
Document Engineering: Analyzing and Designing the Semantics of Business
Service Networks

Dr. Robert J. Glushko
University of California Berkeley

glushko@sims.berkeley.edu

Tim McGrath
Universal Business Language
tmcgrath@portcomm.com.au

Abstract

Behind the idea of Business Services Networks lies
the very simple and natural idea of document
exchange. But when they are implemented without
disciplined semantics, the input and output documents
of business processes often partition their information
in incompatible ways, severely constraining the loosely
coupled, "plug and play" interoperability that is the
defining vision of business service networks.

This paper introduces the new discipline of
Document Engineering, a set of analysis and design
techniques that yield meaningful and reusable models
of the information exchanges within and between
enterprises.

Document Engineering relies on the skills and tools
of business process, document, data, and task analysts.
One of the innovations of Document Engineering is to
exploit these different techniques for reaching the
same goal

As a result, with business services developed using
Document Engineering techniques the semantics are
precise, based on patterns to make them reusable, and
support a complete and unambiguous relationship
between the model and the schemas and software that
implements it.

1. Introduction

Behind the idea of Business Services Networks lies
the very simple and natural idea of document
exchange.

Whether they were encoded on papyrus, parchment,
paper, or in digital forms, documents have always

served as the packages of information needed to carry
out business transactions. The seller may ask, “What
do you want to order from my catalog?” and the buyer
might ask, “Will you accept my purchase order?”
They would never first ask about each other’s system
interfaces. The notion of documents as the inputs and
outputs of business processes wherever they reside on
a network is a technology-independent abstraction
perfectly suited to the heterogeneous technology
environment of the Internet.

Using documents as loosely coupled interfaces and
thereby hiding implementation details underlies the
idea of service-oriented architectures as a way to create
new applications as services by integrating or
combining components of others. A Web Service can
be anything and do anything, as long as the
information needed to request it and the work or
results that it produces can be effectively described
using XML. And because Web Services are loosely
coupled, their document interfaces allow firms to
maintain a clean and stable relationship to partners and
customers.

But while the Web Services standards dictate how
to reveal the interfaces and message definitions for the
XML documents that they send and receive, they say
nothing about the conceptual design of those services
and their enabling documents. They tell us how to
package information into documents and where to put
them, but they don’t tell us what any of it means.
When they are implemented without disciplined
semantics, the input and output documents of Web
Services often partition their information components
in incompatible ways, severely constraining the "plug
and play" interoperability that is the defining vision of
business service networks.

Copyright held by author

We have developed Document Engineering [1] as a
set of analysis and design techniques that yield
meaningful and reusable models of business processes
and their documents. Document Engineering is a novel
combination of words that highlights the creation of
tangible end products with economic or social value
(that is, documents), and we believe that process is
more strongly implied by engineering than any other
word.

2. Document Engineering in a Nutshell

At its essence Document Engineering is a
document-centric adaptation of the classical three-level
modeling framework. This approach distinguishes
between external representations that describe specific
things, artifacts, or instances in the world, physical (or
internal) views that present different models of
instances in some technology, and conceptual views or
models that abstract those descriptions from any
particular implementation.

Document Engineering isn’t only concerned with
the semantic components in the documents being
exchanged. It is also concerned with the information
exchanges within and between enterprises and the
techniques for contextualizing them for particular
industries or domains.

Describing business processes and their documents
in terms of the more conceptual notion of information
exchanges makes it easier to understand the constraints
imposed by legacy systems and technologies. We are
also able to recognize the opportunities created by new
processes if we focus on conceptual models of the
information exchanges rather than on how they are
implemented.

As a result, in business services developed using
Document Engineering techniques the semantics are
precise, based on patterns to make them reusable, and
support a complete and unambiguous relationship
between the model and the schemas and software that
implements it.

2.1. The Model Matrix

Document Engineering distinguishes three levels of

abstraction. The least abstract models describe specific
instances of business documents, processes, or other
artifacts. Physical models are more general because
they describe a set or class of instances, but they still
capture the technology in which the instances were
implemented. Conceptual models remove the
implementation technology to emphasize the semantic
relationships that define some class of instances.

We can also distinguish what businesses do
according to the depth or granularity with which we
describe the business relationships in each model,
creating a hierarchy that helps us analyze and design
business services and their networks. From the
organizational or business-to-business perspective,
models are coarse with just the most important roles
and relationships visible. At the process level, more
details of the relationship are visible, and we begin to
see the documents that are exchanged to carry out each
process. The information level is the most granular
perspective, and we can see specific information
components within the document models.

