, and abstraction of the underlying storage system. This
architecture ensures that digital objects can be easily migrated
from archive to archive over time and that the objects can, in
principle, be made usable again at any point in the future; its
primary benefit is that it serves as a fallback strategy against, and
as a foundation for, more sophisticated (and costly) preservation
strategies. We describe an implementation of this architecture in
a protoype archive running at UCSB that also incorporates a suite
of ingest and access components.

Categories and Subject Descriptors
H.3.7 [Digital Libraries]: Systems issues; E.2 [Data Storage
Representations]: Object representation.

General Terms
Design, Standardization.

Keywords
long-term preservation; curation

1. INTRODUCTION
The accelerating increase in the amount of digital

information, coupled with the aging of our existing digital
heritage and well-publicized examples of its loss, have brought a
sense of urgency to the problem of long-term preservation of
digital information. Recent years have witnessed the development
of preservation-supportive repository systems, format registries,
and tools.

It is already clear from this initial research and development
that there will be no simple, “silver bullet” solution to the problem
of preservation. Preserving our digital heritage will require a
complex and evolving mixture of investment in curation and
upkeep, careful standardization, development of new kinds of
information systems, and automation of processes such as
provenance tracking and format migration.

Each type of information, whether it be text or music or
imagery, brings to the preservation problem its own complications
and special requirements. Geospatial data—the wide variety of
scientific and government-produced datasets that have a
geographic component—poses unique challenges to preservation
because of its size and complexity:

• Geospatial information is voluminous. Like some
multimedia datasets (e.g., movies), geospatial datasets
may have gigabyte granularities, so that preservation
and migration decisions at the level of single objects can
measurably impact system capacities (storage,
bandwidth, etc.).

• Geospatial datasets often have a time dimension. The
largest geospatial datasets, generated by Earth satellite
sensor systems, grow at rates of up to terabytes per day,
often for years. This has two challenging consequences.
First, some geospatial datasets can grow so rapidly that
it becomes necessary to begin archiving them before
they are “finished,” i.e., while new information is still
being added to the dataset. Second, some geospatial
datasets may continue growing for longer than an
archive’s optimum technology refresh period.
Traditionally this has been addressed by binding large
datasets to obsolete storage systems, an unsupportable
strategy in the long-term.

• Geospatial information is highly structured. Additional
structure is often imposed on geospatial data in order to
compactly represent its dimensionality (e.g., by
establishing a correspondence between space-time
coordinates and addresses in a multidimensional array)
or attribute domains (e.g., by encoding measurement
scales or categorization schemes). These structures may
be at least as complicated as common text formats (e.g.,
PDF), but are far less ubiquitous, and may have only
proprietary realizations. Archival policies for geospatial
information may require the preservation of tools and/or
procedures as well as format descriptions.

• Geospatial information needs special interpretation.
Interpreting geospatial information often requires
special knowledge not widely embedded in the source
culture. For example, ensuring the survival of a text

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
JCDL’08, June 16–20, 2008, Pittsburgh, PA, USA.
Copyright 2008 ACM 1-58113-000-0/00/0004…$5.00.

document may be satisfied by ensuring the survival of a
capability to sensibly render it—the archive may safely
assume that the ability of (some) humans to read the
document will survive independently. By contrast,
geospatial information often requires much more than
simple rendering (e.g., of a satellite data granule as an
image) for its interpretation. Highly specialized and
detailed characterizations of the information’s sources,
metrics, and processing history must be preserved,
making geospatial archival objects necessarily more
complicated than traditional archival materials.

• Geospatial information is tightly bound to specific
models of the real world. These models include both
explicit (geocentric or projected coordinate) and implicit
(place name or description) locations, often
compounded with a time reference. These models must
be accurately characterized and preserved along with the
information.

Despite these complications, the need and desire to preserve
historical geospatial data is great given the extensive and vital role
it plays in scientific, government, and legal communities.

The National Geospatial Digital Archive (NGDA) [15] is one
of eight initial projects funded by the Library of Congress’s
National Digital Information Infrastructure and Preservation
Program (NDIIPP). NGDA participants include the Map &
Imagery Laboratory at the University of California at Santa
Barbara and Branner Earth Sciences Library at Stanford
University. The project’s overarching goal is to answer the
question: How can we preserve geospatial data on a national scale
and make it available to future generations?

In this paper we describe our architecture for federated
archives of geospatial data. As will be seen, this architecture is
simple and conservative, and is designed to provide only a
fallback strategy that guards against irreplaceable loss of
information. However, the architecture is generic enough to serve
as a foundation for more sophisticated (and costly) preservation
strategies, for both geospatial and other types of information.

2. PRESERVATION PRINCIPLES
Four observations about long-term preservation influenced

the development of the NGDA architecture.

2.1 Preservation is a relay
In the context of preservation, we define “long-term” to be a

period of time exceeding the lifetimes of the people, applications,
and platforms that originally created the information. For the sake
of argument, we will use 100 years as a reference timeframe. Can
we design an archive system that will preserve information for
100 years?

