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ABSTRACT 
The National Geospatial Digital Archive, one of eight initial 
projects funded under the Library of Congress’s NDIIPP program, 
has been researching how geospatial data can be preserved on a 
national scale and be made available to future generations.  In this 
paper we describe an archive architecture that provides a minimal 
approach to the long-term preservation of digital objects based on 
co-archiving of object semantics, uniform representation of 
objects and semantics, explicit storage of all objects and semantics 
as files, and abstraction of the underlying storage system.  This 
architecture ensures that digital objects can be easily migrated 
from archive to archive over time and that the objects can, in 
principle, be made usable again at any point in the future; its 
primary benefit is that it serves as a fallback strategy against, and 
as a foundation for, more sophisticated (and costly) preservation 
strategies.  We describe an implementation of this architecture in 
a protoype archive running at UCSB that also incorporates a suite 
of ingest and access components. 

Categories and Subject Descriptors 
H.3.7 [Digital Libraries]: Systems issues; E.2 [Data Storage 
Representations]: Object representation. 

General Terms 
Design, Standardization. 

Keywords 
long-term preservation; curation 

1. INTRODUCTION 
The accelerating increase in the amount of digital 

information, coupled with the aging of our existing digital 
heritage and well-publicized examples of its loss, have brought a 
sense of urgency to the problem of long-term preservation of 
digital information.  Recent years have witnessed the development 
of preservation-supportive repository systems, format registries, 
and tools. 

It is already clear from this initial research and development 
that there will be no simple, “silver bullet” solution to the problem 
of preservation.  Preserving our digital heritage will require a 
complex and evolving mixture of investment in curation and 
upkeep, careful standardization, development of new kinds of 
information systems, and automation of processes such as 
provenance tracking and format migration. 

Each type of information, whether it be text or music or 
imagery, brings to the preservation problem its own complications 
and special requirements.  Geospatial data—the wide variety of 
scientific and government-produced datasets that have a 
geographic component—poses unique challenges to preservation 
because of its size and complexity: 

• Geospatial information is voluminous.  Like some 
multimedia datasets (e.g., movies), geospatial datasets 
may have gigabyte granularities, so that preservation 
and migration decisions at the level of single objects can 
measurably impact system capacities (storage, 
bandwidth, etc.). 

• Geospatial datasets often have a time dimension.  The 
largest geospatial datasets, generated by Earth satellite 
sensor systems, grow at rates of up to terabytes per day, 
often for years.  This has two challenging consequences.  
First, some geospatial datasets can grow so rapidly that 
it becomes necessary to begin archiving them before 
they are “finished,” i.e., while new information is still 
being added to the dataset.  Second, some geospatial 
datasets may continue growing for longer than an 
archive’s optimum technology refresh period. 
Traditionally this has been addressed by binding large 
datasets to obsolete storage systems, an unsupportable 
strategy in the long-term. 

• Geospatial information is highly structured.  Additional 
structure is often imposed on geospatial data in order to 
compactly represent its dimensionality (e.g., by 
establishing a correspondence between space-time 
coordinates and addresses in a multidimensional array) 
or attribute domains (e.g., by encoding measurement 
scales or categorization schemes).  These structures may 
be at least as complicated as common text formats (e.g., 
PDF), but are far less ubiquitous, and may have only 
proprietary realizations.  Archival policies for geospatial 
information may require the preservation of tools and/or 
procedures as well as format descriptions. 

• Geospatial information needs special interpretation.  
Interpreting geospatial information often requires 
special knowledge not widely embedded in the source 
culture.  For example, ensuring the survival of a text 
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document may be satisfied by ensuring the survival of a 
capability to sensibly render it—the archive may safely 
assume that the ability of (some) humans to read the 
document will survive independently.  By contrast, 
geospatial information often requires much more than 
simple rendering (e.g., of a satellite data granule as an 
image) for its interpretation.  Highly specialized and 
detailed characterizations of the information’s sources, 
metrics, and processing history must be preserved, 
making geospatial archival objects necessarily more 
complicated than traditional archival materials. 

• Geospatial information is tightly bound to specific 
models of the real world.  These models include both 
explicit (geocentric or projected coordinate) and implicit 
(place name or description) locations, often 
compounded with a time reference.  These models must 
be accurately characterized and preserved along with the 
information. 

Despite these complications, the need and desire to preserve 
historical geospatial data is great given the extensive and vital role 
it plays in scientific, government, and legal communities. 

The National Geospatial Digital Archive (NGDA) [15] is one 
of eight initial projects funded by the Library of Congress’s 
National Digital Information Infrastructure and Preservation 
Program (NDIIPP).  NGDA participants include the Map & 
Imagery Laboratory at the University of California at Santa 
Barbara and Branner Earth Sciences Library at Stanford 
University.  The project’s overarching goal is to answer the 
question: How can we preserve geospatial data on a national scale 
and make it available to future generations? 

