
Improving Query Performance on XML Documents:
A Workload-Driven Design Approach

Rebeca Schroeder
Informatics and Statistics Department
Federal University of Santa Catarina
Florianópolis/SC, Brazil 88040-900

rebecks@inf.ufsc.br

Ronaldo dos Santos Mello
Informatics and Statistics Department
Federal University of Santa Catarina
Florianópolis/SC, Brazil 88040-900

ronaldo@inf.ufsc.br

ABSTRACT

As XML has emerged as a data representation format and
as great quantities of data have been stored in the XML for-
mat, XML document design has become an important and
evident issue in several application contexts. Methodologies
based on conceptual modeling are being tightly applied for
designing XML documents. However, the conversion of a
conceptual schema to an XML schema is a complex process.
In many cases, conceptual relationships cannot be repre-
sented in a hierarchy so that they have to be represented by
reference relationships in the XML schema. The problem
is that reference relationships generate a disconnected XML
structure and, consequently, produce an overhead cost for
query processing on XML documents.

This paper presents a design approach for generating XML
schemas from conceptual schemas considering the expected
workload of the XML applications. Query workload is used
to produce XML schemas which minimize the impact of the
reference relationships on query performance. We evaluate
our approach through a case study where a set of XML
documents are redesigned by our methodology. The results
demonstrate that query performance is improved in terms
of the number of accesses generated by the queries on the
XML documents designed by our approach.

Categories and Subject Descriptors

H.2.1 [Logical Design]: Schema and subschema

General Terms

Algorithms, Performance, Design

Keywords

Conceptual schemas, XML schemas, query performance

1. INTRODUCTION
In the last few years, the XML data model has been used

as a storage format for several applications. For instance,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’08, September 16–19, 2008, São Paulo, Brazil.
Copyright 2008 ACM 978-1-60558-081-4/08/09 ...$5.00.

XML documents have been directly stored in databases in
their native format [9, 15]. Besides, XML documents have
been more and more used as containers to store data that
will be retrieved or updated by applications [12, 19]. There-
fore, there is an increasing need for effective design method-
ologies to produce XML documents with an optimized struc-
ture to respond well to retrieval and updating operations of
the applications.

XML document design has been considered in a three-level
modeling approach [6, 12, 14, 19]. In the first level, a con-
ceptual schema is generated for representing the application
domain in a high-level abstraction. In the second level, the
conceptual schema is translated into an XML logical schema
which represents the hierarchical structure of the documents
and their constraints. The logical schema is converted to an
implementation schema in the last modeling level. XML
schema definition languages like DTD [4] and XML Schema
[18] are used to define the implementation schema. This
top-down modeling approach is considered one of the best
human-oriented ways to generate XML documents. It is eas-
ier for designers to specify and understand the concepts and
relationships of the system in terms of conceptual models
than in terms of XML models [3, 12].

The conversion of a conceptual schema to an XML schema
is not a straightforward process. The most traditional con-
ceptual models, like ER and UML represent schemas which
can be undirected graphs with cycles. As XML schemas de-
note a tree structure, some conceptual relationships cannot
be represented as a hierarchical relationship between XML
elements. In these cases, a reference relationship must be es-
tablished among the elements that represent the related con-
cepts. Reference relationships are represented by IDREF or
keyref definitions in the XML schema definition languages.
Even though reference relationships are necessary in many
cases, they generate a disconnected schema that often leads
to a poor query performance [14, 19, 20]. In this paper, we
present a conversion method which minimizes the impact of
reference relationships in the performance of the application
queries.

We propose a methodology for generating XML schemas
from conceptual schemas considering the expected workload
of the XML applications. Workload information is given by
the designer in terms of the amount of element instances esti-
mated for XML documents as well as of the main operations
that will be performed over these documents. This informa-
tion is used to determine an optimized structure in the XML
schema, contributing to a better query performance of the
application in general.

177

We evaluate our approach through a case study where
we redesign XML documents used by a purchase applica-
tion. We obtain the conceptual schema of these documents
through the bottom-up method proposed in [11]. Then, a
new XML schema is obtained by applying our approach.
We demonstrate that the XML structure generated by our
approach reduces the amount of elements accessed in the
application queries.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of our conversion approach and
describes the load data used by the process. The XML log-
ical model of our conversion approach is also presented in
Section 2. Section 3 presents the main contribution of this
paper: a conversion algorithm for mapping conceptual con-
structs to suitable structures in the XML logical model con-
sidering the workload of an application. The case study is
presented in Section 4 and related work is discussed in Sec-
tion 5. Finally, Section 6 is dedicated to the conclusions.

2. FUNDAMENTALS
Our conversion approach starts with a conceptual schema

and workload information given by the designer of the ap-
plication, as shown in Figure 1. The conceptual schema is
translated into an XML logical schema in the Logical Design

level. The conversion process applied by this level is defined
by a set of rules for converting each conceptual construct
to an equivalent representation in the XML logical model.
This logical model is an abstract model to represent the
different XML implementation models. In the Implemen-

tation Design level, an XML logical schema is translated
into a schema defined by a specific implementation model
which can be, for instance, a specification in XML Schema
or DTD. Since the XML schema was defined by the conver-
sion approach, conforming XML documents can be created
from the XML schema generated.

Figure 1: XML Document Design Approach

Even though the Implementation Design level is consid-
ered by our conversion approach, in this paper we focus
on generating optimized XML structures from a conceptual
schema in the Logical Design level. Besides, we consider that
an XML logical schema generated by our approach can be
converted to an implementation schema in a very direct way.

