Towards Software Configuration Management for Unified
Models

Maximilian Kégel
Technische Universitat Minchen, Department of Computer Science
Chair for Applied Software Engineering
Boltzmannstrasse 3, D-85748 Garching, Germany

koegel@in.tum.de

ABSTRACT

Change occurs throughout the software lifecycle. Software
Configuration Management tools and techniques provide the
foundation to effectively control change. With a growing
number of approaches combining models from different do-
mains into one unified, integrated model ([15], [12]), there is
also an emerging demand for SCM techniques and methods
that are able to support these unified models. Traditional
SCM systems operating on the abstraction of a filesystem
and managing change at the granularity of textual lines are
not adequate for these requirements. We propose a novel ap-
proach to SCM for unified models combining product ver-
sioning, operation-based deltas and change packages. To
demonstrate feasibility we have implemented our approach
in Sysiphus a suite of tools for collaborating over Software
Engineering artifacts represented in a unified model.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management—>Model Com-
parison and Versioning, SCM

General Terms
MANAGEMENT

Keywords

SCM, configuration management, versioning, operation-based,

unified model

1. MOTIVATION

Change pervades the entire software life cycle. Require-
ments change when developers improve their understand-
ing of the application domain, the system design changes
with new technologies and design goals, the detailed design
changes with the identification of new solution objects and
the implementation changes as faults are discovered and re-
paired. These changes can affect every work product, from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CVSM’08, May 17, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-045-6/08/05 ...$5.00.

19

system models to source code and documentation. It is
widely recognized that software configuration management
(SCM) is crucial for maintaining consistency among while
minimizing the risk and cost of changes to all of these arti-
facts [14]. We claim that Software Engineering models are
essentially graphs. For many artefacts such as UML class or
use case diagrams this is quite obvious, however even other
artifacts such as release plans or even design decisions are
graph-based. Wolf proposed such a model with graph-based
meta model called Rational-based Unified Software Engi-
neering model (RUSE) in [15]. In an integrated (unified)
model we distinguish two different types of links. Intra-
model links connect model elements within one model, such
as a use case model. In a use case model a link from a use
case to a participating actor is an intra-model link. Inter-
model links connect model elements of different models. A
link from a use case in the use case model to an open issue
in the issue model is an inter-model link.

Support for managing change in a unified model with
intra-model and inter-model links links essentially requires
support for managing change in models with graph struc-
ture. The traditional SCM systems are geared towards sup-
porting textual artifacts such as source code. Therefore
changes are managed on a line-oriented level. In contrast,
many software engineering artifacts are not managed on a
line-oriented level and therefore a line-oriented change man-
agement is not adequate. For example adding an association
between two classes in a UML class diagram is not line-
oriented nor can the change be managed in a line-oriented
way. A single structural change in the diagram will be man-
aged as multiple line changes by traditional SCM systems.
When using a traditional SCM system there are two ap-
proaches, the models are either versioned as a single config-
uration item or they can be split up into several files. The
former approach inhibits any meaningful way of managing
change. The most severe problem with this approach is that
frequent merging will be required. In the latter approach the
SCM system cannot manage valid configurations of model
elements and their links, because the semantics of the model
links are not represented in the version model [5]. Nguyen et
al. describe this problem as an impedance mismatch between
the flat textual data models of traditional SCM systems and
graph-structured software engineering models. [8]. We con-
clude that the traditional SCM systems are inadequate for
managing artifacts with graph structure and for supporting
traceability.

This paper addresses the problem by proposing a novel
approach for a software configuration management system

ModelLink

/AN

[

|

‘ IntraModelLink ’

InterModelLink ’

UML Use Case Model

UseCaseActorLink

UseC:

Issue Model

Issue

Figure 1: Intra- and Inter-Model Link taxonomy (UML class diagram)

for artifacts with graph structure featuring intra-model and
inter-model links. It is based on the RUSE model, a uni-
fied model integrating software engineering artifacts from
all development activities [15]. Furthermore our approach
builds on operation-based deltas, change packages and prod-
uct versioning. To demonstrate feasibility, we implemented
the proposed software configuration management system in
Sysiphus [1], a tool for collaborating over software engineer-
ing artifacts following the RUSE model.