In this paper we describe our architecture for federated 
archives of geospatial data.  As will be seen, this architecture is 
simple and conservative, and is designed to provide only a 
fallback strategy that guards against irreplaceable loss of 
information.  However, the architecture is generic enough to serve 
as a foundation for more sophisticated (and costly) preservation 
strategies, for both geospatial and other types of information. 

2.  PRESERVATION PRINCIPLES 
Four observations about long-term preservation influenced 

the development of the NGDA architecture. 

2.1  Preservation is a relay 
In the context of preservation, we define “long-term” to be a 

period of time exceeding the lifetimes of the people, applications, 
and platforms that originally created the information.  For the sake 
of argument, we will use 100 years as a reference timeframe.  Can 
we design an archive system that will preserve information for 
100 years? 

The answer is most assuredly negative; no system can 
reasonably be expected to last 100 years.  In our experience in 
building and running digital library and storage systems, a ten-
year-old system is nearing the end of its lifetime in terms of 
supportability.  (The US Internal Revenue Service operates 
archive systems that are multiple decades old, but this is 
newsworthy precisely because it is so unsupportable and beyond 
the norm [10].)  Storage systems change much more frequently, 
with turnovers in technology occurring every 3–5 years.  Even 
entire institutions come and go.  Few institutions can guarantee 
their continued existence, let alone support for preserving a 
specific piece of information, for 100 years; and that still leaves 
the issue of changes in curatorship within institutions. 

As a consequence of this general impermanence, long-term 
preservation is best characterized as an extended relay in time, 
with information being handed off from storage system to storage 
system, from repository to repository, and from institution to 
institution [6].  Thus a key consideration in the design of an 
archive system is not just how well preservation is supported over 
the archive’s lifetime, but how well and how easily the archive 
can hand off its contents and responsibilities to the next archive in 
an ongoing succession. 

Furthermore, future archives must be prepared to work with 
old digital information.  Given our short digital history, most 
archives today are in the fortunate position of working with 
recently created information; that is, with information types that 
are still current and well-understood in their respective 
communities.  But if we consider our 100-year reference 
timespan, archives in the middle of that span will be faced with 
curating information for which all links to the original creators 
and context have been severed.  (Consider, in 2008, curating 
digital materials created in 1958.)  Thus we can strengthen our 
previous conclusion: a key consideration in the design of an 
archive system is not just that it can curate information and then 
hand the information off to the next archive, but that it can do so 
for unfamiliar information types, and in such a way that the next 
archive can make the same claim, and so on through time. 

2.2  Preservation is mitigation of risk 
It is common to speak of so-called “persistent” identifiers 

and “persistent” objects, but strictly speaking, persistence is not 
an attribute of a piece of information; rather, persistence is an 
outcome, a result of the past commitments of the information’s 
curators and holding institutions [14].  At best, future persistence 
hinges on our ability to mitigate known risks to persistence. 

There are many such risks to be addressed, from storage loss 
to format obsolescence, but an overriding risk is lack of resources 
to properly curate information.  For a given piece of information, 
we cannot assume that the information will be maintained in a 
usable state at every point in its existence: the perceived value of 
information changes over time; archive resources inevitably 
change over time; and there may be points in time at which the 
upkeep of the information cannot be supported or justified.  The 
assumption that sufficient curation resources will always be 
available over a piece of information’s lifetime is a risk that must 
be mitigated. 

The risk of insufficient resources is particularly acute when 
handoffs occur (as described in section 2.1), particularly handoffs 
between archive systems and between institutions.  These 
handoffs may occur precisely because the previous archive system 
becomes unsupportable, or the current institution runs out of 
resources, resulting in a situation that puts immediate strain on the 
receiving institution. 

As a consequence, a key consideration in the design of an 
archive system is that there be an ultra-low-cost, fallback 
preservation mode that, while perhaps not maintaining the 
information in any immediately usable state, nevertheless 
preserves it well enough that the information can, in principle, be 
“resurrected” at any time in the future given sufficient desire and 
resources.  This has been colloquially referred to as an archive’s 
“option to do nothing.”1 
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2.3  Preservation of context is necessary 
Long-term preservation requires solving two complementary, 

yet coordinated problems: preservation of the information itself 
(the raw “bits”), and preservation of the context surrounding the 
information (the meta-information needed to interpret the bits). 