The answer is most assuredly negative; no system can
reasonably be expected to last 100 years. In our experience in
building and running digital library and storage systems, a ten-
year-old system is nearing the end of its lifetime in terms of
supportability. (The US Internal Revenue Service operates
archive systems that are multiple decades old, but this is
newsworthy precisely because it is so unsupportable and beyond
the norm [10].) Storage systems change much more frequently,
with turnovers in technology occurring every 3–5 years. Even
entire institutions come and go. Few institutions can guarantee
their continued existence, let alone support for preserving a
specific piece of information, for 100 years; and that still leaves
the issue of changes in curatorship within institutions.

As a consequence of this general impermanence, long-term
preservation is best characterized as an extended relay in time,
with information being handed off from storage system to storage
system, from repository to repository, and from institution to
institution [6]. Thus a key consideration in the design of an
archive system is not just how well preservation is supported over
the archive’s lifetime, but how well and how easily the archive
can hand off its contents and responsibilities to the next archive in
an ongoing succession.

Furthermore, future archives must be prepared to work with
old digital information. Given our short digital history, most
archives today are in the fortunate position of working with
recently created information; that is, with information types that
are still current and well-understood in their respective
communities. But if we consider our 100-year reference
timespan, archives in the middle of that span will be faced with
curating information for which all links to the original creators
and context have been severed. (Consider, in 2008, curating
digital materials created in 1958.) Thus we can strengthen our
previous conclusion: a key consideration in the design of an
archive system is not just that it can curate information and then
hand the information off to the next archive, but that it can do so
for unfamiliar information types, and in such a way that the next
archive can make the same claim, and so on through time.

2.2 Preservation is mitigation of risk
It is common to speak of so-called “persistent” identifiers

and “persistent” objects, but strictly speaking, persistence is not
an attribute of a piece of information; rather, persistence is an
outcome, a result of the past commitments of the information’s
curators and holding institutions [14]. At best, future persistence
hinges on our ability to mitigate known risks to persistence.

There are many such risks to be addressed, from storage loss
to format obsolescence, but an overriding risk is lack of resources
to properly curate information. For a given piece of information,
we cannot assume that the information will be maintained in a
usable state at every point in its existence: the perceived value of
information changes over time; archive resources inevitably
change over time; and there may be points in time at which the
upkeep of the information cannot be supported or justified. The
assumption that sufficient curation resources will always be
available over a piece of information’s lifetime is a risk that must
be mitigated.

The risk of insufficient resources is particularly acute when
handoffs occur (as described in section 2.1), particularly handoffs
between archive systems and between institutions. These
handoffs may occur precisely because the previous archive system
becomes unsupportable, or the current institution runs out of
resources, resulting in a situation that puts immediate strain on the
receiving institution.

As a consequence, a key consideration in the design of an
archive system is that there be an ultra-low-cost, fallback
preservation mode that, while perhaps not maintaining the
information in any immediately usable state, nevertheless
preserves it well enough that the information can, in principle, be
“resurrected” at any time in the future given sufficient desire and
resources. This has been colloquially referred to as an archive’s
“option to do nothing.”1

1 Thanks to Clay Shirky of New York University’s Interactive

Telecommunications Program for this phrase.

2.3 Preservation of context is necessary
Long-term preservation requires solving two complementary,

yet coordinated problems: preservation of the information itself
(the raw “bits”), and preservation of the context surrounding the
information (the meta-information needed to interpret the bits).

That the bits require preservation goes without saying. But
context requires preservation, too, for two reasons. First, context
is often hidden or implicit. For example, a webpage is renderable
by any contemporary personal computer, not by virtue of any
knowledge on the user’s part, but by the fact that knowledge of
the relevant file formats is embedded in the computer’s operating
system and web browser application. Second, the context in
which information is produced is constantly evolving. The
technological context surrounding any piece of information—the
computing platforms, programming languages, applications, file
formats, and so forth—will inevitably change over time until the
information is no longer usable. Changes in the information’s
social context are just as significant. The communities and
organizations involved in the information’s creation and initial use
may attach different values and interpretations to the information
over time, or cease to exist altogether. The combination of
context being both implicit and evolving requires that, for
information to remain usable, either the information must
continuously evolve along with the context, or the context must be
captured and preserved along with the information, preferably at
the time of the information’s creation.

The context surrounding geospatial information is
particularly complex, as enumerated in the introduction. For
example, use of remote-sensing imagery requires detailed
knowledge of sensor and platform characteristics, which, due to
its size and complexity, is not usually bundled with data objects in
the same way that descriptive metadata is. Furthermore,
geospatial data may require deep analysis to remain usable over
time. For example, to support long-term, longitudinal climate
studies, historical climate data records must be periodically
reprocessed to conform to the most recent revisions of scientific
understanding and modeling. This in turn requires access to and
understanding of the original processing, including scientific
papers, algorithm documentation, processing source code,
calibration tables and databases, and ancillary datasets [12].