Our conversion approach adopts the EER (Extended Enti-
ty-Relationship) model [1] as the conceptual model given
that EER is a suitable model for representing information
concerning an application domain. Despite that, the EER

model contains all the common constructs used by the con-
ceptual modeling of the software design in general so that
it can be considered a generic conceptual model. It means
that our approach could be applied through other concep-
tual models like UML.

We assume that workload information given by the de-
signer is estimated over a conceptual schema. This infor-
mation will be used in the logical design for generating ap-
propriate structures in an XML logical schema. We define
the workload information modeling approach and the logical
model applied by our approach as follows.

2.1 Workload Information Modeling
Load data of the application is estimated and modeled for

providing information to the conversion process. This infor-
mation allows our algorithm to choose an optimized XML
structure to represent a conceptual schema fragment. At
the end of the process, we obtain a suitable XML schema
which can respond as efficiently as possible to the retrieval
and updating operations considered in the workload.

Collecting information about the application load is a hard
task, especially for large applications. On the other hand,
it is necessary to know about it for making choices in the
logical and in the implementation design levels [1, 20]. Ac-
cording to the authors of [1], we may concentrate on the
important 20% of the operations that will be performed by
the application. This assumption is rooted on the so-called
20-80 rule: 20% of the operations produce 80% of the appli-
cation load.

We define an approach for modeling the main application
load. It is a variant approach of the method proposed in
[1] which presents a method for modeling database load.
Two types of information are modeled to characterize the
main load of the application: the volume of data and the
description of operations.

Figure 2(a) shows an example of an EER schema aug-
mented with volume of data. The volume of data is mea-
sured by the average number of instances estimated for each
entity and relationship of an EER schema. This data is rep-
resented on an EER schema itself with the average number
of instances embedded within the entities and relationships.
For example, the average number of instances for the entity
EA is 350. Besides, the average cardinality of each entity in
a relationship is estimated. Avg=4 in Figure 2 (a) denotes
that for each EA instance there are 4 EB instances related
by R1 on average.

Figure 2: (a) EER schema with volume of data in-
formation, (b) operations estimated on this schema

An operation is an elementary interaction with the appli-
cation, which includes retrieval or updating operations. For
each operation given by the designer, there is a daily aver-

178

age frequency in which it is performed and a list of entity
and relationship types involved. The order of the entity and
relationship types in this list indicates the sequence in which
they are accessed by the operation. Each concept (entity or
relationship type) has a daily average number of instances
that are accessed by an operation. Figure 2 (b) shows that
the operation O1 is performed 200 times a day. The enti-
ties and relationship EA, R1 and EB are accessed, in this
sequence, by O1. The access volume of the initial concept
EA is 200 in O1. In the navigation sequence, the average
number of instances of the concepts R1 and EB is obtained
by multiplying the access frequency of EA (200) by the av-
erage cardinality of EA in R1 (Avg=4), i.e, R1 and EB are
accessed 800 times a day by O1.

Once the application volume and operations have been
estimated, we proceed analyzing this information for gener-
ating data that will be used by our conversion algorithm.
In order to choose a suitable structure for a concept in the
XML schema, our algorithm needs to know the total number
of instances accessed by all operations in which that concept
is involved. We define this value as the General Access Fre-

quency of a concept. For the operations in Figure 2 (b),
the General Access Frequency of EB is 2800 because EB is
accessed 800 times a day by O1 and 2000 times by O2.

During the conversion process, the algorithm frequently
needs to know if the General Access Frequency of a con-
cept is relevant/irrelevant for the load of the application.
For this purpose, we compare the General Access Frequency

of the concept with a Minimal Access Frequency which is
established at the beginning of the process. In order to ob-
tain the Minimal Access Frequency, a value corresponding
to the Total Access Frequency of all operations is measured.
The total access is given by the sum of the General Access

Frequency of all entities and relationships of the schema.
A percent value representing the minimal access of the ap-
plication over the total access is given by the user. Then,
this percent value is applied over the Total Access Frequency

value for obtaining the Minimal Access Frequency. Accord-
ing to the Figure 2 (b), the Total Access Frequency of the
schema is 6800. Assume, for instance, that the user provides
1% as the value for denoting the minimal value related to
the total access. Then, we apply this percent value on 6800
and we obtain 68 as the Minimal Access Frequency.

In order to briefly exemplify the application of these con-
cepts in our approach for generating an XML schema, con-
sider the conceptual schema and the load information pro-
vided in Figure 2. The cardinality of the relationship R1

and the functional dependency of EB → EA determine that
it is possible to represent EB as a child element of EA in
an XML schema. However, we can also nest EB as a child
of EC analyzing the R2 relationship. We argue, by analyz-
ing load data information for the XML documents, that we
can determine, for example, the most convenient parent to
the EB concept. This analysis is performed by our conver-
sion approach through the workload information presented
in this section.

2.2 XML Logical Model
We propose an XML logical model to represent the XML

data model. Our conversion approach generates XML sche-
mas defined by this logical model in the Logical Design level.
The XML logical model is an abstract representation for dif-
ferent XML implementation models, like the W3C recom-

mendations (DTD and XML Schema). Such logical model
is a hierarchical model that supports the representation of
the XML constructs and constraints.

Figure 3 presents an XML logical model instance. An
XML logical schema is composed by attributes, elements
and relationships. There are three types of attributes: sim-

ple, identifier and reference attribute. A simple attribute
models an element property which is defined by a single
value, like attribute1. An identifier attribute is an attribute
that is part of an element identifier, like IDattribute1. The
set of identifier attributes in an element forms the element
identifier. A reference attribute is an attribute that refers
to an element identifier, like REFattribute1 that refers to
ComplexElement3.

