
Satisficing Scrolls: A shortcut to satisfactory layout

Nathan Hurst
Adobe Systems Inc.

345 Park Ave.
San Jose, CA 95110
hurst@adobe.com

Kim Marriott
Clayton School of IT
Monash University
Vic. 3800, Australia

Kim.Marriott@infotech.monash.edu.au

ABSTRACT

We present at a new approach to finding aesthetically pleas-
ing page layouts. We do not aim to find an optimal layout,
rather the aim is to find a layout which is not obviously
wrong. We consider vertical scroll-like layout with floating
figures referenced within the text where floats can have al-
ternate sizes, may be optional, move from one side to the
other and change their order. We also allow pagination. Our
approach is to use a randomised local search algorithm to
explore different configurations of floats, i.e. choice of floats
and relative ordering. For a particular float configuration we
use an efficient gradient projection-like continuous optimiza-
tion algorithm. The resulting system is fast and provides an
efficient warm start option to improve interactive support.

Categories and Subject Descriptors

I.7.2 [Document and Text Processing]: Document Prepa-
ration—Format and notation, Photocomposition/typesetting

General Terms

Algorithms

Keywords

optimisation techniques, floating figure, multi-column layout

1. INTRODUCTION
Look at almost any web page and you will see a vertical

scroll layout. Without the need for separate pages it makes
sense to display documents in a fixed width space based on
the available screen space. A common problem in such a lay-
out is the placement of floating figures, i.e. floats. Existing
algorithms for scroll layout either use a first-fit algorithm to
place floats, such as those used in web browsers or use an
exhaustive graph search to find an optimal layout.

First-fit placement is fast and people are experienced with
the output that results. However, it does not always adapt
well to different viewing areas. Graph search algorithms can
potentially handle arbitrary layout rules and optimisation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’08, September 16–19, 2008, São Paulo, Brazil.
Copyright 2008 ACM 978-1-60558-081-4/08/09 ...$5.00.

criteria [13, 3, 10, 12], but generally require exponential run
time for all but the most restrictive kinds of layout. This
search cost can be reduced by using incomplete heuristic
search or windowing [12, 10] at the cost of optimality. But,
if we are willing to consider incomplete search, how can we
decide what is good enough?

Humans rarely seek a global optimal solution to a prob-
lem. Instead, they seek a solution which satisfies the core
constraints, and is sufficient—a satisficing solution in the
words of Herbert Simon [15]. For layout we prefer the term
layouts without obvious errors (LWOE): in other words, a
solution to which a human would not be able to immedi-
ately suggest an improvement.

As an exploration of this idea, we propose an alternative
approach to layout which tries to emulate a human searching
for, and through, candidate solutions. When constructing a
document by hand, a designer will first sketch an initial lay-
out using something similar to a first fit algorithm, then
make a series of refinements to the layout. Sometimes, un-
der refinement the layout becomes clearly wrong. At this
point the human considers rearranging things by making lo-
cal changes to the layout, swapping floats, resizing elements,
and adding or removing optional images.

This paper presents a method which uses a randomised
local search algorithm to explore different configurations of
floats, i.e. choice of floats and relative ordering. While lo-
cal search algorithms may not return a global solution, they
do return a local optimum. Such local optimality implies
LWOE, since it means that there is no simple way to change
the layout and improve the quality. Relaxing the require-
ment to find a global optimum to one of find a local optimal
means that we can increase the generality of the model to
allow complex constraints and objectives but still keep effi-
ciency. For a particular float configuration we use an efficient
gradient projection-like continuous optimization algorithm.
This is related to techniques used for graph layout [4] and
relies on text behaving like a liquid [8].

2. MODEL
We first describe our vertical scroll layout model. A doc-

ument consists of a single narrative thread or body of text
with linked floats. The body text is formatted text pro-
viding different fonts, multiple language support and other
standard typographic features.

The underlying layout model is that the canvas has a fixed
width and infinitely expandable height. Floats are placed
on the canvas and must not overlap. In general, floats can
be left aligned, right aligned or centered, but the author can

131

132

T

w

B

.