We also note that whereas preservation of bits requires that
the bits stay unchanged over time, preservation of context must
accommodate and even embrace change to the context. File
formats will need to be migrated over time, new access services
will need to be developed and will require new kinds of support,
and information will inevitably be reorganized and
recontextualized.

Thus a key consideration in the design of an archive system
is that it be able to capture and preserve complex contextual
information; maintain persistent associations between information
objects and contextual objects; and support modification of the
context over time.

2.4 Preservation must be as cheap as
possible

An old engineering adage states “good, fast, cheap: pick any
two.” For long-term preservation the adage might be restated to
say: “scale, longevity, economy: pick any two.” We can preserve
information on a broad scale; we can preserve information for
long periods of time; we can preserve information cheaply; but we
can’t do all three. Given NGDA’s goal to preserve geospatial data

on a national scale for 100 years, that leaves economy as the
unachievable goal. And yet, we must have economy, for there are
few funding structures in place to pay for curation.

Another way to look at cost is to ask: Is a given information
object worth preserving? To answer this question, a curator must
in effect solve a complex equation that balances the perceived
intrinsic value of the information and the probability of its usage
in the future on the one hand, against preservation and storage
costs and, in the case of fallback preservation, costs to resurrect
the information and make it usable again, on the other hand.
Significantly, the only variables in this equation under the control
of the curator are costs, which can only be minimized.

As a consequence, a key consideration in the design of an
archive system is its ability to support multiple levels of
preservation and usability, the choice of which can vary in
response to changing information values, preservation costs, and
resource availability.

2.5 Requirements
Summarizing the preceding discussion, we conclude that to

support long-term preservation, an archive system architecture
must:

• Explicitly capture and preserve the context necessary to
interpret information objects in the future.

• Provide multiple levels of preservation and usability to
allow archives to adapt to varying resource availability.

• Maintain a fallback representation that provides for the
survivability of archived content even in the face of
repository and institution failure.

• Facilitate handoff to the next archive system.

3. ARCHITECTURE
The NGDA architecture is an attempt to satisfy the preceding

requirements. The architecture, shown in Figure 1, is based on a
data model that defines a uniform representation of all
information in the archive, paired with a storage API that abstracts
the storage subsystem. The storage subsystem is assumed to
provide reliable, long-term storage through redundancy and active
monitoring. A suite of components built on top of the data model
and storage API provide ingest and access functionality. We
describe each of these facets of the architecture in turn.

3.1 Data model
3.1.1 Logical data model
3.1.1.1 Fundamentals

The fundamental entity in the NGDA data model (Figure 2)
is the archival object, which:

• represents one independently reusable piece of
information;

• contains all components necessary to use the object,
including data, metadata, and both original and derived
forms; and

• has links to related archival objects.
An archive is a collection of archival objects.
An archival object is identified by a universally unique

identifier (the identifier scheme is unspecified by the data model)
and may contain any number of components, of which there are
two types: files and directories. All components have a name that
uniquely identifies the component within the archival object or
enclosing component and, optionally, a description stating the role
the component plays within the object.

A file component represents a typed bitstream and holds the
bitstream, the bitstream’s size in bytes, and a content signature.
The latter two items are, strictly speaking, not necessary because
the NGDA architecture assumes that the storage subsystem is
reliable, but they are explicitly included in the data model to
facilitate reliable handoffs across archives and across storage
systems.

Directory components are used to implement hierarchies, and
come in two flavors: an “alternatives” directory describes
different representations of substantially the same information (for
example, JPEG and TIFF version of the same image), while a
“subcomponents” directory describes an aggregation. In the
authors’ digital library work this distinction has been found to be
useful [8].

An abridged example of an archival object representing a
dataset of county boundary lines is shown in Figure 3. The object
has two top-level components:

• an XML-encoded FGDC metadata record;
• two alternative representations of the object’s data:

o a Shapefile (a common GIS format which,
despite its name, is actually a set of files); and

o a PNG image.
We will continue to refer to this example in the following.

3.1.1.2 Definitions
Every component may have one or more definitions of its

interpretation. A definition may be a file format, or any other type
of semantic specification; structurally, a definition takes the form
of a link to another archival object. Thus instead of describing
file component formats by using, say, MIME types, the NGDA

data model assumes format information is an integral part of the
archive. The format of a file is indicated by a link to the archival
object representing that format; the latter object holds the actual
format specification documents along with format metadata
recording MIME types, file suffixes, and so forth.

A link is represented by simply naming the target archival
object’s universally unique identifier. The data model does not
mandate any particular identifier system. Thus, the particular
identifier system employed by an archive should be considered to
be one of its fundamental dependencies.

(Not reflected in the UML diagram in Figure 2 is the fact that
an archival object as a whole may have one or more definitions.)