Figure 3: Example of an XML logical schema

Elements are classified as simple or complex. A simple

element models information that is defined by a simple data
type. It does not have attributes and it can be multi-valued,
like SimpleElement1 with minimum occurrence of 1 and
maximum occurrence of 2. A complex element models in-
formation that is composed by elements and/or attributes.
The component elements of a complex element are orga-
nized by one of two order constructs: ordered or exclusive.
An ordered construct defines n ordered component elements,
with n ≥ 1. An exclusive construct defines n alternatives
for the component elements, with n > 1. The default order
construct of a complex element is ordered and the exclusive

construct is represented by a line that crosses the compo-
nent elements of a complex element. ComplexElement1 and
ComplexElement2 are examples of complex elements with
ordered and exclusive constructs, respectively.

The logical model supports two types of relationships: hi-

erarchical relationship and reference relationship. A hierar-

chical relationship is represented by a line between a source
concept and a target concept. A hierarchical relationship
defines the minimum and maximum occurrence of a target
concept in a source concept. For instance, ComplexElement1

may have zero or more ComplexElement2 instances. The de-
fault minimum and maximum occurrence for target concepts
is 1. A reference relationship is represented by a dashed
line between a reference attribute (or a set of reference at-
tributes) and a complex element. A reference relationship
specifies a set of reference attributes which refer to the iden-
tifier of other complex element, like the relationship between
REFattribute1and ComplexElement3.

As the XML logical model is an abstract representation for
the XML implementation models, an XML logical schema
can be converted to a DTD [4] or XML Schema [18] specifi-
cation in a direct way. Only a few decisions must be made
in the conversion of the identifier and reference attributes
because DTD and XML Schema provide different support
for representing these constraints.

179

3. THE CONVERSION APPROACH
Our conversion approach is based on conversion rules for

mapping EER constructs to equivalent XML compositions.
For explanation purposes, we separate the conversion pro-
cess in two parts: conversion of generalization types and
conversion of relationship types. In both parts, a proce-
dure is given for applying the conversion rules over an EER
schema. Load information is used by these procedures for
generating well-structured XML logical schemas. At the end
of this section, we provide an algorithm which covers these
procedures.

Figure 4 illustrates the application of the conversion rules
and of the algorithm. Consider that load information was
previously modeled so that the General Access Frequency of
the concepts is presented in Table 1. The Minimal Access

Frequency is defined as 130 accesses per day. The General

Access Frequency of the concepts omitted by Table 1 is con-
sidered zero. It means that these concepts are not accessed
by the operations which represent the main load of the ap-
plication. However, they cannot be disregarded and must
be represented in the XML schema.

Figure 4: An Example of EER schema

Table 1: General Access Frequency (GAF) of the con-
cepts of Figure 4

Concept GAF Concept GAF
A 70 L 540
B 200 M 320
C 90 R1 100
E 100 R2 540
H 50 R4 320

3.1 Conversion of Generalization Types
A generalization hierarchy in the EER model defines a

subset relationship between a generic entity, namely super-
class, and one or more specialized entities, namely subclasses.
The disjointeness and completeness constraints that can be
applied on the subclasses establish four possible constraints
on generalization types: total and disjoint (t, d); partial and
disjoint (p, d); total and overlapping (t, o); and partial and
overlapping (p, o) [1, 17].

As shown in section 2.2, our XML logical model does
not consider specific constructs of XML schema languages.
Thus, we proceed to represent generalization types by XML
elements, attributes and relationships. In this section, we
define alternative rules to convert generalization hierarchies
from EER schemas to XML logical schemas and a procedure
which selects the suitable rule to be applied on each EER
generalization type.

3.1.1 Conversion Rules

We provide three alternatives to convert generalization
types. The difference among these alternatives is given by
the different size of XML schemas that each one generates
and the constraints on generalization types that they can
represent.

The conversion strategy defined by Rule 1 generates only
one XML element from a generalization hierarchy. The XML
element is created to represent the superclass and its at-
tributes as well as the attributes of the subclasses. Subclass
attributes are treated as optional in the content model of the
superclass element. On applying this rule, we assume that
the subclass attributes will act as discriminating attributes
to identify an instance of a subclass in the XML documents.
The subclasses which were already converted become child
elements of the element generated by this rule.

Rule 1. The conversion of a generalization type G proceeds as
follows:

1. given an entity Esp defined as the G superclass, generate a
complex element cesp. The attributes of Esp are defined as
attributes in cesp;

2. given {Esb1, Esb2, ..., Esbn} the set of Esp subclasses, for each
Esbi (1 ≤ i ≤ n) do:

IF Esbi was not converted, define the attributes of Esbi as op-
tional attributes in cesp;

ELSE let cesbi be the element that represents Esbi and generate
a hierarchical relationship from cesp to cesbi where the
occurrence of cesbi in cesp is defined as [0..1].

Another alternative generates only XML elements for the
subclasses, and the superclass attributes are reproduced into
each subclass element. This alternative is defined by Rule

2.

Rule 2. Given an entity Esp defined as the superclass of a gener-
alization type and {Esb1, Esb2, ..., Esbn} the set of subclasses of Esp,
generate a complex element cesbi for each subclass Esbi (1 ≤ i ≤ n)
and define the attributes of the Esbi and Esp as attributes in cesbi.

In the alternative defined by Rule 3, the superclass and
subclasses are explicitly represented by a complex element.
Hierarchical relationships are established among the super-
class and subclass elements to represent the relationship.
Disjointness constraints on a generalization type are rep-
resented by the order construct of the superclass element.
Completeness constraints are represented by the minimum
and maximum occurrence of the subclass elements in the
superclass element.