That the bits require preservation goes without saying.  But 
context requires preservation, too, for two reasons.  First, context 
is often hidden or implicit.  For example, a webpage is renderable 
by any contemporary personal computer, not by virtue of any 
knowledge on the user’s part, but by the fact that knowledge of 
the relevant file formats is embedded in the computer’s operating 
system and web browser application.  Second, the context in 
which information is produced is constantly evolving.  The 
technological context surrounding any piece of information—the 
computing platforms, programming languages, applications, file 
formats, and so forth—will inevitably change over time until the 
information is no longer usable.  Changes in the information’s 
social context are just as significant. The communities and 
organizations involved in the information’s creation and initial use 
may attach different values and interpretations to the information 
over time, or cease to exist altogether.  The combination of 
context being both implicit and evolving requires that, for 
information to remain usable, either the information must 
continuously evolve along with the context, or the context must be 
captured and preserved along with the information, preferably at 
the time of the information’s creation. 

The context surrounding geospatial information is 
particularly complex, as enumerated in the introduction.  For 
example, use of remote-sensing imagery requires detailed 
knowledge of sensor and platform characteristics, which, due to 
its size and complexity, is not usually bundled with data objects in 
the same way that descriptive metadata is.  Furthermore, 
geospatial data may require deep analysis to remain usable over 
time.  For example, to support long-term, longitudinal climate 
studies, historical climate data records must be periodically 
reprocessed to conform to the most recent revisions of scientific 
understanding and modeling.  This in turn requires access to and 
understanding of the original processing, including scientific 
papers, algorithm documentation, processing source code, 
calibration tables and databases, and ancillary datasets [12]. 

We also note that whereas preservation of bits requires that 
the bits stay unchanged over time, preservation of context must 
accommodate and even embrace change to the context.  File 
formats will need to be migrated over time, new access services 
will need to be developed and will require new kinds of support, 
and information will inevitably be reorganized and 
recontextualized. 

Thus a key consideration in the design of an archive system 
is that it be able to capture and preserve complex contextual 
information; maintain persistent associations between information 
objects and contextual objects; and support modification of the 
context over time. 

2.4  Preservation must be as cheap as 
possible 

An old engineering adage states “good, fast, cheap: pick any 
two.”  For long-term preservation the adage might be restated to 
say: “scale, longevity, economy: pick any two.”  We can preserve 
information on a broad scale; we can preserve information for 
long periods of time; we can preserve information cheaply; but we 
can’t do all three.  Given NGDA’s goal to preserve geospatial data 

on a national scale for 100 years, that leaves economy as the 
unachievable goal.  And yet, we must have economy, for there are 
few funding structures in place to pay for curation. 

Another way to look at cost is to ask: Is a given information 
object worth preserving?  To answer this question, a curator must 
in effect solve a complex equation that balances the perceived 
intrinsic value of the information and the probability of its usage 
in the future on the one hand, against preservation and storage 
costs and, in the case of fallback preservation, costs to resurrect 
the information and make it usable again, on the other hand.  
Significantly, the only variables in this equation under the control 
of the curator are costs, which can only be minimized. 

As a consequence, a key consideration in the design of an 
archive system is its ability to support multiple levels of 
preservation and usability, the choice of which can vary in 
response to changing information values, preservation costs, and 
resource availability. 

2.5  Requirements 
Summarizing the preceding discussion, we conclude that to 

support long-term preservation, an archive system architecture 
must: 

• Explicitly capture and preserve the context necessary to 
interpret information objects in the future. 

• Provide multiple levels of preservation and usability to 
allow archives to adapt to varying resource availability. 

• Maintain a fallback representation that provides for the 
survivability of archived content even in the face of 
repository and institution failure. 

• Facilitate handoff to the next archive system. 

3. ARCHITECTURE 
The NGDA architecture is an attempt to satisfy the preceding 

requirements.  The architecture, shown in Figure 1, is based on a 
data model that defines a uniform representation of all 
information in the archive, paired with a storage API that abstracts 
the storage subsystem.  The storage subsystem is assumed to 
provide reliable, long-term storage through redundancy and active 
monitoring.  A suite of components built on top of the data model 
and storage API provide ingest and access functionality.  We 
describe each of these facets of the architecture in turn. 

3.1 Data model 
3.1.1 Logical data model 
3.1.1.1 Fundamentals 

The fundamental entity in the NGDA data model (Figure 2) 
is the archival object, which: 

• represents one independently reusable piece of 
information; 

• contains all components necessary to use the object, 
including data, metadata, and both original and derived 
forms; and 

• has links to related archival objects. 
An archive is a collection of archival objects. 
An archival object is identified by a universally unique 

identifier (the identifier scheme is unspecified by the data model) 
and may contain any number of components, of which there are 
two types: files and directories.  All components have a name that 
uniquely identifies the component within the archival object or 
enclosing component and, optionally, a description stating the role 
the component plays within the object. 