In the example in Figure 3, the FGDC metadata and PNG
image files have links to their respective formats. The link to the
Shapefile format is at the directory level because that format
defines the interpretation of all Shapefile component files. A
component without a definition is implicitly defined by the
nearest ancestor definition.
3.1.1.3 Other features

A relationship is a named, directional association between
two archival objects. There is no fixed vocabulary for
relationship names, though standardization in this area would be
welcome. Relationships may be used to record, for example, the
fact that one object follows another in a series of like objects, or
that one format is a subtype of another format.

Noticeably missing from the data model are additional kinds
of entities for representing aggregate structures such as collections
and series, or specialized object types for representing providers
and formats. Instead, we represent these concepts by building on

Figure 1. The NGDA architecture.

the model elements described so far, namely, collections of
components organized into archival objects. With this approach,
an archival object representing a format or collection is
recognized as such by virtue of containing appropriate metadata
(format registry metadata or collection-level metadata,
respectively) and by participating in appropriate relationships
(such as format–format relationships in the first case, or
collection–member relationships in the second). In the example in
Figure 3, the archival object has a “member of” relationship to an
archival object representing the CaSIL geopolitical collection. A
reciprocal “has member” relationship may or may not be present.

The data model also incorporates a simple lineage model.
Each component may have annotated links to the sources from
which it was derived. The source may be another component
within the same archival object, a component in another archival
object, or simply another archival object. In Figure 3, the PNG
image (described as a “preview”) is noted as having been derived
from the Shapefile. Not reflected in the UML diagram in Figure 2
is that fact that an archival object as a whole may have lineage
links.

Finally, the NGDA project has developed some ingest-time
aids that complement the data model so far described. An ingest
language defines commands that can be used to build up archival
objects from constituent pieces. A template is an incomplete
archival object that can be referenced from the ingest language to
simplify populating an archive with similar objects. For example,
a template might contain a file component with a definition link to
the FGDC metadata format, but omit the file’s actual content and
size and signature; the latter would be filled in at ingest time.
These ingest-time aids are not integral to the data model, but have
proven to be convenient.
3.1.1.4 Formal properties

The data model includes several formal properties that
restrict the kinds of models that can exist. Two examples:

• Definition: Every component must be defined. A
component is defined if it has at least one definition, or
if an ancestor of the component within the containing
archival object (or the archival object itself) is defined.

• Lineage: An archival object or component thereof must
not be derived from a constituent component.
Furthermore, the directed graph induced by lineage
relationships must be acyclic.

Discussion. One of the main goals of this data model is to
ensure that archived information is interpretable, that is, that the
archive contains sufficient format and other contextual
information so that use of an object can be reconstructed
arbitrarily far into the future. The definition property raises the
possibility of using the graph-theoretic nature of the data model to
create a formal definition of interpretability which would facilitate
automated validation. Let us define a component or archival
object to be interpretable if its definition(s) are (recursively)
interpretable. Thus we might be able to say that a JPEG image is
interpretable because the JPEG format is interpretable, and the
latter is interpretable because the JPEG specification, a PDF
document, is interpretable because the PDF format is
interpretable, and so forth.

However, we immediately run into problems with this line of
formalism. Loops are possible: it turns out that the PDF format is
defined by a PDF document. This particular case can be averted

by creating a “desiccated”2 representation of the document, i.e., a
representation that trades off usability for greater preservability.
(As a demonstration, the NGDA format registry includes GIF
format page scans of the PDF specification.) This leads to a
second problem: the recursion must fail somewhere. The GIF
format is defined by an ASCII text document, but how to define
the ASCII character encoding?

Both the preceding problems could be averted by simply
“blessing” certain “core” archival objects as being interpretable.
But then numerous problems relating to relationships arise. The
GeoTIFF format is defined by an HTML document, but as a
subtype of TIFF, it can be understood only in the context of the
latter specification. Hence, at minimum, our definition of
interpretability must include the interpretability of parent types.
But more ambiguous relationships also come into play. The
RELAX NG format does not share any subtype relationship with
XML, but as an XML schema language, it can be understood only
in the context of XML. Hence, at least in some cases, related
types must be considered. And then there is the problem that, in
some but not all situations, interpretability of objects depends on
metadata held in collection-level or series-level objects.

Given the difficulty of knowing which relationships to
follow, we conclude that the concept of interpretability has a
significant qualitative component that requires analysis by a
curator.
3.1.2 Physical data model

Complementary to the logical data model is a physical data
model that represents all information in the archive as files in a
filesystem. In the physical model, an archival object is

2 Thanks to John Kunze of the California Digital Library for this

term.

Figure 2. Simplified UML diagram of the NGDA data
model.

represented as a directory tree of files, with physical directories
and files corresponding directly to object components. In the root
directory of each archival object is an extra file
(manifest.xml) that encodes the structure of the object and
contains archive-model-related metadata such as definitions,
relationships, lineage, and fixity information. An example
manifest corresponding to the example archival object in Figure 3
is shown in Figure 4. (XML schemas and other documentation on
the data model can be viewed at http://www.ngda.org/data-
model/.)