These two dimensions of model abstraction and
model granularity let us define a model matrix (Figure
1) that shows in a single diagram the relationships
among business model, business process, and business
information models at both conceptual and physical
levels. This gives us a framework for discussing the
most important and reusable models and for explaining
how the most granular models for business information
and business processes are composed and
choreographed to create more complex models of
greater scope.

Figure 1. The Model Matrix

The models we organize in the upper left corner of
the matrix are broad in scope and abstract in
perspective. It is useful to take this broad perspective
on what businesses do and the relationships between
them because models at higher levels of abstraction
and granularity establish the requirements and rules for
more granular ones in which documents are specified.

We call these sets of requirements, the context of
use. When these rules are expressed in models we can
use them to design and drive the business services
using them. We can then share the models with other
organizations and enterprises and promote

interoperability by ensuring that we understand each
other’s contexts.

As we move to the right and down in the matrix,
models become narrower in scope and more concretely
tied to technology and implementation.

3. The Yin and Yang of Document
Engineering

An important idea embodied in the model matrix is
the essential and inescapable relationship between
models of processes and models of documents. At the
center of the model matrix, where processes are
described as transactions, processes and documents are
two perspectives on the same thing. Are process
models just combinations of document exchanges, or
are documents just the payload in processes? The
answer is yes to both questions. Business process and
documents are the yin and the yang of Document
Engineering.

These central concepts of Chinese philosophy might
seem out of place here, but they express perfectly the
complementary and opposing relationships between
business processes and documents. Processes produce
and consume documents, which are a static snapshot or
the tangible result of the process activity. Process
descriptions emphasize business concerns and
determine whether ways of doing business are
compatible. Document descriptions emphasize
technology concerns and determine whether business
systems are compatible. We can separate processes and
documents in our analysis, discussion, and models, but
in the end they are always interconnected because both
business and technical compatibility are necessary.

In practical terms this means that models for
processes and documents need to be developed with
the same care and to compatible levels of detail. It
explains why we need a Document Engineering
approach that exploits complementary modeling
approaches.

4. A Unified Approach

There is no single correct way to create models of
business processes and their documents. Document
Engineering relies on the skills and tools of business
process, document, data, and task analysts. One of the
innovations of Document Engineering is to exploit
these different techniques for reaching the same goal.

Figure 2 graphically depicts this common goal as
reaching the middle of the model matrix from different
starting points.

Figure 2. The Unified Approach

Business process analysis typically starts with
abstract views of business models and processes.
These are organized in the upper left corner. This high-
level analysis establishes the context for understanding
the semantics of the information in the other sections
of the matrix.

Task analysis (or user analysis) is the observation of
people performing the tasks or use cases when the
application or system must support human interfaces
and not just other applications. Task analysis identifies
the specific steps and information that people need to
carry out a task, so it is based on actual artifacts and
activities, which are represented on the right side of the
matrix. Task analysis and document analysis are
closely related; document analysis reveals candidate
information components and task analysis reveals rules
about their intent and usage. Task analysis is especially
important when few documents or information sources
exist, because human problems or errors can suggest
that important information is missing.

Document analysis tends to start from analysis of
document instances. We show this on the lower right
side. These techniques extract or disentangle the
presentational, structural, and content components of
documents or other information sources.

Data analysis (or object analysis) techniques often
start from a conceptual perspective about a domain and
yield an abstract view of the information components
revealed by document analysis. So this approach is
represented as starting from the lower left corner of the
model matrix.

5. The Document Engineering Approach

Figure 3 depicts the Document Engineering
approach as a path through the model matrix to carry

out a set of analysis, assembly, and implementation
tasks.

Figure 3. The Document Engineering Approach

We show this path as being equally wide as it winds

its way through the phases of Document Engineering,
but in practice different phases may get more or less
emphasis.

Top-down or strategic efforts to align business
organization and technology cut a broad swath through
the top of the model matrix. These efforts create
models that are very abstract or very generic,
partitioning activity into large, goal-oriented chunks to
provide a big picture view of the context of use.

In contrast, bottom-up and more document-driven
projects emphasize the path through the lower half of
the model matrix. These efforts may yield a large
number of models for transactional processes, often
refined by the specific types of document they produce
or consume.

But high-level goal-oriented models lack the detail
needed for implementing and integrating the
applications built to achieve them, and low-level
models of documents and information components by
themselves don’t provide much help in aligning high-
level business goals with technology choices and
implementation decisions. That’s why it is worthwhile
to follow the entire path through the matrix.
Developing a variety of models of varying emphasis
and granularity ensures that any new models we create
for business processes and documents are complete,
consistent, robust, and deployable in applications that
meet actual business requirements.

Following the complete path also helps to overcome
the fundamental modeling challenge of achieving a
consistent level of abstraction so that patterns and
models from different perspectives can fit together.
There is also a large granularity gap between business
models and document models. Our path through the

model matrix yields successively more granular
models that bridge the gap.