.

.

.

.

.

h

Figure 2: Encoding PARTITION as a VSL problem.

3. FLOAT PLACEMENT WITH SEPARATION

CONSTRAINTS
It follows from Proposition 2.1 that, unless P = NP , there

is no polynomial algorithm for finding an optimal vertical
scroll layout. However, the reason for the NP-hardness is
that floats can be placed in a number of different placement
styles, can be reordered and also we can choose a subset
of floats to include in the layout. In this section, we first
consider a simpler problem: float placement where the choice
of floats and placement style for each float is fixed and we
know the relative vertical ordering between floats that have
a horizontal overlap. We call this a float configuration.

Finding an optimal layout for a given float configuration is
possible in polynomial-time with certain reasonable restric-
tions on the allowed layout using a dynamic programming
algorithm [9, 12]. However, such an approach is quite slow
and does not allow us to explore multiple different float con-
figurations in a reasonable time. Instead, we have developed
a fast algorithm for finding a near-optimal layout for a par-
ticular float configuration. This uses an iterative gradient
projection-like optimization algorithm [1] and is related to
constrained graph layout techniques [4].

Since the choice of floats and their placement style is fixed,
the only variables in the layout are the vertical position, fy,
for each float f ∈ F . Since we know the relative vertical or-
dering between floats that have a horizontal overlap we can
generate a set C of so-called separation constraints of form
fy + g ≤ f ′

y that specify a minimum gap g between pairs of
floats to ensure that the relative ordering is preserved and
that the floats do not overlap. Assume that we have a cur-
rent guess at the placement of the anchor region af

y for each
float. We want to find values for the fy which minimizeP

f∈F fw(fy − af
y)2 subject to the separation constraints

C. Such a problem is a kind of quadratic program and can
be solved efficiently using VPSC, an active-set method de-
scribed in Dwyer et al [5]. This works by merging variables
whose constraints are violated into larger and larger“blocks”
of variables constrained with equality. By performing this

operation in an efficient order, and having a closed form for
both the minimisation of equality constraints and the com-
putation of the Lagrangian, the algorithm is very efficient.

Our float placement with separation constraints (FPSC)
algorithm essentially works as follows. Find an initial posi-
tion for floats and text say using a first-fit algorithm. Update
the position of the floats using VPSC and the current po-
sition of the anchor regions as the desired position for each
float, now flow text around the floats to find the new po-
sition of the anchor regions and the layout penalty. This
step is repeated until changing the layout does not lead to
sufficient improvement.

compute initial values for fy and af
y

repeat
use VPSC to compute new values f ′

y for fy

(using af
y as the desired position for fy)

place floats at f ′
y

layout text around floats to compute new values of af
y

compute penalty
until insufficient improvement

Figure 3: The Optimistic FPSC Algorithm.

For efficiency, when computing the new positions for the
anchor regions af

y we do not actually lay the text out but
rather approximate the text by a continuous liquid with the
same area as the text [8]. The algorithm is given in Figure 3.

Let us consider an idealised example of a single float in
a column of width 1. Figure 5 shows the execution of the
Optimistic FPSC Algorithm. Figure 5(a) shows eight steps
in the execution with a float of 0.1 wide and 1 unit long with
the float initially placed a long way from the anchor. The
small circle shows the (continuous) anchor position. The
algorithm converges nicely1, and in fact steps almost to the
correct position in the first step. This is not surprising as
VPSC steps exactly to the solution for a float of width 0.

However, Figure 5(b) shows the execution for a float of
width 0.5. In this case the algorithm doesn’t converge, and
in between these two widths we have worsening convergence—
0.4 oscillates a lot before reaching the minimum. If we step
through with exact arithmetic it confirms that the algorithm
cycles, as does any larger float width. We also see that the
penalty of the successive layouts can increase.