Object identifiers are unconstrained, but for a technical
reason described below we require that they adhere to URI syntax
[3]. An object is stored in the filesystem at the path named by its
identifier. Thus an object with identifier i is stored at path i, the
object’s manifest is at i/manifest.xml, and a component at
path a/b within the object is stored at path i/a/b. To avoid
performance problems with placing too many files (i.e., too many
archival objects) in one filesystem directory, in our
implementation we split identifiers into a few pieces so that, for
example, identifier abcd might become pathname a/b/c/d. An
explicit, bidirectional mapping from identifiers to pathnames is
required anyway, as certain characters must be escaped to avoid
interpretation by the filesystem, so additional splitting of
identifiers adds no real burden.

In the logical data model, all link destinations are archival
objects except lineage links, which may reference objects or
components. To unambiguously distinguish these two cases, in
links to components the component path is expressed as a URI
fragment. For example, a link to component a/b within object
tag:ngda.org,2008:i would be expressed as
tag:ngda.org,2008:i#a/b. It is for this reason only that
we constrain object identifiers to be URIs.

Archive self-description can be achieved by storing the
manifest schema (which effectively describes the NGDA data
model) as an archival object itself and referencing it from
manifests via the xsi:schemaLocation attribute in the XML
header. The fundamental interpretability of the archive thus
depends on knowledge of XML, knowledge of the character set(s)
in use, and the ability to navigate the filesystem.

This simple physical representation serves several purposes.
First, it provides a fallback mechanism: the repository system and
higher-level components may no longer be supported and may
even have failed, but the content is still accessible as a filesystem.
Second, filesystems have proven to be a remarkably resilient
concept, and we expect that to continue. And third, storing
archival objects as files in native formats makes it easy to provide
access to them.

Figure 3. Example archival object (abridged).

3.2 Storage abstraction
To accommodate the greatest possible variety of storage

implementations, and to facilitate handoffs across storage
systems, the NGDA architecture places minimal requirements on
underlying storage subsystems. The storage subsystem API
assumes only that:

• Bitstreams can be created, deleted, read, and written, but
not necessarily modified.

• Directories can be created and deleted.
• Bitstreams and directories are named by pathnames, and

can be retrieved by pathname.
• The contents of directories can be listed.
These requirements are of course satisfied by any traditional

filesystem, but they’re also satisfied by other types of storage
technologies such as WebDAV3 servers and the Amazon S3
network storage service.4

The requirement that bitstreams and directories be deletable
is perhaps not strict, for it might not be needed by an archive that
writes once and never makes mistakes, but we have found it to be
necessary in practice.

The requirement that directories be listable brings up an
interesting point: we need a means of discovering the contents of
an archive. Two approaches suggest themselves: either we must
assume that the storage system is capable of listing its contents
(the approach we have adopted) or we must assume that there is a
root object from which all other objects can be discovered by
recursive crawling. However, the latter approach requires that
aggregate objects such as collections and series maintain “has
member” links to their members, which imposes significant
performance penalties during large ingest operations.

3.3 Components
The NGDA architecture is defined by its data model and

storage abstraction; the components built on top of these may
differ from archive to archive to address differing archive needs
and content types. In this section we describe the components
developed for the prototype archive at UCSB, to demonstrate how
an end-to-end archive that provides ingest, search, and access
functionality can be built on the architecture.
3.3.1 Archive Server

The Archive Server (Figure 1) acts as a mediator between
higher-level components and the archive’s underlying storage
system. It implements the storage subsystem API, thus insulating
other parts of the system from changes in storage technology.
Software drivers for different storage technologies can be installed
via a plugin software architecture.

All interactions with the server occur through HTTP
requests. To perform an ingest operation, a client constructs an
ingest.xml file containing one or more ingest language
commands and submits it along with any pertinent files as a single
POST request to the server. Object updates are handled similarly.

As the gateway through which all data must pass before
entering the archive, the Archive Server is the ideal place to
perform processing tasks such as file format validation and
creation of derivative forms (thumbnail images, desiccated
versions of poorly supported file formats, etc.). The Archive
Server provides hooks to add such processing steps as needed.

3 http://www.webdav.org/
4 http://aws.amazon.com/s3

3.3.2 Ingest Crawler
Building on the Archive Server’s ability to ingest a single

archival object at a time, we have developed a bulk ingest system
that allows arbitrarily large, homogeneous collections to be
ingested with a minimal amount of work. The Ingest Crawler is
configured by source, mapping, and target templates that specify
which source files are of interest, how the files are to be identified
and grouped, what the files’ formats are expected to be, and how
archival objects are to be packaged. The crawler then works by
recursively crawling through the directory structure of a data
source.

Archival object identifiers can be created in a variety of
ways, including mapping from source filenames or examining and
extracting specified fields within known file types.