Rule 3. The conversion of a generalization type G proceeds as
follows:

1. given an entity Esp defined as the G superclass, generate a
complex element cesp with the order construct defined as ex-
clusive, if G is a disjoint generalization; or ordered, otherwise.
The attributes of Esp are defined as attributes in cesp;

2. given {Esb1, Esb2, ..., Esbn} the set of Esp subclasses, for each
Esbi (1 ≤ i ≤ n) do:

IF Esbi was not marked, generate a complex element cesbi and
a hierarchical relationship from cesp to cesbi where the oc-
currence of cesbi in cesp is defined as ([0-1],[1]), depending
on the completeness constraint of G (total or partial);

ELSE let cesbi be the element that represents Esbi, generate
an optional reference attribute rasbi in cesp which refers
to cesbi.

Rule 3 is able to convert multiple-inheritance cases. This
treatment is defined in the second step of this rule. The sub-
classes that were processed as child elements or attributes
in other elements are marked as processed by the procedure

180

GeneralizationConversion (see section 3.1.2). Thus, the gen-
eralization types with marked subclasses are established by
reference attributes in multiple-inheritance cases. An exam-
ple of the application of this rule on a multiple-inheritance
case is shown in next section.

3.1.2 Conversion Procedure of Generalization Types

Notice that more than one conversion rule can be applied
to convert a generalization type. We propose the proce-
dure GeneralizationConversion for choosing the appropri-
ate rule for converting each generalization type of a con-
ceptual schema. Each generalization type is converted by
analyzing the load data and the constraints over the gener-
alization case. The procedure establishes a conversion order
in which the conceptual fragments involving generalization
types must be converted. A bottom-up conversion is per-
formed when there are multiple-level hierarchies, i.e., the
generalizations are converted from the bottom to the top of
the hierarchy. Besides, when there is a multiple-inheritance
case, the superclass with the highest General Access Fre-

quency is converted first. It means that the superclass that
is most frequently accessed is made the parent element of an
element that represents a subclass with more than one su-
perclass. In this case, the remaining superset relationships
are represented by reference attributes as defined in Rule 3.
Generalization types involved in multiple-inheritance cases
are always converted by Rule 3.

Procedure 1 GeneralizationConversion
Input: An EER Schema with load data information: E

The Minimal Access Frequency of E : min
Output: Fragments of an XML logical schema: XG

Let G be the set of generalization types {g1, g2, .., gn} of E
Order G so that the generalization types at the bottom of the hi-
erarchy with superclasses that have highest General Access Fre-
quency appear first. Generate the list G’={g1,.., gn}
for all gi ∈ G’ (1 ≤ i ≤ n) with superclass Esp and subclasses
{Esb1,.., Esbn} do

if (there are no marked subclasses in gi) AND (all subclasses in
gi have General Access Frequency lower than min) AND (there
are no subclasses with more than one superclass) then

Apply Rule 1 and mark all the subclasses of gi

else if (The General Access Frequency of Esp is lower than min)
AND (there are no subclasses with more than one superclass)
then

Apply Rule 2 and mark Esp

else

Apply Rule 3 and mark all the subclasses of gi

end if

end for

Since the conversion order of the generalization types was
established, we proceed applying the conversion rules for
generalization types (Rule 1, 2 or 3) and verifying the pre-
conditions of each one, so that the rules which generate the
smallest XML logical fragment are verified first. For Rule

1 and Rule 2, we verify if the General Access Frequency of
the entities that will by omitted is lower than the Minimal

Access Frequency (min). If the General Access Frequency is
higher than min, it means that these entities participate in
frequent operations and the distinction between superclass
and subclasses must be preserved. The last option to convert
generalization types is Rule 3.

In order to exemplify the conversion of generalizations,
consider the generalization types of Figure 4 and the load
information of Table 1. Figure 5 presents the elements gen-
erated to represent the generalization types of Figure 4. As
the General Access Frequency of the entity E (100) is higher

than H (50) and both entities are involved in a multiple-
inheritance case, the generalization type involving E as su-
perclass is converted first. Thus, this generalization type is
converted by Rule 3 and the subclasses F and G are repre-
sented as child elements of the element E. In the sequence,
the generalization type involving H as the superclass is also
converted by Rule 3. However, as G was marked by E, the
relationship between H and G is established by a reference
attribute (gRef) in the element H.

Figure 5: Conversion of generalizations of Figure 4

The generalization type where C is the superclass must
then be converted, considering our bottom-up analysis of
multi-level hierarchies. Rule 1 is applied and the attribute
of the subclass D is represented as an attribute in C. Also,
the element E becomes a child element of C. The top gen-
eralization type involving the superclass A is converted by
Rule 2 and the attributes of A are reproduced in the el-
ements C and B. In this case, the first alternative (Rule

1) cannot be applied because the General Access Frequency

of the subclass B (200) is higher than the Minimal Access

Frequency (130). Thus, Rule 2 is applied because all the
conditions for applying it are guaranteed.

Even though specific rules to convert union types [7] are
not provided in this paper, these conceptual constructs can
be converted by similar rules for converting generalization
types. A discussion about the conversion of generalization
and union types can be found in [16].

3.2 Conversion of Relationship Types
A relationship type is a common conceptual construct

which establishes a correspondence among two or more enti-
ties [1, 17]. The cardinality of relationship types is the main
constraint which can be considered on the conversion to an
XML structure. In this section, we present three rules for
converting relationship types and its constraints as well as
a procedure to perform the conversion rules on the relation-
ship types of an EER schema.

3.2.1 Conversion Rules

In general, each conversion rule of relationship deals with
a specific constraint case on relationship types. Rule 4 is
applied only for 1:1 relationship types, Rule 5 only for 1:N
relationships, and Rule 6 is applied for relationships with
cardinality N:N, n-ary where n>2 or in cases of optional
participation of the entities of 1:1 and 1:N relationships.