We can tackle this by forcing the algorithm to make progress.
At every update we look to see whether the true error in-
creased, and if so, take a smaller step. This is a common
approach in multidimensional non-linear minimisation algo-
rithms, called a backtracking line search [1]. Figure 4 shows
the modifications required and result in the Careful FPSC
Algorithm. Figures 5(c) and 5(d) shows the execution of
this modified algorithm on wider floats—convergence is now
comparable to that of the narrow floats, and surprisingly, in
some cases finds the exact solution in just a few steps.

Finally, what if the float fills the whole column? In this
case there are in fact two equally bad solutions, one with the
anchor just before the float and one with the anchor just af-
ter. Furthermore, allowing floats this wide means that the
penalty is no longer continuous in the float placement, since

1It actually converges linearly, but with an error improve-
ment of 3× 10−3 at each step.

133

134

135

136

137

def randomised local search (state, ∗params) :
best← (state.cost (), state)
focus← 1
while True :

trial← (best[0], None)
seen← 0
complete← True
for n ∈ best[1].neighbours (∗params) :

n.solve ()
c← n.cost ()
if c < trial[0] :

trial← (c, n)
seen← seen + 1
if seen ≥ focus :

complete← False
break

if trial[1] = None :
if complete :

return best[1]
else :

focus← focus ∗ 2
else :

focus← max (focus/2, 1)
best← trial

Figure 11: Randomised local search.

6. WARM START AND INCREMENTALITY
A key advantage of local search over complete search meth-

ods is that local search works from an initial state and heads
towards a good state. In particular, this means that we can
use any previously determined good solution as a starting
point. An interesting result is that by searching from the
current state when things change, local search by its nature
tends to find a layout with few changes (although it does not
find an optimal such improvement). This is advantageous in
document layout as it helps maintain a connection with the
text reducing re-reading and perhaps improving comprehen-
sion.

The warm start nature of local search is also useful for
incrementally editing a document.

Editing the text: WYSIWYG and word processor like
editing is preferred by many users over LATEXand HTML’s
batch formatter approach. Graph search layout algorithms
are hard to use in conjunction with interactive editing, whereas
with local search the user can drag objects and adjust strengths,
immediately seeing how their actions affects the layout. Cut-
ting and pasting regions of a document can carry the appro-
priate portion of the layout for more efficient re-solve.

Adding a float: Local search can handle the addition
of a single float with a little work. Essentially, the float is
greedily placed in the float order nearest the anchor point.
The algorithm then considers those blocks affected by the
addition and propagates outwards.

Resizing the column width: If a column is resized
slightly, the floats will only need to be moved at the FPSC
level and tremendously fast (<1ms) update is possible —
much faster than the text flow that will follow. Once some
blocks change we must use the local search or randomised
local search to clean up the solution.

Another important advantage of local search over graph
search algorithms is that at every step we have a best so-
lution. This is called an anytime algorithm and is very
useful in the context of interactive display. For example,

as the worst case run time of the algorithm is unknown, a
viewer can decide to allocate a fixed time to layout gener-
ation, stopping the algorithm when that time has elapsed.
In the context of tabbed browsing it is common for users to
load interesting links in new tabs as they read a page. These
tabs can load and start running their layout optimisation in
the background.

A more compelling use of such an anytime algorithm is to
find a good solution to the portion of the page that is visible
to the user, and fix these choices, whilst continuing to search
to find a good layout for the remainder of the document.

7. EMPIRICAL EVALUATION
In this section we examine the performance of our lay-

out algorithms. For comparison we compared the quality of
greedily constructed layouts such as are generated by web
browsers and word processors with the output from our al-
gorithms. We also compare the solution quality with the op-
timal layout found using exhaustive search for some small,
randomly generated problems. To give an idea of the im-
practicality of an exhaustive search, consider the example in
figure 1. This has a solution space of 8.7×1015 as a result of
the various alternative sizes (product of figure size choices),
choice of figure side(2n) and figure ordering (O(n!)).

The code is written in just 700 lines of Python. The code
has been optimised with a satisficing approach — we only
spent time working on things that were slow enough to be-
come tedious in the development process. As a result, there
is great opportunity for optimisation, particularly in smarter
pruning of the neighbourhood.