The software is highly modular, and includes modules for
handling a variety of common scenarios, from handling
stereotypical file organizations to extracting metadata from
relational databases.

<manifest>
 <objectIdentifier> ... </objectIdentifier>
 <relationship name="member of"
 targetObjectRef="..."/>
 <file>
 <name> cnty24k97.xml </name>
 <description> metadata </description>
 <definitionRef> ... </definitionRef>
 <size> ... </size>
 <signature algorithm="MD5"> ... </signature>
 </file>
 <directory type="alternatives">
 <name> data </name>
 <directory type="subcomponents">
 <name> source </name>
 <definitionRef> ... </definitionRef>
 <file>
 <name> cnty24k97.shp </name>
 <size> ... </size>
 <signature algorithm="MD5"> ... </signature>
 </file>
 ...
 </directory>
 <file>
 <name> cnty24k97.png </name>
 <description> preview </description>
 <definitionRef> ... </definitionRef>
 <lineage>
 <sourceComponentRef>
 data/source
 </sourceComponentRef>
 </lineage>
 <size> ... </size>
 <signature algorithm="MD5"> ... </signature>
 </file>
 </directory>
</manifest>

Figure 4. Example object manifest (abridged).

3.3.3 Workflow Tool
The Workflow Tool is a graphical tool that allows archive

administrators to orchestrate ingest runs and perform quality
control on the collections assembled by the ingest crawler.
Because ingesting large collections may be an extremely long-
lived operation due to the significant resources required, the
Workflow Tool allows all functions to be checkpointed and
restarted. Objects that fail automated processing checks (for
example, by lacking a mandatory component as specified by the
collection’s template) are set aside for manual review. Reports
are generated at each step of the workflow detailing the nature of
(and possible remedies for) any failures.
3.3.4 Format Registry

We initially created a format registry just as a place to store
the information we accumulated regarding geospatial and related
file formats. Over time, however, the Format Registry has grown
to become a collaborative tool that serves as a focal point for
collecting format specifications and format metadata from a broad
community, and for maintaining, updating, and correcting format
entries. The Format Registry is built on a wiki platform in
recognition that the expertise of a wide variety of users of formats
is a critical element to be captured and archived. The Registry is
controlled by archive curators, and includes mechanisms for
identifying and authorizing contributors so that access can be
limited to those with trusted expertise. Workflow tagging tracks a
format entry’s maturity. Functions are available to curators to
export format entries out of the wiki and ingest them as archival
objects in the archive and vice versa.
3.3.5 Web-based Access

To provide the simplest and most direct kind of access to the
archive, we have placed a web server on top of the archive
filesystem. By employing a styling servlet and XSLT
transformations that operate on archival object manifests, each
archival object appears to web clients as a web page containing
hyperlinks to the object’s components; an example is shown in
Figure 5. The result is that search engines such as Google can
spider over an archive’s content, making it immediately
searchable and accessible down to the level of individual files.
3.3.6 Alexandria Digital Library

Given NGDA’s focus on geospatial data, which is poorly
supported by traditional text search engines, we use the
Alexandria Digital Library (ADL) [7] to search over archive
content by geographic location, time, type, format, and other
criteria, and to provide access mechanisms suitable for geospatial
data. Populating ADL with archive content is currently performed
by manually-configured and manually-invoked tools, but we are
developing a mapping component that will automatically crawl
over archive content and map descriptive object metadata to
ADL’s search indices by employing a registry of known metadata
mappings [9].

ADL is a federated system, and supports distributed search
over heterogeneous collections spanning multiple nodes. In the
current implementation of our archive architecture, ADL provides
access-level federation across multiple archives, but as we discuss
in section 7, we are working on additional federation mechanisms.
4. IMPLEMENTATION

The prototype archive at UCSB is implemented mainly in
Java. The storage subsystem is a 20TB Archivas cluster, which
actively detects and repairs corruption. In a nice parallel to the
NGDA architecture, Archivas stores all content and its own

metadata as simple files in a filesystem, all of which can be
recovered (should the Archivas system or company fail) simply
by unplugging the disks and plugging them into another machine.

The Format Registry is based on MediaWiki and PHP. To
support the kinds of controlled format entry structure and
workflow we desired, we implemented new markup tags, and took
advantage of MediaWiki’s event triggering system to
automatically process and export format entries.

The prototype archive was tested by ingesting several
terabytes of data from the California Spatial Information Library
(CaSIL).5 CaSIL is a repository of California’s state-owned
physical and cultural geospatial data. It has served as an ideal test
collection for several reasons. First, the data is both public
domain and, since CaSIL has no guaranteed funding, at some risk
of loss. Also, CaSIL’s mission is content distribution rather than
preservation. Most compellingly, CaSIL includes a wide variety
of geospatial data. Many different file formats are represented
within the data, including multiple image formats (JPEG, MrSID,
TIFF) as well as GIS formats (Shapefiles, coverages, etc.).

We have also begun ingesting the David Rumsey Historical
Maps collection.