The paper is organized as follows: In Section 2 we present
a requirements analysis for key dimensions of a software con-
figuration management system. In Section 3 we present our
approach. Finally we evaluate the implementation of our
approach in Section 4. A comparison with other research ef-
forts was not manageable within the page limit of this paper,
but is available on request from the author.

2. REQUIREMENTS ANALYSIS

The discussion and evaluation of various SCM techniques
throughout this section largely follows Conradi and West-
fechtel’s uniform version model presented in [2, 3]. This
framework provides a common terminology and classifica-
tion the available alternative approaches for SCM system
design can be uniformly expressed and compared with. We
extended the categorization of the original framework by
adding the aspect of delta representation since it is impor-
tant for change management of graph-structured artifacts.

2.1 Delta Representation

Deltas can be represented using one of two basic approaches,
state based deltas or operation based deltas. The differences
between the two approaches can be very subtle in many
SCM systems but are highly relevant. In the state based
approach only the state representations of different versions
are stored, possibly using compression or sharing of com-
mon parts. Deltas are reconstructed using a differencing
algorithm that compares the different state representations.
In the operation based approach, changes are described by
using the original sequence of editor operations that caused
the changes to represent the deltas.

With state based deltas, the semantic context of the orig-
inal operations that caused the change has to be recalcu-
lated with the deltas which is expensive, time complexity
is dependent on the project size and in some cases does
not work at all [5]. For example, it can be impossible to
unambiguously recalculate the original sequence of change

20

operations when the changes of one operation are partially
or completely masked by those of a later operation. This
problem is of particular importance for systems where ar-
tifacts are internally represented using a meta model and
a single change operation actually results in a sequence of
meta-model transformations.

For such multi-layer data models with graph structure, the
artifacts are often represented in a structured way, e.g. using
XML, to preserve more contextual information to assist in
the reconstruction of the original semantic context of the
deltas. This approach is used in systems described in [10],
[7], [11] and [5]. However, even this improved approach can
not resolve all ambiguities and remains complicated. [5]

Storing the original editor operations automatically cap-
tures the original semantic context of the changes. Using
the operation based approach, deltas can be recorded on
the model layer. Several other research efforts have suc-
cessfully employed the operation based approach in similar
environments [13, 8, 9].

A drawback of the operations based approach is that the
operations depend on the editors used, resulting in coupling
the editor tools with the SCM engine. However, this can
be resolved by defining a standardized language to express
changes in the means of operations.

The editors have to support the recording of operations,
which is usually not provided in systems with a simple inter-
face to the SCM system, or in systems that have to support
arbitrary editors. This is probably the main reason why
operation based systems are not in widespread use today.

For the reasons mentioned above we suggest an opera-
tion based delta representation. It is important to note that
operations need to fulfill two requirements in order to be us-
able in operation based deltas [6]: The operations have to be
deterministically replayable in order to be used in forward
deltas and furthermore the operations have to be reversible
in order to be used in backward deltas.

2.2 Delta Granularity

Another important question regarding an SCM system is
the granularity with which changes are described. This is
called the delta granularity. In the RUSE model, changes
occur on three different semantic layers of granularity as
shown in Figure 2:

Logical Layer These changes are sets of logically coherent
work as seen by the user, e.g. ”I updated the use cases
according to today’s client review”.

Logical Layer

clarify use case

Model Layer

add actor

add step set name

Meta Model Layer

| create element | |

add link | | set field

Figure 2: Three layers of change

Model Layer These changes are atomic changes as far as
a specific model is concerned, e.g. ”set a new initiating
actor for a use case”. They correspond to model spe-
cific operations on the model elements and are usually
comprised of several changes on the meta model layer.

Meta Model Layer These are the changes as seen by the
meta model layer. They change attribute values of
single model elements. Users of the system are usu-
ally not aware of and do not understand this layer of
change.