A file component represents a typed bitstream and holds the 
bitstream, the bitstream’s size in bytes, and a content signature.  
The latter two items are, strictly speaking, not necessary because 
the NGDA architecture assumes that the storage subsystem is 
reliable, but they are explicitly included in the data model to 
facilitate reliable handoffs across archives and across storage 
systems. 

Directory components are used to implement hierarchies, and 
come in two flavors: an “alternatives” directory describes 
different representations of substantially the same information (for 
example, JPEG and TIFF version of the same image), while a 
“subcomponents” directory describes an aggregation.  In the 
authors’ digital library work this distinction has been found to be 
useful [8]. 

An abridged example of an archival object representing a 
dataset of county boundary lines is shown in Figure 3.  The object 
has two top-level components: 

• an XML-encoded FGDC metadata record; 
• two alternative representations of the object’s data: 

o a Shapefile (a common GIS format which, 
despite its name, is actually a set of files); and 

o a PNG image. 
We will continue to refer to this example in the following. 

3.1.1.2 Definitions 
Every component may have one or more definitions of its 

interpretation.  A definition may be a file format, or any other type 
of semantic specification; structurally, a definition takes the form 
of a link to another archival object.  Thus instead of describing 
file component formats by using, say, MIME types, the NGDA 

data model assumes format information is an integral part of the 
archive.  The format of a file is indicated by a link to the archival 
object representing that format; the latter object holds the actual 
format specification documents along with format metadata 
recording MIME types, file suffixes, and so forth. 

A link is represented by simply naming the target archival 
object’s universally unique identifier.  The data model does not 
mandate any particular identifier system.  Thus, the particular 
identifier system employed by an archive should be considered to 
be one of its fundamental dependencies. 

(Not reflected in the UML diagram in Figure 2 is the fact that 
an archival object as a whole may have one or more definitions.) 

In the example in Figure 3, the FGDC metadata and PNG 
image files have links to their respective formats.  The link to the 
Shapefile format is at the directory level because that format 
defines the interpretation of all Shapefile component files.  A 
component without a definition is implicitly defined by the 
nearest ancestor definition. 
3.1.1.3 Other features 

A relationship is a named, directional association between 
two archival objects.  There is no fixed vocabulary for 
relationship names, though standardization in this area would be 
welcome.  Relationships may be used to record, for example, the 
fact that one object follows another in a series of like objects, or 
that one format is a subtype of another format. 

Noticeably missing from the data model are additional kinds 
of entities for representing aggregate structures such as collections 
and series, or specialized object types for representing providers 
and formats.  Instead, we represent these concepts by building on 

Figure 1.  The NGDA architecture. 



the model elements described so far, namely, collections of 
components organized into archival objects.  With this approach, 
an archival object representing a format or collection is 
recognized as such by virtue of containing appropriate metadata 
(format registry metadata or collection-level metadata, 
respectively) and by participating in appropriate relationships 
(such as format–format relationships in the first case, or 
collection–member relationships in the second).  In the example in 
Figure 3, the archival object has a “member of” relationship to an 
archival object representing the CaSIL geopolitical collection.  A 
reciprocal “has member” relationship may or may not be present. 

The data model also incorporates a simple lineage model.  
Each component may have annotated links to the sources from 
which it was derived.  The source may be another component 
within the same archival object, a component in another archival 
object, or simply another archival object.  In Figure 3, the PNG 
image (described as a “preview”) is noted as having been derived 
from the Shapefile.  Not reflected in the UML diagram in Figure 2 
is that fact that an archival object as a whole may have lineage 
links. 

Finally, the NGDA project has developed some ingest-time 
aids that complement the data model so far described.  An ingest 
language defines commands that can be used to build up archival 
objects from constituent pieces.  A template is an incomplete 
archival object that can be referenced from the ingest language to 
simplify populating an archive with similar objects.  For example, 
a template might contain a file component with a definition link to 
the FGDC metadata format, but omit the file’s actual content and 
size and signature; the latter would be filled in at ingest time.  
These ingest-time aids are not integral to the data model, but have 
proven to be convenient. 
3.1.1.4 Formal properties 

The data model includes several formal properties that 
restrict the kinds of models that can exist.  Two examples: 

• Definition: Every component must be defined.  A 
component is defined if it has at least one definition, or 
if an ancestor of the component within the containing 
archival object (or the archival object itself) is defined. 

• Lineage: An archival object or component thereof must 
not be derived from a constituent component.  
Furthermore, the directed graph induced by lineage 
relationships must be acyclic. 