As hill-climbing and RLS only store a constant number of
layout trials, memory consumption is essentially linear with
document size. This compares favourably with graph search
algorithms which are notorious for their exponential mem-
ory consumption. Furthermore, it is conceptually easy to
parallelise RLS by running the same algorithm on multiple
processors with a different seed. We have not investigated
this approach, however there is much active research in this
area.

Local search has the interesting property that independent
regions in the state description tend to optimise in parallel.
That is, a document where the floats are spread out requires
very little time to solve. For example, with our most gen-
eral model and a document with 100 floats the times vary
wildly for different float densities. If the floats are all far
enough apart that they never interact the algorithm takes
negligible time (roughly 0.1s), whereas when the same 100
floats all crowded together around the same anchor point
the hill-climbing local search algorithm takes takes over half
an hour to find a local minimum. It turns out that a strong
predictor of run time is the sum of the run times of the in-
teracting blocks. In Table 1 we look at the run times of the
various cumulative extensions discussed in this paper. We
use the same sequence of randomly generated floats (and
alternatives) in each case averaged over 5 runs by 5 ran-
dom seeds for the configuration. All the floats are forced to
cluster within a single block so as to determine the worst
case behaviour. The number in parentheses is the number
of states considered in the search.

Clearly there is super-linear growth in the search time.
This is not surprising considering the search space itself is
exponential. It is not particularly useful to ask for the time
to termination for a randomised search, instead we look at

138

No. Optimal sides pages reorder
Floats FPSC resize
5 0.010s 0.34s(15) 0.3s(66) 0.38s(39)
10 0.066s 1.26s(40) 1.82s(102) 6.62s(350)
20 0.155s 4.11s(60) 16.4s(636) 73.8s(1856)
50 0.042s 87.7s(500) 294.s(8544)
100 0.083s 892.s(5400)

Table 1: Run times for documents with tightly clus-
tered floats using hill-climbing local search.

time
10

5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

p
e
n
a
lt
y
v
a
lu
e

Local search
Randomised local search

Figure 12: Comparing convergence of hill-climbing
local search and randomised local search.

the convergence rate. Figure 12 shows the convergence rate
of hill-climbing local search and randomised local search on
a 50 element cluster document. Both searches start with the
greedy solution, with a penalty of 1.5× 1013.

8. FURTHER WORK
Layout without obvious errors is easily extensible, and

adding features is not expensive unless the elements inter-
act. Thus, it is easy to experiment. Clearly improved per-
formance is key. A very significant performance cost is the
lack of incrementality in the core routines. In developing the
prototype we used the published VPSC source code, which
does not include incremental removal of constraints, and due
to time constraints, we did not have the opportunity to add
them. Thus, the existing code constructs a new VPSC in-
stance for each step. This automatically incurs an linear
cost with increasing floats and is relatively easy to fix.

The second performance cost is in the neighbour genera-
tion. Computing the true Lagrangian values requires closer
interaction with the VPSC algorithm, and rather than call-
ing VPSC in a loop, it would be much more efficient to cal-
culate the float placement and Lagrangians directly7. Given
these more accurate lagrangians it is possible to prune many
more neighbours than we currently do, potentially removing
another linear complexity cost.

Heuristic starting configurations: As GRASP runs
multiple short optimisation passes, it is easy to seed the
search with different heuristically directed algorithms, such

7Although the Lagrangians are difficult to compute for
FPSC, active constraints in VPSC do correspond to active
constraints in FPSC, allowing some minor pruning

as approximate knapsack and windowed dynamic program-
ming. GRASP will then naturally follow up good alterna-
tives.

User interface layout: We are intending to look at how
these techniques may be applied to user interface develop-
ment in tools such as Adobe FLEX. As the requirements
for user interfaces and documents merge more sophisticated
techniques are becoming mandatory for good user interfaces.
We feel that LWOE could be a key development.

Templates: As well as directly implementing template-
based layout using the ideas presented in this paper, it is
also intriguing to consider allowing the designer to suggest
templates implicitly as examples to the penalty function.
The penalty function would consist of the existing rules, but
also include the distance to similar templates to encourage
these solutions.

