
PrintMonkey: Giving Users a Grip on Printing the Web

Jennifer Baldwin
University of Victoria

3800 Finnerty Rd.
Victoria, BC, Canada

jbaldwin@cs.uvic.ca

James A. Rowson
Hewlett-Packard Laboratories

1501 Page Mill Rd.
Palo Alto, CA, USA 94304
jim.rowson@hp.com

Yvonne Coady
University of Victoria

3800 Finnerty Rd.
Victoria, BC, Canada

ycoady@cs.uvic.ca

ABSTRACT
Web content is notoriously difficult to capture on a printed page
due to inconsistent and undesired results. Items that users may not
want to print, such as media, navigation menus and more show up
on their page. Other items that they may care about are truncated
or spread across several pages. Some tools exist to help users with
what is printed, but they often are cumbersome to use or are costly
for a company to maintain. Therefore, we introduce PrintMonkey,
which allows users to write their own printing templates and share
them with others on the web. No modifications to the original web-
pages are required and users with less development experience can
use and develop templates. A comparison with four alternative so-
lutions reveals the concrete ways in which PrintMonkey improves
upon existing approaches in terms of functionality, customizability
and scalability.

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Preparation—
hypertext/hypermedia, languages and systems, markup languages,
scripting languages

General Terms
Design, Experimentation, Algorithms, Human Factors

Keywords
Printing the web, print templates, customized browsing, screen scrap-
ing, JavaScript

1. INTRODUCTION
It has recently been reported that printing is one of the most used

features in a browser and it is highly likely that more than half of
the pages printed are from web content [9]. However, printing web-
pages is often frustrating for users because the printed output does
not match what they see in the browser. Often there are too many
pages generated, many of which are mostly blank, poor page lay-
out and advertisements. For example, the New York Times website

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’08, September 16–19, 2008, São Paulo, Brazil.
Copyright 2008 ACM 978-1-60558-081-4/08/09 ...$5.00.

looks normal in a browser, as shown in the top part of Figure 1, but
an attempt to actually transfer this to a printed page produces the
output shown in the bottom part of Figure 1.

Figure 1: Viewing and Printing New York Times

Tools already exist to customize viewing pages in a browser.
Adapting pages for use with mobile devices is a very active area
of research [17, 23, 24, 20]. Firefox [4] can use Greasemonkey [7,
22] or related technologies [19, 15]. Greasemonkey is a Firefox ex-
tension that allows user scripts to run on a specific webpage. These
user scripts are simply balls of JavaScript [11] that alter the way a
page appears or even the way a page is used. For example, popu-
lar scripts include those that customize a GMail layout, including
its color scheme, or even embedding price comparison in Amazon
webpages. If this were adapted to printing, then the printed output
would match what is seen on the screen. However, these Grease-
monkey scripts will run each and every time the page is viewed, so
this does not quite suit every day users’ needs in that they may want
to print something differently than how they view it.

PrintMonkey allows users to modify how pages are viewed in the

230

same way as Greasemonkey but instead for printing. For example,
to print a GMail inbox, we could eradicate colors and have snippets
of the emails. PrintMonkey is as easy to use as Greasemonkey, but
has the additional feature that PrintMonkey scripts are more acces-
sible to users in terms of development – in particular for users with
minimal programming background. We propose a strategy where
users are also able to share templates with each other, and every
time a template is selected, its popularity increases so templates
will be better targeted for specific sites.

This paper is organized as follows. The rest of this section intro-
duces related work and analyzes strengths and weaknesses of exist-
ing tools. Section 2 outlines the requirements for PrintMonkey, its
user interface and some implementation challenges. In Section 3,
we discuss how developers can create different printing templates
and Section 4 provides an evaluation of PrintMonkey relative to
current approaches. Future work is introduced in Section 5 and we
conclude in Section 6.

1.1 Related Work
There are four current approaches for printing the web that we

are aware of. These include built-in web browser support, HP
Smart Web Printing [8], Cascading Style Sheets [2] and the Tab-
blo Print Toolkit [16].

It is important to note that web browsers are now taking into
account the lack of printing support. Internet Explorer 7 [10] has
provided special capabilities for printing such as shrinking text so
that all of the content fits on the printed page. The user can also
remove headers/footers, edit margin sizes, customize page layouts
and change the print space. These features are extremely useful but
do not take into account items the user does not want to print on
the page and does not allow them to save how they print that page
for future use. Firefox also allows users to do many of the same
things such as shrink to fit, landscape/portrait modes and setting
the margins.