5. RELATED WORK
Like many preservation-related projects, our work on the

NGDA architecture was strongly influenced by the Reference
Model for an Open Archival Information System (OAIS) [4]. The
NGDA data model can be thought of as an instantiation of the
conceptual model described by OAIS. To take one example of the
relationship and distinction between OAIS and NGDA, OAIS
specifies that an archival object’s “representation information” is
logically contained within the object, but may or may not be
physically contained, and that an archive should be able to export
an archival object in a “dissemination information package” that
may or may not include an unspecified amount of its
representation information. NGDA instantiates this conceptual
model by specifying logical and physical data models that
prescribe how semantics are represented in the archive, how

5 http://gis.ca.gov/

Figure 5. Web view of an archival object.

semantics are related to archival objects, and how they can be
accessed in relation to archival objects.

Our work on formats and format representation was largely
influenced by early work on the Global Digital Format Registry
[1]. NGDA’s contribution is to recast the concept of a format
registry—often thought of as an entity separate from an archive
with its own, separate data model—as an archive in and of itself,
and to fully integrate data and formats into a single preservation
context.

Additional related work is described in Section 7 below.

6. CONCLUSION
We started the NGDA project with a mature digital library

system in hand—the Alexandria Digital Library (ADL)—which
hadn’t really addressed the issues of long-term preservation. But
given the cost of trying to preserve information on a large scale
and for a long period of time, we chose not to simply add
preservation features onto ADL, and thereby create a kind of
ADL++, but instead to start from scratch and ask: What is the
minimal approach we can take to mitigate against the risk of
permanent loss of information?

The initial result of this work is the set of requirements given
in section 2.5. Interestingly, the requirement of providing a
fallback representation, and the requirement of facilitating easy
handoff, both lead to the same solution: a simple, self-describing
data model with a physical representation based on files and
filesystems. This solution, while developed for geospatial data, is
quite generic and appears to be applicable to many other types of
information as well.

In the larger context of the problem of digital preservation,
we see the NGDA architecture serving three roles: as a fallback
representation that guards against loss of information; as a
working representation that supports preservation activities such
as active monitoring and format migration; and as a foundation for
building end-to-end archives that provide ingest, search, and
access functionality.

7. FUTURE WORK
The NGDA architecture is a work in progress, and we are

continuing development in a number of directions.
Regarding the data model, there are three areas of work.

First, we are adding the ability for objects in one archive to
reference objects in another (via definition, lineage, or general
relationship links), thus inducing a dependency relationship
between the two archives. This addition would allow, for
example, multiple archives to reference a central format registry.
The result will be an archive-level federation mechanism that
complements the access-level federation currently provided by
ADL.

Second, we see value in creating a standardized “root”
archival object that serves as a kind of whole-archive descriptor.
The descriptor would contain archive-level documentation and
pointers to the top-level collection objects within the archive, and
list key archive dependencies such as any dependent archives and
the identifier resolution system(s) used by the archive. The
descriptor would also be a natural place to put archive policy
declarations such as are being developed by the iRODS project
[13].

And third, we would like to express the NGDA data model as
a restricted profile of other data models and standards such as the
Object Reuse and Exchange (ORE) project’s data model [16] and
the Metadata Encoding and Transmission Standard (METS) [5].
We believe profiles would be valuable for two reasons. First, to

the extent that specifications like ORE and METS are broadly
adopted, adopting the relevant parts of their models will serve to
relate NGDA’s data model, which focuses on long-term
preservation specifically, to more general specifications that are
more widely understood and more likely to be widely
implemented in software systems. Second, NGDA’s data model
will illustrate which features of the more general specifications
are mandatory for long-term preservation, which are merely
compatible, and which are incompatible. To look at one example,
consider that the ORE data model (as of this writing) supports
relationships from objects and object components to formats and
other semantic specifications, but does not mandate the existence
of any relationships and does not specify the form that format and
other semantics specifications must take, in contrast to NGDA’s
data model which mandates definition links and representation of
definitions as archival objects. Similar differences exist between
the NGDA data model and the data model implicitly defined by
METS. The effect of expressing the NGDA data model as
profiles of ORE and METS will be to describe the activity of
long-term preservation as an application of these more general
technologies.

At the storage level, we are looking at making NGDA’s
storage abstraction more robust. Currently, NGDA assumes that
the extent of an archive is simply the entire contents of the
underlying storage system, as opposed to being defined by explicit
ownership and control mechanisms. We are currently working on
placing the NGDA data model on top of Logistical Networking
storage technology [2]. The result will be an architecture that
further facilitates archive handoffs.

Lastly, repository systems such as DSpace6 and Fedora [11]
have begun to embrace long-term preservation concerns as well.
These systems implement some of the features in NGDA’s
architecture (storage system abstraction, fallback representation)
but not all (integral representation of definitions and other
context). We would like to explore the extent to which these
repository systems can implement NGDA’s architecture.
Ultimately, we believe that it is less important to say that data is in
DSpace, or any other particular system, and more important to be
able to say that the data is in a form that can be easily handed off
from whatever system it is in now to the next system that will
inevitably come along.