The SCM approach needs to be able to describe and track
changes on all three layers of granularity. Change tracking
can easily be achieved on the meta model layer since changes
can be described here with the finest granularity of changes
to single attributes of single model elements. Meta model
change description has the additional benefit of being inde-
pendent of the model layer. Therefore, changes should be
described and tracked on the meta model layer.

Unfortunately, this alone is not sufficient since it does not
capture enough context. A meta model change on its own
will not be meaningful to a user of the system since he will
be working on the semantic level of the model layer and
generally not be aware of the mechanics of the meta model
layer. Reconstructing the original model layer changes from
a series of meta model changes is a difficult task [5]. Fur-
thermore, operations on the model layer often do not have
an injective mapping to the meta model, making an un-
ambiguous reconstruction impossible even in theory. As an
obvious example, the removal of an element in one part of
the graph and the addition of a similar element in another
part of the graph could be the result of a move operation as
well as the result of a delete and add operation. Therefore,
additional information needs to be provided by operations
on the model layer to preserve their full semantic context.

An SCM system can automatically track and describe
changes on the meta model and model layer, but not on the
logical layer. Therefore, the SCM approach must provide
a mechanism for manually grouping and describing logical
changes. Our approach provides change packages with log
messages to achieve this on the logical layer of granularity.

2.3 Version Granularity

Three possible approaches for version granularity are de-
scribed in [2]: Component Versioning, Total Versioning and
Product Versioning

21

Component Versioning lacks intrinsic support for man-
aging consistent configurations, as every configuration item
is in its own version space. However the inter-model and
infra-model links in the RUSE model introduce dependen-
cies among the model elements and therefore a configuration
as a set of versions of model elements needs to be managed.

Total Versioning is not a big improvement in this respect
since it still requires explicit management of consistent con-
figurations. The model elements managed by the SCM sys-
tem should completely and unambiguously describe exactly
one system under development. Therefore, there is usually
only one valid configuration at any point in time. Thus, the
flexibility of being able to explicitly manage configurations
is not needed and actually is a disadvantage by unnecessar-
ily increasing the complexity of the system. Offloading this
task of managing the configurations to the user would make
using the system very difficult and error prone. Many prob-
lems of this approach are described in [8]. Furthermore, this
would imply that the SCM engine needs to be able to handle
the structure and semantic integrity constraints of configu-
ration items and configurations. However the SCM engine
should be kept as independent of the internal structure of
the data model as possible.

Product Versioning lacks any modularity of the version
space since it only has one uniform global version space for
all configuration items. This non-modularity has its advan-
tages and disadvantages. The main advantage is that version
spaces of different configuration items are naturally related,
alleviating the need to find combinations that produce valid
configurations. Product versioning thus automatically pro-
vides consistent configurations without the need for explicit
management of configurations or the SCM engine having to
know about the exact nature of the data model. Further-
more, product versioning is a natural match with change
packages since both approaches handle changes spanning
multiple configuration items as a coherent entity.

One disadvantage of product versioning is that variants
need to be global, too [3]. In our case this is not an im-
portant concern since varying single data model elements is
seldom required as there is usually only one valid configu-
ration at any point in time due to the many interdependen-
cies among model elements. In cases where this is required,
such variants can easily be provided by branching. Another
drawback of product versioning is that no unique version
or history exists per configuration item. For the former,

the last product version that changed the item can be used.
For the latter, filters can easily be used that select only the
changes for the specified elements when extracting history
information.

Summarizing the analysis in this section, product version-
ing provides the version granularity most suitable for con-
figuration management on graph-structured artifacts. We
therefore use product versioning in our approach.

3. OUR APPROACH

In this section we present important aspects of our solu-
tion. We will first present our version object model and then
go into detail about various other aspects of our approach.

3.1 Version Object Model

The version model resulting from the previous analysis
is shown in a UML class diagram in Figure 3. The version
model classes are shown with their dependencies on the data
model.

The Version space is represented by a version tree graph
structure consisting of branches, version nodes and edges for
revision and variant relationships. The revision edges are
associated with the change packages describing the changes
between its two version nodes.

History The History class represents the history of a project.

It provides operations for creating revisions, branches
and tags and for accessing specific versions, differences
and history information.