HP Smart Web Printing lets the user select, store and organize
text and graphics from multiple webpages and print exactly what
is seen on the screen. The problem with this approach is that it
requires a lot of manual effort from the user in order to create
something they only print once. They cannot save the templates
for reuse, and further, cannot share their printing templates with
others. However, it does allow the user to collect from multiple
pages without any templates or programming knowledge.

Web developers can also alleviate printing woes with the use
of cascading style-sheets (CSS). Most web developers already use
CSS to set the appearance of the webpage in the browser. But de-
velopers can include multiple style sheets within a single webpage,
so that one can control the appearance in the browser and another
the way the page is printed. For example, with CSS, you can hide
advertisements, banners, navigation bars, as well as change font
size and style. You could also add images to the printout such as
a copyright notice. If web developers consciously provided these
style sheets, users’ web printing experiences would be improved.
However, most web developers are not concerned with how the
page prints so much as how it looks and are not willing to go to the
extra effort. Users may specify their own CSS through the browser
but this also requires them to create it themselves.

The Tabblo Print Toolkit (TPT) is a suite of developer tools for
making websites more printable. The owner of the site must edit
their HTML to identify the content on the page that should be
printed, using JavaScript. This is similar to a print CSS file. When
someone wants to print the page, TPT will combine the data for
printing with pre-existing templates and generate a PDF file on the
TPT server. The two main problems we see with this approach

are that the original websites must be modified to incorporate TPT,
and there are costs associated with running the server that generates
these PDF files. On the other hand, TPT does allow the user to have
absolute control over how the page is printed because it generates
PDF. This PDF will print the same as seen on the screen and the
same no matter which platform is used.

2. PROPOSED SOLUTION
Taking into account some of the shortcomings associated with

the this survey of state-of-the-art solutions, we suggest an alterna-
tive set of requirements for a web printing tool. These requirements
are:

• Runs primarily on the client with JavaScript

• User Friendly

• Non Invasive

To alleviate expenses associated with running a server to do the
processing of pages before they are sent to the printer, we require
that PrintMonkey1, the name of our prototype implementation, run
primarily on the client. We do this by running JavaScript in the
user’s browser. We must still store templates on a server but in this
way, processing is kept to a minimum.

We also want PrintMonkey to be easily used. PrintMonkey has
been designed for many different kinds of users. It is simple to use
for the user who simply wants to print a webpage and it is easy
to create templates for both experienced developers and the aver-
age developer. Existing challenges for non-experienced developers
to write templates include that they may not know JavaScript or
programming languages, in general, that well. JavaScript can be
confusing even for those with experience. Therefore, PrintMonkey
provides a copy and paste mechanism that we believe will be less of
a challenge for users. We will discuss how we believe we have an
effective solution for this potential obstacle to adoption in Section
3.3.

Finally, we want to ensure that people will actually use Print-
Monkey. First and foremost is the fact that developers will not need
to modify their original site in order for PrintMonkey to be applied
with it. In addition, users can create a template once and reuse it as
often as they wish, and these templates will automatically be shared
with others. They also do not need to install a standalone program,
only a few lightweight items into their browser.

2.1 Prototype Implementation
This section describes how a user would actually use PrintMon-

key in order to print a page. We also discuss the design challenges
we faced when deciding how to implement PrintMonkey.

2.1.1 User Interface
In order to print with PrintMonkey, the user will click the book-

marklet in their toolbar, shown in Figure 2. This bookmarklet is a
small JavaScript program that is stored in a URL bookmark.

Once they have clicked the bookmarklet, another page will ap-
pear that shows the most popular printing templates for that partic-
ular URL, shown in Figure 3. The user can then select whichever
template they prefer or they can elect to view more templates on-
line. The icons shown in this figure are samples and not actual ren-
derings of what the user will see when they print the page. When
they select a template, another page will popup and the page will
be printed, as shown in Figure 4.
1PrintMonkey is freely available at http://www.printmonkey.org

231

Figure 2: PrintMonkey Bookmarklet

Figure 3: Most Popular Printing Options

2.1.2 Prototype Implementation
The most challenging part of developing PrintMonkey was get-

ting around the cross-site scripting limitations. Cross-site scripting
refers to the gathering of data from one site to another [21]. It
is generally referred to as being malicious. For example, if you
had your bank account information open in one browser window,
you would not want to have a bookmarklet or link execute some
JavaScript that reads the information contained within it.