Discussion.  One of the main goals of this data model is to 
ensure that archived information is interpretable, that is, that the 
archive contains sufficient format and other contextual 
information so that use of an object can be reconstructed 
arbitrarily far into the future.  The definition property raises the 
possibility of using the graph-theoretic nature of the data model to 
create a formal definition of interpretability which would facilitate 
automated validation.  Let us define a component or archival 
object to be interpretable if its definition(s) are (recursively) 
interpretable.  Thus we might be able to say that a JPEG image is 
interpretable because the JPEG format is interpretable, and the 
latter is interpretable because the JPEG specification, a PDF 
document, is interpretable because the PDF format is 
interpretable, and so forth. 

However, we immediately run into problems with this line of 
formalism.  Loops are possible: it turns out that the PDF format is 
defined by a PDF document.  This particular case can be averted 

by creating a “desiccated”2 representation of the document, i.e., a 
representation that trades off usability for greater preservability.  
(As a demonstration, the NGDA format registry includes GIF 
format page scans of the PDF specification.)  This leads to a 
second problem: the recursion must fail somewhere.  The GIF 
format is defined by an ASCII text document, but how to define 
the ASCII character encoding? 

Both the preceding problems could be averted by simply 
“blessing” certain “core” archival objects as being interpretable.  
But then numerous problems relating to relationships arise.  The 
GeoTIFF format is defined by an HTML document, but as a 
subtype of TIFF, it can be understood only in the context of the 
latter specification.  Hence, at minimum, our definition of 
interpretability must include the interpretability of parent types.  
But more ambiguous relationships also come into play.  The 
RELAX NG format does not share any subtype relationship with 
XML, but as an XML schema language, it can be understood only 
in the context of XML.  Hence, at least in some cases, related 
types must be considered.  And then there is the problem that, in 
some but not all situations, interpretability of objects depends on 
metadata held in collection-level or series-level objects. 

Given the difficulty of knowing which relationships to 
follow, we conclude that the concept of interpretability has a 
significant qualitative component that requires analysis by a 
curator. 
3.1.2 Physical data model 

Complementary to the logical data model is a physical data 
model that represents all information in the archive as files in a 
filesystem.  In the physical model, an archival object is 
                                                                    
2 Thanks to John Kunze of the California Digital Library for this 

term. 

Figure 2.  Simplified UML diagram of the NGDA data 
model. 



represented as a directory tree of files, with physical directories 
and files corresponding directly to object components.  In the root 
directory of each archival object is an extra file 
(manifest.xml) that encodes the structure of the object and 
contains archive-model-related metadata such as definitions, 
relationships, lineage, and fixity information.  An example 
manifest corresponding to the example archival object in Figure 3 
is shown in Figure 4.  (XML schemas and other documentation on 
the data model can be viewed at http://www.ngda.org/data-
model/.) 

Object identifiers are unconstrained, but for a technical 
reason described below we require that they adhere to URI syntax 
[3].  An object is stored in the filesystem at the path named by its 
identifier.  Thus an object with identifier i is stored at path i, the 
object’s manifest is at i/manifest.xml, and a component at 
path a/b within the object is stored at path i/a/b.  To avoid 
performance problems with placing too many files (i.e., too many 
archival objects) in one filesystem directory, in our 
implementation we split identifiers into a few pieces so that, for 
example, identifier abcd might become pathname a/b/c/d.  An 
explicit, bidirectional mapping from identifiers to pathnames is 
required anyway, as certain characters must be escaped to avoid 
interpretation by the filesystem, so additional splitting of 
identifiers adds no real burden. 

In the logical data model, all link destinations are archival 
objects except lineage links, which may reference objects or 
components.  To unambiguously distinguish these two cases, in 
links to components the component path is expressed as a URI 
fragment.  For example, a link to component a/b within object 
tag:ngda.org,2008:i would be expressed as 
tag:ngda.org,2008:i#a/b.  It is for this reason only that 
we constrain object identifiers to be URIs. 

Archive self-description can be achieved by storing the 
manifest schema (which effectively describes the NGDA data 
model) as an archival object itself and referencing it from 
manifests via the xsi:schemaLocation attribute in the XML 
header.  The fundamental interpretability of the archive thus 
depends on knowledge of XML, knowledge of the character set(s) 
in use, and the ability to navigate the filesystem. 

This simple physical representation serves several purposes.  
First, it provides a fallback mechanism: the repository system and 
higher-level components may no longer be supported and may 
even have failed, but the content is still accessible as a filesystem.  
Second, filesystems have proven to be a remarkably resilient 
concept, and we expect that to continue.  And third, storing 
archival objects as files in native formats makes it easy to provide 
access to them. 

Figure 3.  Example archival object (abridged). 