Branch The Branch class represents a branch of concurrent
development in the version space and is composed of
all versions on that branch.

Version Versions represent the nodes in the version graph.
The state of the project at a specific version can either
be represented explicitly by an instance of Project Data
or implicitly by its position in the version graph and
the appropriate deltas.

HistoryLink, VariantLink, RevisionLink The HistoryLink

class and its subclasses represent the edges in the ver-
sion tree graph. A revision relationship between two
Versions is represented by the RevisionLink class. The
changes that caused the revision are described by the
associated ChangePackage. A variant relationship is
represented by a VariantLink. Note that a Version can
have at most one incoming and at most one outgoing
RevisionLink. If it has no incoming RevisionLink, it is
the initial version of a branch. If it has no outgoing
RewvisionLink, it is the head revision of that branch.
A Version can have an arbitrary number of outgoing
VariantLinks since it can have an arbitrary number
of variants. However, a version can have at most one
incoming VariantLink, in which case it has to be the
initial revision of a new branch.

3.2 Change representation

In section 3.1 we did not show how the three layers of
change introduced in section 2.1 are reflected in the version
model.

Figure 4 shows the four classes for representing change on
their appropriate layers. The ChangePackage class repre-
sents change on the logical layer. It is an ordered aggrega-
tion of all instances of ModelOperation that are generated

22

between two commits of a workspace. As mentioned ear-
lier grouping and describing change on the logical layer is
up to the user by providing meaningful and descriptive log
messages. Instances of ModelOperation are automatically
captured by the implementations of the various model ele-
ments and their methods (e.g. setInitiatingActor(Actor ac-
tor)). These announce to the SCM engine whenever they
begin and finish an operation. ModelOperation is part of
an ordered composite pattern with AbstractOperation and
MetaModelOperation. Thereby we obtain an ordered tree
structure of instances of ModelOperation as inner nodes and
with instances of MetaModelOperation as leaf nodes. This
is useful for structuring change for visualization. Complex
changes such as refactoring are more easily apprehensible in
this way. The MetaModelOperation class represents changes
on the meta model layer. An instance of it always reflects
ezactly one change affecting exactly one model element.

3.3 Deterministic replay and reverse of change

The requirements for delta representation discussed in
section 2.1 imply that all instances of ModelOperation and
MetaModelOperation have to be deterministically replayable
and reversable. Instances of ModelOperation are replayed by
replaying all their leaf nodes of MetaModelOperation in the
order specified by the ordered tree structure as described in
3.2. They are reversed by reversing the specified order and
reversing all instances of MetaModelOperation. Both deter-
ministic replay and reverse for ModelOperation rely on deter-
ministic replay and reverse of MetaModelOperation. Going
into detail on the deterministic replay and reversibility of ev-
ery MetaModelOperation subclass would fill the remainder of
this paper, but the essence can be described more abstract.
All subclasses of MetaModelOperation only change the value
of exactly one model element in a deterministic way (e.g.
no search and replace). Reversing instances of these sub-
classes of MetaModelOperation only requires to maintain the
previous value in the instances of the MetaModelOperation.
Swapping previous and new value will reverse the change.

3.4 Diffing and Merging

In our version model the differences between two versions
can be described as the directed sequence of change opera-
tions transforming the source version into the target version.
Since we use operation based deltas as described in Section
2.1, this information is readily available by traversing the
version graph on a directed path from the source version to
the target version. This path always exists since the version
graph is a tree structure with the initial empty version at
its root. The question concerning two way versus three way
diffing no longer arises as the ambiguities occurring in two
way diffing do not exist due to the additional information
provided by the operations. When diffing with this approach
a diff can contain many redundant operations that the user
is not interested in, e.g. when a later change masks an earlier
one. However by canonizing the sequence, we can eliminate
redundant operations. For merging, we propose a diff-and-
apply approach. In this approach a sequence of change op-
erations that is derived by differencing as described above is
applied to the state of the local workspace. Conflicts need
to be detected and resolved as described below. We decided
to use diff-and-apply merging since it is a very simple yet
powerful approach that supports all types of merging use
cases as described in [4].