In our case, we had the URL of the page we wanted to print and
needed to get the HTML content from it. Since our code resides
on a server on a different domain than pages we want to print, this
was a security restriction. There were a couple of ways we could
get around this. The first was to use a server side script to fetch
the contents, such as PHP. However our requirements were that
PrintMonkey should run mainly on the client-side and this would
have created additional complexity for pages in which the user was
logged in. Therefore this was not an option. We could have also
used Internet Explorer with an ActiveX control. In the end, we
chose to use Greasemonkey to fetch the contents for us because we
wanted to work on the Firefox platform and believed Greasemon-
key to be widely accepted.

Greasemonkey has a builtin method called GM_xmlhttpRequest
which allows user scripts to get data from any URL. We created a
Greasemonkey script that runs on our output print webpages and
merely injects the HTML from the original page into the printable
page so that it can be manipulated by printing templates. Since
Greasemonkey is a Firefox plugin, this creates no issues with cross-
site scripting. Of course, it is possible that this could be used mali-
ciously if you attempt to print your bank software with a malicious
PrintMonkey script. This also means that Greasemonkey currently

Figure 4: Final Printed Page

only runs on Firefox although in the future, we would like to have
it run on Internet Explorer as well.

When we were building PrintMonkey, we also had to keep in
mind that we wanted users to be able to write scripts for PrintMon-
key so we needed to design for extensibility. How templates are
actually used within a page are discussed in the following sections,
along with the required meta-data for these scripts.

3. DEVELOPING FOR PRINTMONKEY
There are three types of templates that PrintMonkey understands.

These are:

• Greasemonkey Style Templates

• JavaScript Templates

• PrintMonkey Templates

Greasemonkey and JavaScript templates are meant for the ex-
perienced developer who wants to maintain ultimate control over

232

the final printed product. However, JavaScript can be confusing,
especially for the average developer. Therefore we provide an ad-
ditional type of template for the inexperienced developer that we
call PrintMonkey templates. Each of these templates are discussed
in order in the following subsections. Further, proposed solutions
to issues of sharing and debugging common to all scripts are exam-
ined in the final subsections, before an evaluation of PrintMonkey
in Section 4.

3.1 Greasemonkey Style Templates
A Greasemonkey user script is a chunk of JavaScript code. Part

of this script tells Greasemonkey on what pages it will run, using a
regular expression which matches some set of URLs. Greasemon-
key also provides special functions that are only available to user
scripts. We have decided to support Greasemonkey style scripts
with PrintMonkey because hundreds of them already exist in the
Greasemonkey script repository. Some of these may not be ap-
plicable to printing, but those that are allow us to quickly adopt
efforts that have already been completed. We say Greasemonkey
"style" scripts because we mean scripts that are one large chunk of
JavaScript. If special Greasemonkey functions are used, we cannot
understand them because we run the script within the context of the
page and not within the Firefox plugin itself.

Figure 5 shows an example of a Greasemonkey style script that
converts a Facebook album page to a page containing the full size
images from that page. The output was shown previously in Figure
4. It is important to note that it is mostly generic JavaScript, poten-
tially confusing for a novice, with some PrintMonkey method calls
thrown in. These additional methods PrintMonkey provides are:

• clearHead(): clears all previous style information from the
page

• addToHead(): adds style information to the printable page

• loadResults(): loads an HTML string to the printable page

• disableLinks(): disables links on the printable page so that
users cannot navigate away from it

• getURLParam(): retrieves parameters from the URL

We have provided these functions since they will probably be
used often and will reduce mundane effort for the template devel-
opers.

3.2 JavaScript Templates
Greasemonkey style templates are also written in JavaScript as

described above. The difference between what we refer to as JavaScript
templates and Greasemonkey style templates are that JavaScript
templates are split up into data mining scripts and the scripts which
display that data, or what we call visual scripts.