5.1. Understanding the Context of Use

What we call context is actually the collective sum
of the requirements for our area of interest. So the first
phase of Document Engineering, analyzing the
context, involves identifying these requirements and
the rules they must satisfy.

On the top row we begin with high-level,
organizational analysis to understand the main
business activities and the people and organizations
that participate in them. This strategic perspective is an
essential foundation for developing infrastructures
needed by service-oriented architectures or in carrying
out corporate mergers and acquisitions. Models at this
level describe the broad context of use for the
documents and processes we will define at more
granular levels.

5.2. Patterns for Business Processes

Patterns are models that are sufficiently general,
adaptable, and worthy of imitation that we can reuse
them. A pattern must be general enough to apply to a
meaningfully large set of possible instances or
contexts. It must be adaptable because the instances or
contexts to which it might apply will differ in details.
And it must be worthy, that is the instances or contexts
to which the pattern might apply should benefit from
following it.

Indeed, sometimes a pattern is so carefully
constructed or consistently adopted it becomes an
official or de facto standard. So just like every other
engineering discipline, Document Engineering
emphasizes the reuse of existing specifications or
standards. Doing so reduces costs and risks while
increasing the reliability and interoperability of the
deployed solution.

Using Business process patterns resolves the
tension within an organization between meeting
internal requirements and interacting with others. This
is why much of what businesses do can be described
using a small repertoire of business patterns because
they share common requirements for their context of
use [2].

So we believe effective business process design
should focus on the analysis, reuse, and creation of
patterns.

Choosing and instantiating appropriate patterns for
business processes entails adopting a predefined
context of use. Using a business process pattern also

suggests the relevant users and other stakeholders from
whom we can obtain or confirm requirements. For
example, we might describe Dell Inc. as a computer
manufacturer because we want to highlight its Make-
to-Order manufacturing pattern and focus on its
relationships with organizations in its supply chain.
But if we wanted to emphasize Dell's direct sales
model, we would apply a pattern that brought with it
the set of requirements and business rules associated
with direct distribution.

5.3. Analyzing Documents and their
Components

Describing the actual documents needed by a
business model starts to take place during the
document analysis phase.

The selected process model (or pattern) will identify
the roles that documents play. But it is when we
undertake document analysis that we expose the
business rules that govern the content, structure,
presentation, syntax, and semantics of the information
contained in the documents.

We analyze existing document models (such as
XML schemas) as well as any document guidelines
and standards, sample document instances, web pages,
and other information sources to harvest all potentially
meaningful information components and the
constraints that govern their values, arrangement, and
use. Of course we can’t ignore the people who create,
review, approve, query, or do other things with these
documents. In particular, in models for new business
processes where few documents exist, what we can
learn from people is critical because we can derive
information and document requirements from their
goals and tasks. In many situations existing documents
are extremely valuable proxies for, or confirmations
of, what people tell us.

The component analysis phase starts with the
harvesting task. This identifies the individual semantic
components contained in each of the selected
documents or information sources.

In component assembly we assemble sets of these
information components into meaningful structures to
create a coherent conceptual view we call the
document component model. We advocate doing this
by using data analysis techniques that normalize the
components into structures based on their functional
dependency.

5.4. Designing Document Models

We then turn from analysis to design as we start to
create models for new types of documents based on the
components, structures, and associations that satisfy
the requirements for our context of use. We call these
new models document assembly models. In the
document assembly task we apply the rules for
assembling each new document type from the
information components described in our document
component model.

As with process models, effective design of
document assembly models also requires us to
recognize when patterns (or standards) can be reused,
when a new pattern should be created, and what
distinguishes one pattern from another.

5.5. Implementing Models

The conceptual models we have described so far
represent substantial investments in understanding sets
of business rules and capturing contextual
requirements. In the implementation tasks, we start to
create modeling artifacts that will actually define or
drive applications and their interfaces. We want to use
these in an explicit way to implement a solution in an
automated or semi-automated manner. This is what we
mean by a model-based application.

For many applications in the domain of Document
Engineering, all or much of the model-based
functionality involves business service networks. For
example, a well-designed Web Service exposes its
interface as a document model and interacts with other
services according to a process model. These models
specify the information components produced and used
by the service, and any code that is needed to receive
the document and extract its information components
can be automatically and reliably generated from them
in most cases. There should be a complete and
unambiguous relationship between components of the
model and components in the code that will process
them.

Model-based applications can then be implemented
using software whose generic functionality is made
context-specific by configuring or extending it to use
the context-dependent information and behavior
specified in the model.