Rule 4 generates only one complex element to represent
the relationship type and its related entities. Rule 5 gen-
erates complex elements for each related entity, where one
of them is nested to another and the relationship attributes
are appended in the nested element. The last rule (Rule 6)
generates independent elements for each entity of a relation-
ship type and reference relationships are established among
the elements generated. The conversion rules are defined as

181

Procedure 2 RelationshipConversion

Input: An EER Schema with load data information: E
The Minimal Access Frequency of E : min
Fragments of an XML logical schema generated by Generalization-
Conversion: XG

Output: Fragments of an XML logical schema: XR

Let R be the set of relationship types {r1,..,rn} of E
Order R so that the relationship types with the highest General
Access Frequency appear first. Generate the list R’={r1,.., rn}
repeat

Select the first unmarked relationship ri of R’
Let {E1,.., En} be the set of entities related by ri, such that:
if (ri is binary) AND (there is an unmarked entity Ei with par-
ticipation (1,1) in ri) then

E2 is Ei and E1 is the another entity of ri

else

E1 is the entity that has the highest General Access Fre-
quency in ri

end if

if (ri is 1:1) AND (the participation of E2 is (1,1)) AND (E2 is
unmarked) then

Apply Rule 4 and mark E2

else if (ri is 1:N) AND (the participation of E2 is (1,1)) AND
(E2 is unmarked) then

Apply Rule 5 and mark E2

else

Apply Rule 6
end if

Mark ri

until all relationship types of R’ have been marked

follows and an application example is presented in the next
section.

Rule 4. Given a 1:1 relationship type R which relates the entities
E1 and E2, generate a complex element ceE1 and define the attributes
of E1 as attributes in ceE1. Define the attributes of E2 and R as
attributes in ceE1.

Rule 5. Given a 1:N relationship type R which relates the entities
E1 and E2, generate a complex element ceE1 and define the attributes
of E1 as attributes in ceE1. Generate a complex element ceE2 for rep-
resenting E2 and make it be a child element of ceE1. The occurrence
of ceE2 in ceE1 is defined as ([0-1],[N]), depending on the participation
of E1 in R (optional or mandatory). Define the attributes of E2 and
R as attributes in ceE2.

Rule 6. Given a relationship type R and {E1, E2,.., En} the set
of entities related by R, the conversion of R proceeds as follows:

1. For each Ei (1 ≤ i ≤ n) generate a complex element ceEi and
define the attributes of Ei as attributes in ceEi

2. IF R is a binary relationship without attributes AND the par-
ticipation of E1 in R is defined as ([0-1], 1), generate a reference
attribute in ceE1 referring to the identifier of ceE2;

3. ELSE generate a complex element ceR as a child element of ceE1

and define the attributes of R as attributes in ceR. For each Ei

(1 < i ≤ n) generate a reference attribute in ceR referring to
the identifier of ceEi.

3.2.2 Conversion Procedure of Relationship Types

The procedure RelationshipConversion is proposed to ap-
ply the conversion rules on the relationship types of an EER
schema. The procedure orders the relationship types so that
relationships with the highest General Access Frequency ap-
pear first. This order is established to give priority to the re-
lationships that represent the largest impact on the workload
of the application. Then, if there is more than one nesting
possibility for an entity type considering all the relationship
types in which it participates, we process this entity by the
relationship with the highest General Access Frequency first.

For converting a relationship type, we first determine which
of the entities will be the entity on the top of the hierarchy
in the XML fragment. When the relationship type is bi-
nary and there is an entity with participation (1,1) in the

relationship, the top-entity is the other entity of the rela-
tionship type. In other situations, the top-entity is the en-
tity type with the highest General Access Frequency in the
relationship, i.e., we assume that the relationship type is
more frequently accessed through this entity in the naviga-
tion schema of the operations considered.

Figure 6 presents the XML logical schema generated by
applying the procedure on the relationship types of Figure 4.
According to Table 1, the relationship type with the highest
General Access Frequency is R2 (540) followed by R4 (320),
R1 (100) and R3 (0). Thus, R2 is converted first and the
entity L becomes a child element of C by applying Rule 5.
In the next step, R4 is converted by applying Rule 6. As
R4 is a N:N relationship, a reference relationship must be
established between H and M. The entity M is selected as
the top-entity of the relationship because its General Access

Frequency (320) is higher than H (50). On applying Rule 6,
an element to represent R4 is created as a child element of
M. Then, a reference attribute is created in the element R4

referring to the identifier of the element which represents H.

Figure 6: Conversion of relationships of Figure 4

The relationship R1 involving the entities J and L must
be converted as a reference relationship because the entity L

was previously marked as a child element of C. The relation-
ship is established from L to J because the General Access

Frequency of L is higher than J. Notice that the reference
attribute jRef refers to element M instead of element J. It
occurs because in the next step the 1:1 relationship R3 is
converted by Rule 4. It means that the entity J is repre-
sented in the content model of element M.

Observe that the fragments of the XML schema generated
by the conversion of the generalization types of Figure 4 are
also shown in Figure 6. The algorithm which defines the
order for performing the procedures and produces the final
XML schema is presented in the next section.

3.3 Conversion Algorithm
An algorithm namely EER-XML is proposed to perform

the procedures defined, generating the final XML logical
schema. The generalization types are converted first, fol-
lowed by the conversion of the relationships. The fragments
generated by performing the procedure GeneralizationCon-

version are considered and kept by the procedure Relation-

shipConversion. At the end of the process, the root element
of the XML schema is defined. If there is only one element
that does not have a parent element, this element is set as
the root element of the XML logical schema. Otherwise,
an element is created to represent the root element of the
schema. In this case, all the elements which are not target
elements in the hierarchical relationships become child ele-
ments of the root element. Finally, Figure 6 presents the
final XML schema generated by applying EER-XML on the

182

conceptual schema of Figure 4 and the load information of
Table 1. An element was created to represent the root ele-
ment of the XML logical schema, as shown in Figure 6.