The impetus for separating the two is that a single page will
contain data that can be displayed in many ways. Additionally,
a printed page may appear the same no matter which website the
data was extracted from. To make this more concrete, consider an
example where users are printing recipes found from online recipe
sites such as Foodsville [5] or AllRecipes [1]. Both of these sites
provide the same basic recipe information such as title, ingredi-
ents, steps and image. Therefore, each of these sites will have sep-
arate data mining scripts to retrieve the same recipe information.
This recipe information could then be printed in a number of ways.
When the printable page is actually rendered by PrintMonkey, the
data script and selected visual script will be embedded in the same
page so that the visual script will see all of the variables that the
data script provides.

clearHead();
var album = document.getElementById("album");
var images = album.getElementsByTagName("img");
var newHTML = "<table cellpadding=’15’>";

for(var index=0; index<images.length; index++) {
var imagePath = images[index].attributes

.getNamedItem("src").value;

//need to get big version
var tokenArray = imagePath.split("/");
var fileName = tokenArray[tokenArray.length -1];
fileName = "n" + fileName.substr(1);
var newName = "";

for(var i=0; i<tokenArray.length-1; i++) {
newName += tokenArray[i] + "/";

}

newName += fileName;
newHTML += "<tr><td>

</td></tr>";
}

newHTML += "</table>";
loadResults(newHTML);

Figure 5: Greasemonkey Script for Facebook

3.2.1 Data Scripts
The purpose of a JavaScript data script is simply to set up and

populate the variables that are used by the visual script. It merely
has to define variables the same way that JavaScript does (i.e. var
name =).

3.2.2 Visual Scripts
A JavaScript visual script can use the same variables as defined

in the data script as if they were already defined in this script itself.
This is because, as mentioned previously, both scripts are simply
embedded in the same page. This means that the names in each
script are extremely important and cannot be mistyped. It is essen-
tially a contract that each data script must provide variables with
the same names as those used in the visual script and vice-versa.
Similar to the Greasemonkey style scripts, the same PrintMonkey
helper functions can be used in JavaScript templates as well.

3.3 PrintMonkey Templates
PrintMonkey templates are written in a language similar to HTML.

Like JavaScript templates, they are also split into data gathering
scripts and visual scripts. When these templates are used, they are
converted to JavaScript and then inserted into the same page to-
gether. This means that similar to the JavaScript templates, the
variables defined in the data script are the only ones that can be
used in the visual script.

3.3.1 Data Scripts
PrintMonkey data scripts appear similar to HTML, and this is by

design. In order to write a data script, the user can view the source
of the page that they wish to print, in this example, we will look
at a recipe from Foodsville as shown in Figure 6. The idea is that
the user can actually scrape data from the page that they see. They
do this by copying the pertinent pieces of HTML from the source
to their PrintMonkey script. If there are pieces of HTML that they
do not care about, they simply replace them with "...". The top
script in Figure 7 shows an example data script for the Foodsville
site. This data script performs string matching so when we see the

233

Figure 6: Output from PrintMonkey Scripts

line <h1 class="welcome">$title$</h1>, this will look
for the first part of the string, before $title$ and the last part
after $title$ and assign whatever is matched to a variable of the
name title.

We also provide additional functionality such as creating an ar-
ray. For this, the user can use the $$for each construct. The line
$$for each $ingredients[$ingredient]means that we
create an array with the name ingredientswhich will comprise
each ingredient matched within the for loop.

The JavaScript which is generated by this data script is shown
in Figure 8. This is generated with the actual HTML of the page
so that it is already populated when it is paired with the generated
visual script.

There are times when the basic PrintMonkey script we have shown
above is not quite powerful enough. Therefore we have provided
two additional mechanisms for altering data before we store it. The
first is shown in Figure 9. This is an example of a data script which
works for Facebook images. In order to convert the small image
we see in a Facebook album, to its large counterpart, we need to re-
place the /s in the image URL to a /n. This script shows that we
can match pieces of a string and then piece it back together before
we put it in the image array.

The second approach is by using JavaScript inline in the Print-
Monkey data script, as shown in Figure 10. The function is denoted
by angled brackets allowing the developer to use JavaScript to alter
the data how they see fit. This performs the same function as the
previous example with piece matching, but here the developer has
more control.

<html>
...
<td>

<h1 class="welcome">$title$</h1>
</td>
...
$$for each $ingredients[$ingredient]

<li class="ingredient">$ingredient$
$$end
...
$$for each $steps[$step]

<li class="step">$step$
$$end
...