3.2 Storage abstraction 
To accommodate the greatest possible variety of storage 

implementations, and to facilitate handoffs across storage 
systems, the NGDA architecture places minimal requirements on 
underlying storage subsystems.  The storage subsystem API 
assumes only that: 

• Bitstreams can be created, deleted, read, and written, but 
not necessarily modified. 

• Directories can be created and deleted. 
• Bitstreams and directories are named by pathnames, and 

can be retrieved by pathname. 
• The contents of directories can be listed. 
These requirements are of course satisfied by any traditional 

filesystem, but they’re also satisfied by other types of storage 
technologies such as WebDAV3 servers and the Amazon S3 
network storage service.4 

The requirement that bitstreams and directories be deletable 
is perhaps not strict, for it might not be needed by an archive that 
writes once and never makes mistakes, but we have found it to be 
necessary in practice. 

The requirement that directories be listable brings up an 
interesting point: we need a means of discovering the contents of 
an archive.  Two approaches suggest themselves: either we must 
assume that the storage system is capable of listing its contents 
(the approach we have adopted) or we must assume that there is a 
root object from which all other objects can be discovered by 
recursive crawling.  However, the latter approach requires that 
aggregate objects such as collections and series maintain “has 
member” links to their members, which imposes significant 
performance penalties during large ingest operations. 

3.3 Components 
The NGDA architecture is defined by its data model and 

storage abstraction; the components built on top of these may 
differ from archive to archive to address differing archive needs 
and content types.  In this section we describe the components 
developed for the prototype archive at UCSB, to demonstrate how 
an end-to-end archive that provides ingest, search, and access 
functionality can be built on the architecture. 
3.3.1 Archive Server 

The Archive Server (Figure 1) acts as a mediator between 
higher-level components and the archive’s underlying storage 
system.  It implements the storage subsystem API, thus insulating 
other parts of the system from changes in storage technology.  
Software drivers for different storage technologies can be installed 
via a plugin software architecture. 

All interactions with the server occur through HTTP 
requests.  To perform an ingest operation, a client constructs an 
ingest.xml file containing one or more ingest language 
commands and submits it along with any pertinent files as a single 
POST request to the server.  Object updates are handled similarly. 

As the gateway through which all data must pass before 
entering the archive, the Archive Server is the ideal place to 
perform processing tasks such as file format validation and 
creation of derivative forms (thumbnail images, desiccated 
versions of poorly supported file formats, etc.).  The Archive 
Server provides hooks to add such processing steps as needed. 

                                                                    
3 http://www.webdav.org/ 
4 http://aws.amazon.com/s3 

3.3.2 Ingest Crawler 
Building on the Archive Server’s ability to ingest a single 

archival object at a time, we have developed a bulk ingest system 
that allows arbitrarily large, homogeneous collections to be 
ingested with a minimal amount of work.  The Ingest Crawler is 
configured by source, mapping, and target templates that specify 
which source files are of interest, how the files are to be identified 
and grouped, what the files’ formats are expected to be, and how 
archival objects are to be packaged.  The crawler then works by 
recursively crawling through the directory structure of a data 
source. 

Archival object identifiers can be created in a variety of 
ways, including mapping from source filenames or examining and 
extracting specified fields within known file types. 

The software is highly modular, and includes modules for 
handling a variety of common scenarios, from handling 
stereotypical file organizations to extracting metadata from 
relational databases. 

<manifest> 
  <objectIdentifier> ... </objectIdentifier> 
  <relationship name="member of" 
      targetObjectRef="..."/> 
  <file> 
    <name> cnty24k97.xml </name> 
    <description> metadata </description> 
    <definitionRef> ... </definitionRef> 
    <size> ... </size> 
    <signature algorithm="MD5"> ... </signature> 
  </file> 
  <directory type="alternatives"> 
    <name> data </name> 
    <directory type="subcomponents"> 
      <name> source </name> 
      <definitionRef> ... </definitionRef> 
      <file> 
        <name> cnty24k97.shp </name> 
        <size> ... </size> 
        <signature algorithm="MD5"> ... </signature> 
      </file> 
      ... 
    </directory> 
    <file> 
      <name> cnty24k97.png </name> 
      <description> preview </description> 
      <definitionRef> ... </definitionRef> 
      <lineage> 
        <sourceComponentRef> 
          data/source 
        </sourceComponentRef> 
      </lineage> 
      <size> ... </size> 
      <signature algorithm="MD5"> ... </signature> 
    </file> 
  </directory> 
</manifest> 

Figure 4.  Example object manifest (abridged). 