Algorithm 1 EER-XML

Input: An EER Schema with load data information: E
The Minimal Access Frequency of E : min

Output: An XML logical schema: X

Perform Procedure GeneralizationConversion
Perform Procedure RelationshipConversion
XF ← Fragments generated by the procedures
Let CE={ce1,..,cen} be the set of complex elements of XF which
do not have parent elements
if (n == 1) then

Make ce1 be the root element of X
else

Generate a complex element cer to be the root element of X
Make all elements of CE be child elements of cer

end if

4. CASE STUDY ANALYSIS
This section presents a case study to validate our conver-

sion methodology. The goal of this experiment is to show
that our method can improve query performance on XML
documents by reducing the number of access of XML ele-
ments. Existing XML documents were redesigned by our
approach in order to compare the number of accesses gen-
erated by queries over the initial schema and over the re-
designed schema. The experimental approach and the re-
sults are presented as follows.

4.1 Experimental Approach
We apply part of the bottom-up methodology proposed

in [11] to generate a conceptual schema from existing XML
documents. A semi-automatic process for the integration of
XML schemas namely BInXS is proposed in [11]. XML doc-
uments which are compliant to different schemas are taken
by BInXS from a given domain. This approach then gener-
ates a unified conceptual schema for representing all these
XML documents. For experimental purposes, we apply this
method only for obtaining the conceptual schema of a set
of XML documents that are compliant to the same XML
schema. In the first step, BInXS generates an XML Schema
specification for representing the set of XML documents.
Then, the XML Schema specification is transformed into a
conceptual schema represented in an OWL [2] document.
The conceptual schema is defined in a canonical conceptual
model which can be transformed into an EER schema in
a straightforward way. Despite the conceptual schema, the
OWL document holds the element instances of the original
XML documents. These instances are used to measure the
volume of data in our case study, i.e., the average number
of instances of the entities and relationships as well as the
average cardinality of the entities in each relationship type.

We take a set of XML documents from a purchase system.
We obtain an XML schema by applying the first step of
BInXS on the set of XML documents. All the documents
are compliant to an XML Schema which is shown in Figure
7 in the XML logical format. We omit most attributes to
simplify the schema. In the next step, BInXS generates
a conceptual schema which is a conceptual representation
of the XML schema generated in the previous step. This
conceptual schema as well as the volume of data are shown
in Figure 8.

Despite the conceptual schema and the volume of data
given by BInXS, it is necessary to obtain the operation load
of the application. The operation data was given by an ex-
pert user in the application considering the concepts (entity
and relationship types) defined in the conceptual schema. A
set of seven operations was given. It represents the main
load of this application according to the user. The third
column of Table 2 presents the operation load in terms of
access frequency of each concept of the conceptual schema.
The General Access Frequency of each concept involved in
the operations on the conceptual schema was measured and
it is shown in Table 3. We omit the General Access Fre-

quency of concepts which were not used in the operations
considered. The Minimal Access Frequency was given by
100 accesses.

We apply our methodology on the conceptual schema and
on the load data informed by the user. The XML logical
schema generated by our approach is shown in Figure 9.
In order to evaluate our approach, we measure and compare
the access frequency generated by each concept applying the
operations on the original XML schema and on the XML
schema generated by our approach. The access frequency
generated by the original and the redesigned XML schema
is shown in the two last columns of Table 2. We analyze the
access generated by each XML schema in the next section.

4.2 Experimental Results
Analyzing the last line of Table 2, we verify that the Total

Access Frequency increases considerably by comparing the
access generated on the conceptual schema with the original
and redesigned schemas. Basically, this increase is the con-
sequence of reference relationships used to represent a few
conceptual relationships in the XML schemas.

The number of the elements in the redesigned schema is
smaller than in the original schema. One of the reasons
for this reduction is that Rule 1 was applied to convert the
generalization types involving the superclasses Order and
Piece. This rule was applied because the General Access

Frequency of the subclasses is lower than the Minimal Access

Frequency assumed.
A different nested structured is presented in the redesigned

schema. This new structure is the reason for the reduction
of the access frequency on the redesigned schema. This re-
duction can be seen comparing the two last columns of Table
2. Our algorithm gives preference to the conversion of the
relationship types that have the highest General Access Fre-

quency. For instance, consider the entity ItemPR and the
minimum and maximum occurrence of this entity in the re-
lationships request and markedItem in Figure 8. This entity
could be converted as a child element of the PurchaseReq-

uisition element or of the Piece element. As the General

Access Frequency of markedItem relationship (750) is higher
than request relationship (500), the entity ItemPR is con-
verted first by markedItem so that the ItemPR is represented
as a child element of Piece. The relationship request is con-
verted in a subsequent step and a reference relationship is
established between PurchaseRequisition and ItemPR.

Again, as shown in Figure 7 and Figure 9, the ItemPR

concept was represented as a child element of PurchaseReq-

uisition element in the original schema and as a child el-
ement of Piece element in the redesigned schema. These
different representations generate different access frequen-
cies on the operations O1 and O7 as is shown in Table 2. In

183

Figure 7: The original XML schema

Figure 8: The EER schema generated by BInXS

Figure 9: The redesigned XML schema

184

Table 2: Operations on schemas
Concepts Access Frequency on...