<html>

<html>
<head></head>
<body>

<h1>$title$</h1>
<h1>Ingredients</h1>

$$for each $ingredient in $ingredients
$ingredient$

$$end

<h1>Directions</h1>

$$for each $step in $steps
$step$

$$end

</body>
</html>

Figure 7: Data Mining and Visual PrintMonkey Scripts

3.3.2 Visual Scripts
Finally, the last type of script that a developer can create is the

PrintMonkey visual script. This is quite similar to HTML because
this script actually outputs the HTML that you write.

Figure 6 shows a plain printed recipe. The visual script for this
page is shown in the bottom of Figure 7. This script is trans-
formed to JavaScript as shown in Figure 11. Unlike the data scripts
which contain the actual values, the visual script contains refer-
ences to those values. We see that each HTML string is put in
a document.write and each variable is put in as the variable
name with + operators. The for loops are constructed for the lists
and the index variables are named as indexjenb0. When nested,
these variable names will become indexjenb1, indexjenb2
and so on.

As with the data scripts, the simple script shown here may not
always be solely adequate so we provide additional mechanisms
such as:

• break(..): breaks an array up into an array of smaller arrays

• $$pagebreak: creates a page break using
<div style=page-break-after:always;></div>

• $$position: the position in a for loop

• $$if odd: whether that position is odd

• $$if even: whether that position is even

The break(..) function can be used to break an array up. Revisit-
ing our FaceBook example, if instead of printing full size images as

234

var title = "Soft Chewy Variant of Tollhouse Chocolate Chip Cookies Recipe";

var ingredients = [’2 1/4 cup flour’, ’1 tsp salt’, ’1 tsp baking soda’, ’1 cup crisco (white, all vegetable "lard")’,
’3/4 cup brown sugar’, ’3/4 cup sugar’, ’1 tsp vanilla extract’, ’2 large eggs’, ’2 cups chocolate chips’,
’2 1/4 cup flour’];

var steps = [’Mix together flour, salt, baking soda, set aside’, ’put into mixing bowl crisco, sugar, brown sugar,
vanilla’, ’mix at low speed’, ’add eggs one at a time while mixing’,’add dry ingredients 1/3 at a time, pausing mixer
while you add’, ’add heaping spoonfuls of flour until dough cleans side of mixing bowl’, ’remove from mixer, add 1/2
package of chocolate chips, fold in by hand’, ’preheat oven to 25 degrees less than recipe calls for (350 degrees)’,
’make extremely tall dough balls: 1 inch diameter, 2.5 inches tall’, ’cook less than asked for, approximately 9-11
minutes until just starting to brown’, ’remove, cool’];

Figure 8: Generated JavaScript for Data Script

<html>
...
<div id="album">

$$for each $images[$image]

$image = $p1$ + "/n" + $p2$;

$$end
</div>
...

</html>

Figure 9: Facebook Album PrintMonkey Data Script

shown in Figure 4, the user wants to print 6 images per page and 2
per line, in Figure 12. In order to do this without helper functions,
the user could have to keep track of where they are in the array us-
ing modulus arithmetic to decide whether they were at a multiple
of 2 or 6. Using the break function, they can write this much more
simply as shown in Figure 13. This shows how the user can split
the images up into arrays of size 6, and assign them each to an array
called page. Then they can do the same thing for pairs.

3.4 Submitting the Script
An online application for managing scripts is available on the

PrintMonkey website. Here a user may sign in using Open-ID
[13, 25] and edit any of their existing scripts and also submit new
scripts. For each script they submit, along with the template code,
they will also have to submit certain information about the script.
These items include:

• cue: a word to match the URL of the page, | signifies "or"
(e.g. recipe or photo|picasaweb|album)

• title match: regular expression matching the page’s title (.*
for all)

• include: regular expression matching the URL (.* for all)

• exclude: regular expression for URLs not to match (can be
left blank)

• tooltip: tooltip that shows up on the preview page for printing

• include source: for Greasemonkey style scripts only, will in-
clude this URL in the head of the printed page

These items are used to decide which scripts match the given
page. In addition, each template will have an associated popularity
that increases every time the template is selected. By default, if the

<html>
...
<div id="album">

$$for each $images<<function($image)
tokenArray = image.split("/");
fileName = tokenArray[tokenArray.length - 1];
fileName = "n" + fileName.substr(1);
newName = "";

for(var j = 0; j < tokenArray.length - 1; j++) {
item = tokenArray[j];
newName += item + "/";

}

newName += fileName;
return newName;

>>

$$end
</div>
...