8. ACKNOWLEDGMENTS
The authors would like to thank Catherine Masi of the Map

& Imagery Laboratory and David Valentine of SDSC for their
contributions to this work.

9. REFERENCES
[1] Stephen L. Abrams (2005). “Establishing a Global Digital

Format Registry.” Library Trends 54(1) (Summer 2005).
http://muse.jhu.edu/journals/library_trends/v054/54.1abrams.
pdf

[2] Micah Beck, Terry Moore, James S. Plank, and Martin
Swany (2000). “Logistical Networking: Sharing More Than
the Wires.” In Active Middleware Services (Salim Hariri,
Craig A. Lee, and Cauligi S. Raghavendra, eds.) (Norwell,
Massachusetts: Kluwer Academic Publishers, 2000).

6 http://www.dspace.org/

[3] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter
(2005). Uniform Resource Identifier (URI): Generic Syntax.
IETF RFC 3986. http://www.ietf.org/rfc/rfc3986.txt

[4] Consultative Committee for Space Data Systems (2002).
Reference Model for an Open Archival Information System
(OAIS). CCSDS 650.0-B-1, Blue Book (January 2002).
http://public.ccsds.org/publications/archive/650x0b1.pdf

[5] Morgan V. Cundiff (2004). “An Introduction to the
Metadata Encoding and Transmission Standard (METS).”
Library Hi Tech 22(1): 52–64.
doi:10.1108/07378830410524495

[6] Margaret Hedstrom (2001). “Exploring the Concept of
Temporal Interoperability as a Framework for Digital
Preservation.” Third DELOS Workshop on Interoperability
and Mediation in Heterogeneous Digital Libraries
(September 8–9, 2001; Darmstadt, Germany).
http://www.ercim.org/publication/ws-
proceedings/DelNoe03/10.pdf

[7] Greg Janée and James Frew (2002). “The ADEPT Digital
Library Architecture.” Proceedings of the Second
ACM/IEEE-CS Joint Conference on Digital Libraries
(JCDL) (July 14–18, 2002; Portland, Oregon): 342–350.
doi:10.1145/544220.544306

[8] Greg Janée, James Frew, and David Valentine (2003).
“Content Access Characterization in Digital Libraries.”
Proceedings of the 2003 Joint Conference on Digital
Libraries (JCDL) (May 27–31, 2003; Houston, Texas): 261–
262. doi:10.1109/JCDL.2003.1204874

[9] Greg Janée and James Frew (2005). “A Hybrid
Declarative/Procedural Metadata Mapping Language Based
on Python.” Research and Advanced Technology for Digital
Libraries: Proceedings of the 9th European Conference
(ECDL) (September 18–23, 2005; Vienna, Austria): 302–
313. doi:10.1007/11551362_27

[10] David Cay Johnston (2003). “At I.R.S., a Systems Update
Gone Awry.” New York Times, December 11, 2003.
http://www.nytimes.com/2003/12/11/business/11irs.html

[11] Carl Lagoze, Sandy Payette, Edwin Shin, and Chris Wilper
(2006). “Fedora: An Architecture for Complex Objects and
their Relationships.” International Journal on Digital
Libraries 6(2) (April 2006): 124–138. doi:10.1007/s00799-
005-0130-3

[12] Mike Linda (2006). “OMPS Aggregation and Packaging.”
2006 CLASS Users’ Workshop (August 7–8, 2006; Boulder,
Colorado).
http://ngdc.noaa.gov/dmsp/2nd_class_workshop/class.html

[13] Arcot Rajasekar, Mike Wan, Reagan Moore, and Wayne
Schroeder (2006). “A Prototype Rule-based Distributed Data
Management System.” HPDC Workshop on Next-
Generation Distributed Data Management (June 20, 2006;
Paris, France). http://irods.sdsc.edu/pubs/RODs-paper.doc

[14] Clay Shirky (2005). “AIHT: Conceptual Issues from
Practical Tests.” D-Lib Magazine 11(12) (December 2005).
doi:10.1045/december2005-shirky

[15] Julie Sweetkind-Singer, Mary Lynette Larsgaard, and Tracy
Erwin (2006). “Digital Preservation of Geospatial Data.”
Library Trends 55(2) (Fall 2006).
http://muse.jhu.edu/journals/library_trends/v055/55.2sweetki
nd-singer.pdf

[16] Herbert Van de Sompel and Carl Lagoze (2007).
“Interoperability for the Discovery, Use, and Re-Use of Units
of Scholarly Communication.” CTWatch Quarterly 3(3)
(August 2007): 32–41.
http://www.ctwatch.org/quarterly/articles/2007/08/interopera
bility-for-the-discovery-use-and-re-use-of-units-of-scholarly-
communication/