3.3.3 Workflow Tool 
The Workflow Tool is a graphical tool that allows archive 

administrators to orchestrate ingest runs and perform quality 
control on the collections assembled by the ingest crawler.  
Because ingesting large collections may be an extremely long-
lived operation due to the significant resources required, the 
Workflow Tool allows all functions to be checkpointed and 
restarted.  Objects that fail automated processing checks (for 
example, by lacking a mandatory component as specified by the 
collection’s template) are set aside for manual review.  Reports 
are generated at each step of the workflow detailing the nature of 
(and possible remedies for) any failures. 
3.3.4 Format Registry 

We initially created a format registry just as a place to store 
the information we accumulated regarding geospatial and related 
file formats.  Over time, however, the Format Registry has grown 
to become a collaborative tool that serves as a focal point for 
collecting format specifications and format metadata from a broad 
community, and for maintaining, updating, and correcting format 
entries.  The Format Registry is built on a wiki platform in 
recognition that the expertise of a wide variety of users of formats 
is a critical element to be captured and archived.  The Registry is 
controlled by archive curators, and includes mechanisms for 
identifying and authorizing contributors so that access can be 
limited to those with trusted expertise.  Workflow tagging tracks a 
format entry’s maturity.  Functions are available to curators to 
export format entries out of the wiki and ingest them as archival 
objects in the archive and vice versa. 
3.3.5 Web-based Access 

To provide the simplest and most direct kind of access to the 
archive, we have placed a web server on top of the archive 
filesystem.  By employing a styling servlet and XSLT 
transformations that operate on archival object manifests, each 
archival object appears to web clients as a web page containing 
hyperlinks to the object’s components; an example is shown in 
Figure 5.  The result is that search engines such as Google can 
spider over an archive’s content, making it immediately 
searchable and accessible down to the level of individual files. 
3.3.6 Alexandria Digital Library 

Given NGDA’s focus on geospatial data, which is poorly 
supported by traditional text search engines, we use the 
Alexandria Digital Library (ADL) [7] to search over archive 
content by geographic location, time, type, format, and other 
criteria, and to provide access mechanisms suitable for geospatial 
data.  Populating ADL with archive content is currently performed 
by manually-configured and manually-invoked tools, but we are 
developing a mapping component that will automatically crawl 
over archive content and map descriptive object metadata to 
ADL’s search indices by employing a registry of known metadata 
mappings [9]. 

ADL is a federated system, and supports distributed search 
over heterogeneous collections spanning multiple nodes.  In the 
current implementation of our archive architecture, ADL provides 
access-level federation across multiple archives, but as we discuss 
in section 7, we are working on additional federation mechanisms. 
4. IMPLEMENTATION 

The prototype archive at UCSB is implemented mainly in 
Java.  The storage subsystem is a 20TB Archivas cluster, which 
actively detects and repairs corruption.  In a nice parallel to the 
NGDA architecture, Archivas stores all content and its own 

metadata as simple files in a filesystem, all of which can be 
recovered (should the Archivas system or company fail) simply 
by unplugging the disks and plugging them into another machine. 

The Format Registry is based on MediaWiki and PHP.  To 
support the kinds of controlled format entry structure and 
workflow we desired, we implemented new markup tags, and took 
advantage of MediaWiki’s event triggering system to 
automatically process and export format entries. 

The prototype archive was tested by ingesting several 
terabytes of data from the California Spatial Information Library 
(CaSIL).5  CaSIL is a repository of California’s state-owned 
physical and cultural geospatial data.  It has served as an ideal test 
collection for several reasons.  First, the data is both public 
domain and, since CaSIL has no guaranteed funding, at some risk 
of loss.  Also, CaSIL’s mission is content distribution rather than 
preservation.  Most compellingly, CaSIL includes a wide variety 
of geospatial data.  Many different file formats are represented 
within the data, including multiple image formats (JPEG, MrSID, 
TIFF) as well as GIS formats (Shapefiles, coverages, etc.). 

We have also begun ingesting the David Rumsey Historical 
Maps collection. 

5. RELATED WORK 
Like many preservation-related projects, our work on the 

NGDA architecture was strongly influenced by the Reference 
Model for an Open Archival Information System (OAIS) [4].  The 
NGDA data model can be thought of as an instantiation of the 
conceptual model described by OAIS.  To take one example of the 
relationship and distinction between OAIS and NGDA, OAIS 
specifies that an archival object’s “representation information” is 
logically contained within the object, but may or may not be 
physically contained, and that an archive should be able to export 
an archival object in a “dissemination information package” that 
may or may not include an unspecified amount of its 
representation information.  NGDA instantiates this conceptual 
model by specifying logical and physical data models that 
prescribe how semantics are represented in the archive, how 

                                                                    
5 http://gis.ca.gov/ 

Figure 5.  Web view of an archival object. 



semantics are related to archival objects, and how they can be 
accessed in relation to archival objects. 