</html>

Figure 10: Facebook PrintMonkey Data Script with Function

author is signed in, the pages they have created will show up first
followed by those with the highest popularity.

3.5 Debugging
Since the template code is converted into JavaScript, the errors

will be JavaScript errors and a Firefox plugin is the best way to
debug them. We recommend Firebug [3] in order to see what the
actual errors are. Unfortunately due to issues with using multiple
JavaScript files, Firebug cannot display the actual JavaScript that
caused the error to occur, but only the actual line. Therefore if an
error occurs within the generated JavaScript files for PrintMonkey
templates, the generated JavaScript is shown in an alert box. This
is an easy way to see if the developer has mistyped a variable name
or if something is being generated incorrectly. For Greasemonkey
and JavaScript templates, nothing is displayed since the error was
not caused by our generated code and Firebug alone must be used.

4. EVALUATION
Table 1 shows PrintMonkey in comparison to the other approaches

discussed in the Section 1.1. We look at three general areas for
evaluation: functionality, customizability and scalability. In func-
tionality, we look at whether elements of the page can be moved
or deleted, whether templates can be reused and shared and also
whether or not the tool runs primarily on the client as opposed to
on the server, which is more costly. For customizability, whether or

235

Table 1: Comparison of Existing Approaches
Internet HP Smart Cascading Tabblo Print Print

Explorer 7 Web Printing Style Sheets Toolkit Monkey
Functionality Remove/Move Items x x x x

Reusable x x x
Sharable x x
Client Side x x x x

Customizability Users Can Create Layout x x x
No Programming Knowledge to Create Layout x x x

Scalability Multiple Sites x x
Fine Grained Layout x x x x
Unmodified Websites x x x
Interoperable x x x x

document.write("<html>");
document.write(" <head></head>");
document.write(" <body>");
document.write(" <h1>" + title + "</h1>");
document.write(" <h1>Ingredients</h1>");
document.write(" ");
for(var indexjenb0 = 0;

indexjenb0 < ingredients.length;
indexjenb0++) {

document.write(""
+ ingredients[indexjenb0] + "");

}
document.write(" ");
document.write(" <h1>Directions</h1>");
document.write(" ");
for(var indexjenb0 = 0;

indexjenb0 < steps.length;
indexjenb0++) {

document.write(""
+ steps[indexjenb0] + "");

}
document.write(" ");
document.write(" </body>");
document.write("</html>");

Figure 11: Generated JavaScript for Visual Script

not the users can create their own layouts is important in addition to
whether or not they need programming knowledge in order to write
those templates. Finally, for scalability, we look at whether the
tool can incoporate content from more than one website, whether
the layout of elements can be finely controlled, whether a website
owner has to edit their website in order to use the tool and whether
this tool could be used in conjunction with others in the evaluation.

Internet Explorer or browser printing support does not allow the
user much control. They cannot move or delete items, and cannot
create, reuse or share templates. However, it does run solely on the
client, requires no programming experience from the user and the
original site does not need to be modified. Additionally, the user
cannot use content from more than one site but printing options
can be used with CSS and PrintMonkey as well, since they are also
printed from the browser.

HP Smart Web Printing provides users with a way to visually col-
late data (including moving/deleting elements) to be printed from
multiple sites. However, users can only print once and the efforts
are not reusable and cannot be shared. We believe this function-
ality is particularly key in terms of the user friendliness of a web
printing tool. This tool runs solely on the client side and is also for

Figure 12: Standard Size Album Image Print

users with no programming experience. The original site does not
need to be changed and the results of other printing tools in this list
could be fed into HP Smart Web Printing as well.

Cascading style sheets can be used by a website owner to ensure
their page is printed well. It does so in a way that is completely
transparent to the user, and runs within the browser on the client,
and could include multiple webpages, since CSS can include addi-
tional content to be printed, as well as move and remove elements.
However, the user still has no control over the finished product,
since they cannot create their own templates, and has no choice
over multiple layouts. Since CSS runs within the browser, it can
also be used in conjunction with other tools on this list.