Conceptual Original Redesigned
schema XML schema XML schema

O1 Piece 50 50 50
markedItem 750 750 -

itemPR 750 2306250 750
Total: 1550 2307050 800

O2 Piece 100 100 100
outPiece 7500 7500 -

DeliveryItem 7500 115312500 7500
Total: 15100 115320100 7600

O3 Delivery 50 50 50
content 250 - 768750

DeliveryItem 250 250 250
distribution 375 375 -

Dist.Item 375 8648437.5 375
Total: 1300 8649112.5 769425

O4 Piece 150 150 150
file 3000 - -

Register 3000 3000 3000
domain 15000 15000 -

SearchItem 15000 307500000 15000
Total: 36150 307518150 18150

O5 Order 60 60 60
basket 240 - -

OrdemItem 240 240 240
being 240 336000 -
Piece 240 240 49200

Total: 1020 336540 49500
O6 PR 60 60 60

requestOn 78 48000 78
Purch.Order 78 78 -

Order 78 78 27300
basket 312 - -

OrderItem 312 312 312
Total: 918 48528 27750

O7 PR 100 100 100
request 500 - -
ItemPR 500 500 307500

Total: 1100 600 307600
TOTAL: 57138 434180080.5 1180825

O1, the original schema generates 2306250 accesses on the
element ItemPR because it is necessary to compare the 750
values of the reference attribute in markedItem with all the
instances of ItemPR element (3075). It does not occur to
perform O1 on the redesigned schema because the ItemPR

element is represented as a direct child of the Piece element.
In this case only 750 accesses are necessary to achieve the
ItemPR element in O1.

As the relationship request is represented as a reference re-
lationship in the redesigned schema, the access increases for
O7 to achieve the ItemPR element if compared with the ac-
cess generated by the original schema. However, the lowest
access generated by nesting ItemPR in Piece in O1 over-
comes the number of accesses generated by the redesigned
schema in O7.

The nested structure of the entities DeliveryItem, Distri-

butionItem and SearchItem in the redesigned schema is also
different from the original schema. The impact of these dif-
ferent structures in the operations can be checked by com-
paring the access generated by the original and redesigned
schemas.

Another relevant differential is related to the reference
relationships. The conceptual relationship being is repre-
sented as a reference relationship for both the original and
the redesigned schema. However, the reference attribute is
located as an attribute of the OrderItem in the redesigned
schema, and as an attribute of the being element in the con-
tent model of the Piece element in the original schema. The

Table 3: General Access Frequency (GAF) of the con-
cepts of Figure 8

Concept GAF Concept GAF
SearchItem 15000 domain 15000
DeliveryItem 7750 outPiece 7500
Register 3000 file 3000
ItemPR 1250 markedItem 750
OrdemItem 552 basket 552
Piece 540 request 500
DistributionItem 375 distribution 375
PR 160 content 250
Order 138 being 240
PurchaseOrder 78 requestOn 78
Delivery 50

Algorithm EER-XML establishes the reference relationship
from the element that represents the entity with the high-
est General Access Frequency, in this case the OrderItem

entity. This is an appropriate treatment because in most
practical cases, the entities with the highest General Access

Frequency in a relationship also have the greatest number
of instances. Thus, we can minimize the number of accesses
comparing the values of a reference attribute with all the
instances of the entity which has the smallest number of in-
stances in the relationship. For example, we generate the
lowest access frequency for achieving the Piece instances in
O5 comparing the 240 instances of the reference attribute in
OrderItem with all the 205 instances of the Piece element.
Instead, the original schema compares the 240 instances of
the OrderItem element with all the 1400 instances of being

for achieving the Piece instances. It generates the highest
access frequency (336000) in O5.

The number of reference relationships generated by our
approach in this case study is the same as those of the orig-
inal schema. However, we can observe in Table 2 that the
Total Access Frequency generated by applying the opera-
tions on the original schema is reduced by the redesigned
schema. It means that our approach does not reduce the
number of reference relationships but it minimizes the im-
pact of these relationships, generating a lower diary access
frequency for the whole schema. Hence, query performance
will be reduced by applying the operations on XML docu-
ments compliant to the XML schema generated by the Al-
gorithm EER-XML.

5. RELATED WORK
There are several approaches that deal with the conversion

of a conceptual model to an XML model. We analyze ap-
proaches that consider the main constructs of a conceptual
model in their conversion process. Algorithms which gener-
ate schemas in the XML Schema language are proposed in
[10] and [13]. Conversion approaches to translate concep-
tual schemas into DTD schemas are presented in [5] and [8].
All this work determines the XML nested structure by a set
of entities which are converted as top-level-elements in the
XML schemas. Top-level-elements are identified by a classi-
fication of prevalent entities in [10]. However, the method to
obtain these entities is not presented. In [5] and [13], these
entities are selected according to their cardinalities in the
relationship types. In [8], the designer determines which the
most relevant entities to be converted as top-level-elements

are. However, for most practical cases, a considerable num-
ber of entities is converted as top-level-element in [5], [8] and

185

[13], generating many reference relationships for represent-
ing the conceptual relationships involving these entities.

Alternative conversion rules are not supplied by the most
related algorithms. Despite that, some constructs on gen-
eralization types are missed, mainly in [10] and [13]. The
set of conversion rules applied by EER-XML attends all the
possible constructs and constraints on generalization types
in a conceptual model, including union types, multiple in-
heritance and multiple-level hierarchies. Besides, some of
the related algorithms are strongly tied to an XML schema
language. Our approach provides conversion rules for con-
verting all the conceptual constructs to an abstract repre-
sentation of the XML schema languages.