The first step in achieving this is to realize the
conceptual models in physical models.

For documents we call these physical models, the
document implementation model. Document
implementation models realized in markup languages
are more commonly known as schemas. For example,
when XML is used to encode document
implementation models, many aspects of the integrity
of a document’s information components, as well as

the business rules applied to the data, can be derived
from the XML schemas.

For physical models of business processes,
realization means adopting a suitable metamodel (such
as the ebXML BPSS [3]) to encode the specific rules
and the requirements for our given context of use. This
means that the modeling artifact itself is encoded as a
document. We call this realized artifact, the business
process implementation model.

Using this approach, we would say that the
RosettaNet PIPs [4] are examples of business process
implementation models encoded in XML using their
Implementation Framework metamodel [5].

Web services and service-oriented architectures can
be implemented in this model-based way when the
document and process models they use are designed to
separate generic and context-dependent functionality.

5.6. Encoding Models in XML

We can encode implementation models in any of
several different XML schema languages. Each offers
different tradeoffs in simplicity, expressive power, and
maintainability.

Choosing an XML schema language includes the
potential to reuse patterns from existing XML
vocabularies. These are usually published as physical
models using one schema language as their
authoritative format. For example, the UBL vocabulary
provides XML Schema definitions for common
components such as Item, Party, Tax, Address,
Amount, and Location [6].

Of course, interoperability or legacy constraints at
the edges of business service networks may mandate
other encoded representations such as UN/EDIFACT
(ISO 9735) [7], ANSI ASC X12 [8], and industry-
specific legacy syntaxes [9]. We may even have to
encode our document implementation models in
several syntaxes. For example, the UN/CEFACT group
[10] has chosen both UN/EDIFACT and XML
syntaxes for their document implementation models.

Choice of representation language alone is not
sufficient to realize a document implementation model.
Regardless of the syntax chosen, it is also necessary to
develop or adopt rules that govern the techniques for
encoding that language.

With the increased emphasis on XML in service-
oriented architectures and web services, many books
on XML encoding have emerged, but there still seems
to be more emphasis on the nuances of schema syntax
(there are too many) rather than on the best way to
encode the semantic content [11].

A promising exception comes from the UBL
initiative, which has produced a comprehensive set of

naming and design rules for encoding document
assembly models (based on ebXML Core Components
[12]) into XML Schemas.

6. Summary

The services in a Business Service Network involve
both documents and processes. To make these services
work, the organizations involved must implicitly or
explicitly reach a common understanding about how
their processes should be designed, how they can be
deconstructed into document-based service
components, the information they exchange with the
documents, the timing of the exchanges, and the
people, organizations, or roles involved. This common
understanding must be represented in models of the
required documents and processes that are comparable
in abstraction, formal rigor, and traceability to the
requirements and artifacts from which they were
developed. This can happen only if document, data,
task, and business process analyses can be brought
together in a unified approach like that in Document
Engineering.

7. References

[1] Glushko, Robert J. and Tim McGrath, Document
Engineering: Analyzing and Designing Documents for
Business Informatics and Web Services. (MIT Press, 2005).
This paper is a modestly adapted extract from that book.

 [2] Collections of process patterns can be found in Thomas
Malone, Kevin Crowston, and George Herman (Eds.),
Organizing Business Knowledge: The MIT Process
Handbook (MIT Press, 2003) (http://ccs.mit.edu/ph/) or in
the International Benchmarking Clearinghouse managed by
the American Productivity and Quality Center (APQC)
(http://www.apqc.org)

 [3] The ebXML BPSS is a business process metamodel
described as an XML schema (http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=ebxml-bp)

[4] The RosettaNet PIP Directory,
(http://www.rosettanet.org/pipdirectory)

[5] The RosettaNet Implementation Framework,
(http://www.rosettanet.org/rnif)

[6] The Organization for the Advancement of Structured
Information Standards (OASIS) Universal Business
Language. (http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=ubl)

[7] UN/EDIFACT is the international EDI standard
maintained by the United Nations Centre for Trade

Facilitation and Electronic Business
(http://www.unece.org/cefact).

[8] ANSI ASC X12 is the US EDI standard maintained by
the Associated Standards Committee (http://www.x12.org)

[9] An example of this is BISAC for the book publishing
industry (http://www.bisg.org).

[10] The United Nations Centre for Trade Facilitation and
Electronic Business (http://www.unece.org/cefact/)

[11] For example, James Bean, XML for Data Architects
(Morgan Kaufmann, 2003), or Berthold Daum, Modeling
Business Objects with XML Schema (Morgan Kaufmann,
2003)

[12] ebXML Core Components
(http://www.unece.org/cefact/ebxml/CCTS_V2-
01_Final.pdf)