Tabblo Print Toolkit is useful when website owners are willing
to modify their site to provide TPT with the data it needs for print-
ing. It provides absolute control since it generates PDF and these
templates are reusable since the actual website is modified. TPT
also provides the user with multiple options for printing a single
page, as shown in Figure 14. Figure 15 shows how a page must be
modified with CSS selectors in order to select printable data. TPT
consumes considerable server resources to generate PDF, however,
and one of the goals of PrintMonkey was that it would run primarily
on the client. In addition, users cannot create their own templates
and TPT cannot print data from multiple sites.

In conclusion, PrintMonkey does not necessarily provide more

236

function __TABBLO_TPT_LOAD() {
Tabblo.embedded.sites.SettingsObject.preprocess.apply({

// content definition:
Properties:
{

template: ’recipe’
},
Content:
{

’pagetitle’: { match: ’css’, selector: ’span.recipename’ },
’author’: { match: ’css’, selector: ’span.authorname’ },
’ingredients’: { match: ’css’, selector: ’li.ingredient’ },
’instructions’: { match: ’css’, selector: ’li.step’, outputTagToo: true }

},
FixedContent:
{

accentcolor2: ’#D6CD6E’,
accentcolor: ’#6699BD’,
logo: ’http://www.foodsville.com/foodsville/images/logo.jpg’

}
}, []);

}

Figure 15: CSS Selectors for TPT

<html>
<head></head>
<body>
$$for each $page in $images.break(6)
<table>
$$for each $pair in $page.break(2)
<tr>

$$for each $image in $pair
<td>

<div style=height:300px;width:400px;>

</div>
</td>

$$end
</tr>
$$end
</table>
$$pagebreak

$$end
</body>
</html>

Figure 13: PrintMonkey Visual Script for Images

features than other approaches. PrintMonkey can be used in situa-
tions where a website owner is unwilling to modify their site, the
user wants to have multiple printing options and does not want to
print data from multiple websites. It is also ideal for those with no
programming knowledge to use, especially with sharing capabil-
ity. It is also easy for more experienced developers to create their
own templates in multiple ways. PrintMonkey can also be used in
conjunction with other solutions discussed above, since it creates
a brand new webpage. However, if a user wants to generate PDF,
print data from multiple pages, or does not care about reusability,
then another approach may be more suitable.

5. FUTURE WORK
There are various areas of further development for PrintMonkey.

These include being able to process dynamic types of information,
and being able to process more than one page at once. We would
also like to be able to do more with the data we have retrieved and
make it even easier for people to create templates. These are all

Figure 14: TPT Print Options

discussed in the following subsections. In addition, it’s important
to note that future work should also look into copyright issues for
printing websites without the authors’ permission. For example,
some sites might be upset if their advertisements were removed
before printing.

5.1 Dynamic HTML
When a user views the source of a GMail [6] message, they can-

not see the HTML source of that email. Much of the content on
pages visited is dynamically generated. In order to extract informa-
tion from this content, we will need to be able to grab this dynamic
content as it is retrieved. This data may not be HTML and may be
something like JavaScript Object Notation (JSON) [12] instead. So
we will have to make allowances for that as well.

5.2 Mashups
Currently, PrintMonkey can only print one webpage at a time.

Sometimes users may want to print elements from multiple pages

237

on one sheet of paper. For example, to create personalized travel
itineraries. Due to the design of PrintMonkey and having to use
Greasemonkey to fetch the contents of the page, we would have
to provide additional mechanisms to fetch the HTML of multiple
pages at once.

5.3 Data Object Manipulation
There may be times when users need additional information about

a data object that the data template does not provide. For example,
each image from Facebook currently only has an image URL asso-
ciated with it. However, a user may wish to also know the image’s
width and height in order to do automatic positioning with the im-
ages, an active area of research [18]. An example of this automatic
positioning is shown in Figure 16.

Figure 16: Automatic Layout of Images

5.4 WYSIWIG Template Creation
Finally, there is no way for a user to visually create a print tem-

plate by designing the output itself. Platypus [14] is a Firefox Plu-
gin that inserts a toolbar into Firefox which allows the user to alter
how the page appears within the browser itself. They can perform
tasks such as change background, font color, font size, delete items,
move items etc. Once the user is finished, they can then save these
results to a Greasemonkey script. Currently this plugin could be
used to create scripts to upload to PrintMonkey. However this plu-
gin was not created with printing in mind so we would like to have
our own tool to create our own PrintMonkey templates. Platypus is
shown in Figure 17, as well as the altered view in a browser. The
overlay image is of the original page the user is modifying. Platy-
pus highlights the areas that the user is modifying, as shown in the
top righthand portion of Figure 17.