9. CONCLUSION
The idea of looking for layouts without obvious errors

(LWOE) rather than a complete search for an optimal solu-
tion opens the possibilities of support for considerably more
powerful layout constraints. The most interesting feature
of LWOE is that it allows mixing of many types of existing
constraint families without the combinatorial explosion of
complete searches. Instead, the onus is on the layout sys-
tem designer to consider what transformations a user would
consider when assessing a layout and so specify the neigh-
bourhood for local search.

We demonstrated a system consisting of three layers of
constraint solving: a gradient projection-like technique for
float placement, hill-climbing local search to find solutions
without obvious errors, and randomised searching to in-
crease the chance that we get a globally good solution in the
face of enormous search spaces. The algorithm is anytime,
allowing quick presentation whilst refining the document in
a background thread.

While we have only considered single-column vertical scroll
layout, it seems possible to extend our approach to handle
multi-column layout. It is straightforward to extend the
Careful FPSC Algorithm to handle multiple-column layout:
we have only to extend the separation constraint genera-
tion algorithm to consider floats that penetrate the column
boundaries. And the use of local search methods only re-
quires us to define a suitable neighbourhood relation.

10. ACKNOWLEDGEMENTS
We would like to thank Tim Cole, Paul Harrison and

Grayson Lang for their suggestions and criticisms.

11. REFERENCES

[1] D. P. Bertsekas. Nonlinear Programming. Athena
Scientific, 1999.

[2] S. Binato, H. Jr, and M. Resende. Greedy randomized
adaptive path relinking.

[3] A. Brüggemann-Klein, R. Klein, and S. Wohlfeil.
Pagination reconsidered. In Electronic Publishing,
volume 8, pages 139–152, 1995.

[4] T. Dwyer, Y. Koren, and K. Marriott. IPSep-CoLa:
An incremental procedure for separation constraint
layout of graphs. IEEE Transactions on Visualization
and Computer Graphics, 12(5):821–828, 2006.

139

[5] T. Dwyer, K. Marriott, and P. J. Stuckey. Fast node
overlap removal. In GD2005: 13th International
Symposium of Graph Drawing 2005, volume 3843 of
Lecture Notes in Computer Science, pages 153–164.
Springer Berlin, 2006.

[6] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[7] E. Goldenberg. Automatic layout of variable-content
print data. Technical Report 286, Hewlett-Packard
Laboratories, Oct. 2002.

[8] N. Hurst and K. Marriott. Approximating text by its
area. In DocEng ’07: Proceedings of the 2007 ACM
symposium on Document engineering, New York, NY,
USA, 2007. ACM Press.

[9] N. J. Hurst. Better automatic layout of documents.
PhD thesis, Monash University, pending.

[10] C. Jacobs, W. Li, E. Schrier, D. Bargeron, and
D. Salesin. Adaptive grid-based document layout.
ACM Trans. Graph., 22(3):838–847, 2003.

[11] D. E. Knuth and M. F. Plass. Breaking paragraphs

into lines. In Software—Practice and Experience,
11(11), pages 1119–1184, Nov. 1982.

[12] K. Marriott, P. Moulder, and N. Hurst. Automatic
float placement in multi-column documents. In
DocEng ’07: Proceedings of the 2007 ACM symposium
on Document engineering, New York, NY, USA, 2007.
ACM Press.

[13] M. F. Plass. Optimal pagination techniques for
automatic typesetting systems. PhD thesis, Stanford
University, June 1981.

[14] L. Purvis, S. Harrington, B. O’Sullivan, and E. C.
Freuder. Creating personalized documents: an
optimization approach. In DocEng ’03: Proceedings of
the 2003 ACM symposium on Document engineering,
pages 68–77, New York, NY, USA, 2003. ACM Press.

[15] H. A. Simon. A behavioral model of rational choice.
The Quarterly Journal of Economics, 69(1):99–118,
1955.

[16] L. Weitzman and K. Wittenburg. Automatic
generation of multimedia documents using relational
grammars. In Proceedings of 2nd ACM Conference on
Multimedia, 1994.

140

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