Our work on formats and format representation was largely 
influenced by early work on the Global Digital Format Registry 
[1].  NGDA’s contribution is to recast the concept of a format 
registry—often thought of as an entity separate from an archive 
with its own, separate data model—as an archive in and of itself, 
and to fully integrate data and formats into a single preservation 
context. 

Additional related work is described in Section 7 below. 

6. CONCLUSION 
We started the NGDA project with a mature digital library 

system in hand—the Alexandria Digital Library (ADL)—which 
hadn’t really addressed the issues of long-term preservation.  But 
given the cost of trying to preserve information on a large scale 
and for a long period of time, we chose not to simply add 
preservation features onto ADL, and thereby create a kind of 
ADL++, but instead to start from scratch and ask: What is the 
minimal approach we can take to mitigate against the risk of 
permanent loss of information? 

The initial result of this work is the set of requirements given 
in section 2.5.  Interestingly, the requirement of providing a 
fallback representation, and the requirement of facilitating easy 
handoff, both lead to the same solution: a simple, self-describing 
data model with a physical representation based on files and 
filesystems.  This solution, while developed for geospatial data, is 
quite generic and appears to be applicable to many other types of 
information as well. 

In the larger context of the problem of digital preservation, 
we see the NGDA architecture serving three roles: as a fallback 
representation that guards against loss of information; as a 
working representation that supports preservation activities such 
as active monitoring and format migration; and as a foundation for 
building end-to-end archives that provide ingest, search, and 
access functionality. 

7. FUTURE WORK 
The NGDA architecture is a work in progress, and we are 

continuing development in a number of directions. 
Regarding the data model, there are three areas of work.  

First, we are adding the ability for objects in one archive to 
reference objects in another (via definition, lineage, or general 
relationship links), thus inducing a dependency relationship 
between the two archives.  This addition would allow, for 
example, multiple archives to reference a central format registry.  
The result will be an archive-level federation mechanism that 
complements the access-level federation currently provided by 
ADL. 

Second, we see value in creating a standardized “root” 
archival object that serves as a kind of whole-archive descriptor.  
The descriptor would contain archive-level documentation and 
pointers to the top-level collection objects within the archive, and 
list key archive dependencies such as any dependent archives and 
the identifier resolution system(s) used by the archive.  The 
descriptor would also be a natural place to put archive policy 
declarations such as are being developed by the iRODS project 
[13]. 

And third, we would like to express the NGDA data model as 
a restricted profile of other data models and standards such as the 
Object Reuse and Exchange (ORE) project’s data model [16] and 
the Metadata Encoding and Transmission Standard (METS) [5].  
We believe profiles would be valuable for two reasons.  First, to 

the extent that specifications like ORE and METS are broadly 
adopted, adopting the relevant parts of their models will serve to 
relate NGDA’s data model, which focuses on long-term 
preservation specifically, to more general specifications that are 
more widely understood and more likely to be widely 
implemented in software systems.  Second, NGDA’s data model 
will illustrate which features of the more general specifications 
are mandatory for long-term preservation, which are merely 
compatible, and which are incompatible.  To look at one example, 
consider that the ORE data model (as of this writing) supports 
relationships from objects and object components to formats and 
other semantic specifications, but does not mandate the existence 
of any relationships and does not specify the form that format and 
other semantics specifications must take, in contrast to NGDA’s 
data model which mandates definition links and representation of 
definitions as archival objects.  Similar differences exist between 
the NGDA data model and the data model implicitly defined by 
METS.  The effect of expressing the NGDA data model as 
profiles of ORE and METS will be to describe the activity of 
long-term preservation as an application of these more general 
technologies. 

At the storage level, we are looking at making NGDA’s 
storage abstraction more robust.  Currently, NGDA assumes that 
the extent of an archive is simply the entire contents of the 
underlying storage system, as opposed to being defined by explicit 
ownership and control mechanisms.  We are currently working on 
placing the NGDA data model on top of Logistical Networking 
storage technology [2].  The result will be an architecture that 
further facilitates archive handoffs. 

Lastly, repository systems such as DSpace6 and Fedora [11] 
have begun to embrace long-term preservation concerns as well.  
These systems implement some of the features in NGDA’s 
architecture (storage system abstraction, fallback representation) 
but not all (integral representation of definitions and other 
context).  We would like to explore the extent to which these 
repository systems can implement NGDA’s architecture.  
Ultimately, we believe that it is less important to say that data is in 
DSpace, or any other particular system, and more important to be 
able to say that the data is in a form that can be easily handed off 
from whatever system it is in now to the next system that will 
inevitably come along. 
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