6. CONCLUSION
In this paper we have presented the design and prototype imple-

mentation of a web printing tool, PrintMonkey. The goal of this
tool is to allow users to easily select from multiple ways to print
a webpage, without requiring the original webpage to be modified.
It also allows users to easily customize how their webpages are
printed by writing their own templates that can be used in con-
junction with other tools. Developers are given the flexibility to
write templates in JavaScript if they are so inclined, or take ad-
vantage or our data mining scripts paired with our visual template
scripts. Our analysis shows the ways in which PrintMonkey offers
improvements over Internet Explorer 7, HP Smart Web Printing,
CSS, and TPT in terms of functionality, customizability and scala-
bility. The prototype has provided another point on the spectrum of

Figure 17: Platypus Firefox Plugin

printing tools, one that we believe will give users maximum benefit
for minimum costs.

7. REFERENCES
[1] All Recipes. http://www.allrecipes.com
[2] Cascading Style Sheets. http://www.w3.org/Style/CSS/
[3] Firebug. http://www.getfirebug.com/
[4] Firefox web browser. http://www.mozilla.com/en-US/firefox/
[5] Foodsville. http://www.foodsville.com
[6] GMail. http://www.gmail.com
[7] Greasespot. http://www.greasespot.net
[8] HP Smart Web Printing.

http://h71036.www7.hp.com/hho/cache/482779-0-0-225-
121.html

[9] IEBlog: Make printing work better with the web.
http://blogs.msdn.com/ie/archive/2005/07/31/445778.aspx

[10] Internet Explorer: Home page.
http://www.microsoft.com/windows/products/winfamily/ie/default.mspx

[11] JavaScript. www.javascript.com
[12] JSON. http://www.json.org
[13] Open-ID. http://www.openid.com
[14] Platypus. http://platypus.mozdev.org/
[15] Proxomitron.info... the webhiker’s guide to proxomitron.

http://www.proxomitron.info/
[16] Tabblo Print Toolkit.

http://developer.tabblo.com/index.php/tabblo-print-toolkit/
[17] A. Artail and M. Raydan, “Device-aware desktop web page

transformation for rendering on handhelds,” Personal
Ubiquitous Comput., vol. 9, no. 6, pages 368–380, 2005.

[18] C. B. Atkins, X. Lin, and M. I. Enachescu, Constraint based
albuming of graphic elements. US patent application filed
June 10, 2005, 2005.

[19] M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C. Miller,
“Automation and customization of rendered web pages,” in
UIST ’05: Proceedings of the 18th annual ACM symposium
on User interface software and technology, pages 163–172.
New York, NY, USA: ACM, 2005.

[20] K. Henricksen and J. Indulska, “Adapting the web interface:

238

An adaptive web browser,” 2001.
citeseer.ist.psu.edu/henricksen01adapting.html

[21] G. A. D. Lucca, A. R. Fasolino, M. Mastoianni, and
P. Tramontana, “Identifying cross site scripting
vulnerabilities in web applications,” in Sixth IEEE
International Workshop on Web Site Evolution (WSE’04),
pages 71–80, 2004.

[22] N. McFarlane, “Fixing web sites with Greasemonkey,” Linux
Journal, vol. 2005, no. 138, p. 1, 2005.

[23] M. K. Qiu, K. Zhang, and M. Huang, “An empirical study of
web interface design on small display devices,” in WI ’04:

Proceedings of the 2004 IEEE/WIC/ACM International
Conference on Web Intelligence, pages 29–35. Washington,
DC, USA: IEEE Computer Society, 2004.

[24] M. Qiu, K. Zhang, and M. Huang, “Usability in mobile
interface browsing,” Web Intelli. and Agent Sys., vol. 4, no. 1,
pages 43–59, 2006.

[25] D. Recordon and D. Reed, “OpenID 2.0: a platform for
user-centric identity management,” in DIM ’06: Proceedings
of the second ACM workshop on Digital identity
management, pages 11–16. New York, NY, USA: ACM,
2006.

239