*
History |Q—| Branch

represents

1
Version 'J
source arget

11
0.1 * 0..1

ProjectState

HistoryLink

ChangePackage H RevisionLink

| VariantLink |

Figure 3: Version Model (UML class diagram)

Logical Layer

ChangePackage

Q

{ordered} (ordelred}
™

Model Layer

| AbstractOperation |<]—| ModelOperation |

[AN

Figure 4: Three layers of change (UML class diagram)

3.5 Conflict Detection and Resolution

The checkout/modify/commit interaction model we use
as workspace interaction model implies an optimistic con-
currency control scheme. Therefore, conflicts can arise when
synchronizing the workspace with the central repository. An-
other possible source of conflicts is the merging of changes
into a workspace.

Closer inspection reveals two basic types of conflicts that
have to be handled differently. The first type of conflicts
is caused by concurrent change operations where the end
result differs depending on the order of serialization of the
operations. An example for this is the concurrent modifica-
tion of the same element. These conflicts can be resolved by
choosing a serialization or discarding one of the change oper-
ations. The second type of conflicts is caused by operations
that can not be applied to the current state of the model or
would violate the model’s integrity when applied. An exam-
ple for this type of conflict are modification operations to
elements that no longer exist.

To detect conflicts we apply a very simple approach. Two
change packages A and B conflict if A does contain meta
model operations on model elements that are also touched by
a meta model operation in B. If a conflict was detected, the
system will need user assistance to resolve the conflict. Con-
flict resolution goes through two phases: deciding whether
model layer operations should be accepted or rejected and,
when all operations have been decided upon, merging the
changes according to these decisions to produce a resulting
list of operations.

In the first phase, whenever the user decides to include a
model layer operation, the system proceeds as follows:

e Determine all model layer operations in the same list
that are required for the selected operation and hold
them in set A. More formally speaking, calculate the
transitive closure of the required relationship on all
model layer operations in the list of the selected oper-
ation. If a is the selected model layer operation and a

23

requires b is true in the transitive closure, b is added
to the set A.

e Determine all model layer operations in the other list
that are conflicting with any operation in set A and
save them in set B. Formally, we add a model layer
operation b of the other list to B when the conflict
detection strategy determines a con flicts b for any a
in B.

e Determine all model layer operations in the other list
that are required for any operation of set B and add
them to set B. Formally, we calculate the transitive
closure on the required relationship on all model layer
operations in the list not containing the selected op-
eration. If for any operation b in set B and another
operation a from the list not containing the selected
operation, a requires b is true, then we add a to the
set B.

e All model layer operations in set A will be marked as
to be accepted, all model layer operations in set B as
to be rejected.

In the second phase, the actual merge producing a result-
ing list of model layer operations takes place. All operations
have been decided upon at the start of this phase. The sys-
tem will merge the lists of operations as follows:

e Revert the workspace back to its base version but save
all uncommitted changes in the workspace.

e Update the workspace to the version it was intended to
be updated to in the beginning. Note that this will not
always be the current head revision of the respective
branch.

e All model layer operations that are marked as to be
rejected in the non-negotiable list of changes of the
repository are reversed and added to the result list in
reverse order of appearance in time. This will undo all

model layer operations the user has decided to reject
although they have already been committed.

e All model layer operations marked as to be accepted in
the non-negotiable list of changes of the repository, can
be ignored, they have already been committed earlier
and they are already applied in the workspace also.

e All model layer operations marked as to be rejected
in the negotiable list of uncommitted changes of the
workspace, can be ignored, they will not be committed
and have already been reverted in the workspace.

e All model layer operations marked as to be accepted
in the negotiable list of uncommitted changes of the
workspace, are applied to the workspace and added to
the result list in order of appearance in time.

e The result list is defined as the list of uncommitted
changes of the workspace.

Note that the result of the conflict resolution will not be
committed automatically after the merging is completed.
This gives the user the possibility to review the result of
the merge on his model in detail before committing.