The approaches presented by [12] and [19] are focused,
essentially, on generating optimized XML structures from
a conceptual model. Compact and redundancy-free XML
documents are obtained from analysis of the constraints of a
schema defined by a generic conceptual model in [12]. How-
ever, generalization types are not considered in this conver-
sion approach. These conceptual constructs are not consid-
ered in [19] either. A methodology to maximize the con-
nectivity between entities related by relationships in an ER
schema is proposed by [19]. For achieving this connectivity,
they generate an XML schema with multi-colors, where each
color is used to represent one aspect of the complete XML
schema. The main problem with this approach is that it is
necessary to extend XML schema definitions and XML query
languages for supplying this multi-color approach. Above
all, an overhead is generated on query performance to con-
sider these multiple colors.

6. CONCLUSION
This paper provides a methodology for designing XML

schemas from conceptual schemas and load information. In
our approach, an EER schema is translated into an XML
schema defined by an XML logical model. The XML logical
model is an abstract model to represent the most common
XML schema languages. Load information is considered to
generate optimized XML structures in terms of the main
load of an application.

The volume of data and the operations estimated lead our
algorithm to an appropriate conversion rule for translating
a specific conceptual fragment into an XML construction.
Despite that, load data is also used to determine the best
nested structure for the concepts of the conceptual schema
in the XML schema. A case study presented in this pa-
per demonstrates that our design approach can improve the
query performance on XML documents by reducing the ac-
cess frequency of the elements of the XML schema. This re-
duction depends on the possible advances which can be made
in an XML schema. Hence, the improvements achieved by
our methodology depend on the conceptual schema and the
load information provided by an expert user.

As future work, we are exploring the possibility to reduce
the number of reference relationships on XML schemas when
a relationship is frequently accessed through entities which
have a low access frequency in updating operations. In this
case, our schemas could allow data redundancy, however,
the overhead cost of update anomalies would be reduced.
We are also working on a tool for implementing the process.
This tool will support the automatic process as presented
in this paper, and also a semi-automatic process which the
user can choose, for example, the most convenient rule for

converting a special EER fragment. In spite of that, a dy-
namic methodology for redesigning XML documents is being
considered. This methodology could be used in applications
in which the XML schemas are always evolving. Queries
that are frequently performed on XML documents would be
taken as a parameter for redesigning the XML schemas.

7. REFERENCES
[1] C. Batini, S. Ceri, and S. Navathe. Conceptual Database

Design: An Entity-Relationship Approach. The
Benjamin/Cummings Publishing Company, 1992.

[2] S. Bechhofer, F. Harmelen, and J. Hendler. Owl web ontology
language reference. 2002.

[3] L. Bird, A. Goodchild, and T. A. Halpin. Object role modeling
and xml-schema. In International Conference on Conceptual
Modeling, pages 661–705. Springer Heidelberg, 2000.

[4] T. Bray and J. P. et. al. Extensible markup language (xml) 1.0
w3c recommendation, 2000.

[5] M. Choi, J. Lim, and K. Joo. Developing a unified design
methodology based on extended entity-relationship model for
xml. In International Conference on Computational Science,
pages 920–929. Springer Heidelberg, 2003.

[6] R. Conrad, D. Scheffner, and J. C. Freytag. Xml conceptual
modeling using xml. In International Conference on
Conceptual Modeling, pages 558–571. Springer, 2000.

[7] R. Elmasri, J. Weeldreyer, and A. R. Hevner. The category
concept: An extension to the entity-relationship model. In
Data Knowledge Engineering, number 1, pages 75–116, 1985.

[8] J. Fong and A. F. et. al. Translating relational schema with
constraints into xml schema. In International Journal of
Software Engineering and Knowledge Engineering,
number 16, pages 201–244, 2006.

[9] H. Jagadish and S. A.-K. et. al. Timber: A native xml
database. In International Journal on Very Large Databases,
volume 4, pages 274–291. Springer-Verlag New York, 2002.

[10] C. Liu and J. Li. Designing quality xml schemas from e-r
diagrams. In Advances in Web-Age Information Management,
pages 508–519. Springer Heidelberg, 2006.

[11] R. S. Mello and C. A. Heuser. Binxs: A process for integration
of xml schemata. In International Conference on Advanced
Information Systems Engineering, pages 151–166. Springer
Heidelberg, 2005.

[12] W. Y. Mok and D. W. Embley. Generating compact
redundancy-free xml documents from conceptual-model
hypergraphs. In IEEE Transactions on Knowledge and Data
Engineering, number 18, pages 1082–1096, 2006.

[13] P. Pigozzo and E. Quintarelli. An algorithm for generating xml
schemas from er schemas. In Italian Symposium on Advanced
Database Systems, pages 192–199, 2005.

[14] N. Routledge, L. Bird, and A. Goodchild. Uml and xml schema.
In Australian Database Conference, pages 157–166. IEEE,
2002.

[15] H. Schöning. Tamino - a dbms designed for xml-schema. In
International Conference on Data Engineering, pages
149–154. IEEE, 2001.

[16] R. Schroeder and R. S. Mello. Conversion of generalization
hierarchies and union types from extended entity-relationship
model to an xml logical model. In ACM Symposium on
Applied Computing, pages 1036–1037. ACM Press, 2008.

[17] J. M. Smith and D. C. P. Smith. Database abstractions:
Aggregation and generalization. In ACM Transactions on
Database Systems, volume 2, pages 105–133. IEEE, 1977.

[18] H. Thompson and D. B. et. al. Xml schema part 1: Structures
w3c recommendation, 2004.

[19] N. Wiwatwattana and H. J. et. al. Making designer schemas
with colors. In International Conference on Data Engineering.
IEEE, 2006.

[20] Z. Xu and Z. G. et. al. Dynamic tuning of xml storage schema
in vxmlr. In International Database Engineering and
Applications Symposium, pages 76–86. IEEE, 2003.

186