4. EVALUATION

To demonstrate the feasibility of our approach we im-
plemented it for Sysiphus according to the presented key
ideas. The time complexity for the retrieval of n changes
from the repository (needed in update and view changes) is
in O(n) for calculating the changes (they only have to be
collected) and also O(n) for possibly applying the changes
to a workspace. Canonizing the changes before sending for
update operations ist still in time complexity O(n). When
the changes are canonized before sending they have the the-
oretical minimum size when not taking the representation as
Java objects into account. Please note that the time com-
plexity for retrieving changes is independent from project
size because of the operation based approach.

We have employed the SCM for Sysiphus in three student
projects. The project size in number of elements was 200,
1200 and 2700. The number of changes (on the meta model
layer) was 900, 7800 and 16900 respectively. The students
reported increased productivity in evaluating change and
awareness about change, apart from the obvious advantage
of offline operation. The anecdotal evidence we collected
shows that the approach is feasible and works in practice.
We are currently evaluating the SCM in a student project
with 40 students working on a problem in the area of airport
logistics. Extensive data has already been collected and will
hopefully help to improve our approach. We plan to extend
the approach by improved conflict detection and visualiza-
tion. Especially conflict detection will need further research
since false positives heavily impact the productivity while
merging.

5. REFERENCES

[1] B. Bruegge, A. H. Dutoit, and T. Wolf. Sysiphus:
Enabling informal collaboration in global software
development. In Proceedings of the First International
Conference on Global Software Engineering, October
2006.

24

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

R. Conradi and B. Westfechtel. Towards a uniform
version model for software configuration management.
In ICSE ’97: Proceedings of the SCM-7 Workshop on
System Configuration Management, pages 1-17,
London, UK, 1997. Springer-Verlag.

R. Conradi and B. Westfechtel. Version models for
software configuration management. ACM Comput.
Surv., 30(2):232-282, 1998.

P. H. Feiler. Configuration management models in
commercial environments. Technical report, Software
Engineering Institute, Carnegie Mellon University,
1991.

K. Letkeman. Comparing and merging uml models in
ibm rational software architect. Technical report,
Modeling Compare Support, IBM Rational, 2005.

E. Lippe and N. van Oosterom. Operation-based
merging. In SDE 5: Proceedings of the fifth ACM
SIGSOFT symposium on Software development
environments, pages 78-87, New York, NY, USA,
1992. ACM Press.

A. Mehra, J. Grundy, and J. Hosking. A generic
approach to supporting diagram differencing and
merging for collaborative design. In ASE ’05:
Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, pages
204-213, New York, NY, USA, 2005. ACM Press.

T. N. Nguyen, E. V. Munson, J. T. Boyland, and

C. Thao. An infrastructure for development of
object-oriented, multi-level configuration management
services. In ICSE ’05: Proceedings of the 27th
international conference on Software engineering,
pages 215-224, New York, NY, USA, 2005. ACM
Press.

T. ODA and M. SAEKI. Meta-Modeling Based
Version Control System for Software Diagrams. IEICE
Trans Inf Syst, E89-D(4):1390-1402, 2006.

D. Ohst. A fine-grained version and confguration
model in analysis and design. In ICSM ’02:
Proceedings of the International Conference on
Software Maintenance (ICSM’02), page 521,
Washington, DC, USA, 2002. IEEE Computer Society.
H. Oliveira, L. Murta, and C. Werner. Odyssey-vcs: a
flexible version control system for uml model elements.
In SCM ’05: Proceedings of the 12th international
workshop on Software configuration management,
pages 1-16, New York, NY, USA, 2005. ACM Press.
I. Research. Jazz - innovation through collaboration,
Jan. 2008.

J. Rho and C. Wu. An efficient version model of
software diagrams. In APSEC ’98: Proceedings of the
Fifth Asia Pacific Software Engineering Conference,
page 236, Washington, DC, USA, 1998. IEEE
Computer Society.

T. View. IEEE Standard for Software Configuration
Management Plans. IEEE Std 828-2005 (Revision of
IEEE Std 828-1998), pages 0-1-19, 2005.

T. Wolf. Rationale-based Unified Software Engineering
Model. Dissertation, Technische Universitédt Miinchen,
July 2007.

