
Merging Changes in XML Documents Using Reliable
Context Fingerprints

Sebastian Rönnau Christian Pauli Uwe M. Borghoff
Institute for Software Technology

Universität der Bundeswehr München
Werner-Heisenberg-Weg 39
85577 Neubiberg, Germany

Sebastian.Roennau@unibw.de

ABSTRACT
Different dialects of XML have emerged as ubiquitous docu-
ment exchange formats. For effective collaboration based on
such documents, the capability to propagate edit operations
performed on a document is indispensable. In order to avoid
the transmission of whole documents, deltas are used to de-
scribe these edit operations, allowing the construction of a
new version of a document. However, patching a document
with a delta it was not generated for is error-prone, and any
insert or delete operations performed on the document are
likely to affect all subsequent paths within that document.

In this paper, we present a delta format for XML docu-
ments that uses context-aware fingerprints to identify edit
operations. This allows our XML patch procedure to find
the correct position of an edit operation, even if the docu-
ment was updated in the meantime. Possible conflicts are
detected. Experimental results show the reliability of the
presented fingerprinting technique and prove the high qual-
ity of the resulting patched documents.

Categories and Subject Descriptors
I.7.1 [Document and Text Processing]: Document and
Text Editing—Document management, Version control

General Terms
Algorithms, Management, Reliability.

Keywords
CSCW, XML diff, XML patch, fingerprint, office applica-
tions, version control.

1. INTRODUCTION
In office work, collaborative editing of documents is an

every-day task. Several persons write seperate parts, other
persons review and comment them. Many different tools

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’08, September 16–19, 2008, São Paulo, Brazil.
Copyright 2008 ACM 978-1-60558-081-4/08/09 ...$5.00.

and systems try to facilitate the exchange of documents,
taking technical and organizational measures to guarantee a
consistent state. This belongs to the research body known
as computer supported cooperative work (CSCW).

For office applications, XML has emerged as lingua franca.
OpenOffice, Microsoft Office, and many other applications
use XML dialects for serializing and exchanging documents.
Therefore, in this paper we consider XML documents only.

Several metrics exist for categorizing XML-aware CSCW
systems. Among others, they can be divided in operation-
based and state-based systems [12, 13]. The main advantage
of the operation-based approach is that it retains informa-
tion about the evolution of a document state, thus allowing
to perform a fine-grained merge. However, in the office do-
main this advantage turns into a major drawback: Persons
(or organizations) often want to hide their editing process,
only accepting to exchange a document in an approved state.
Therefore, we focus our work on the state-based approach.

Version control systems can serve as an example for a
state-based CSCW system. The question, how version con-
trol systems and XML-based office documents interact has
been discussed in [25], where an XML-aware diff tool is used
to compute the changes between two versions of a document.
Several implementations of such a tool have been proposed.
However, only two approaches are sufficiently efficent [7, 20].

Two-way-diffs can only be applied if documents are evolved
in a linear fashion. In most collaboration and versioning
scenarios however, it is crucial to be able to merge changes
performed independently on a document [1]. As a solution,
a three-way-diff could be used, which compares the changed
versions of a document with their nearest common ancestor
[13]. An XML-aware implementation was proposed, too [18].
However, these approaches require all three versions to be
available. In ad-hoc environments and loose collaboration
sytems, this precondition will not hold in general [24]. Low-
bandwidth connections, for example over satellite systems,
do not allow the transfer of the complete version, either.

Another solution would be to apply a delta to a version of
the document it was not computed for – an approach which
is commonly used in the domain of line-based edit operations
[11]. Due to the fact that deltas mostly use absolute paths
to identify an edit operation, this approach is both naive
and unusable in the domain of XML documents. Figure 1
shows a simple example, where an edit operation affects the
addresses of the subsequent nodes.

In order to avoid such effects, we present a technique to
compute fingerprints of the context of an edit operation us-

52

A:

<doc>
<p>par 1</p>
<p>par 3</p>

</doc>

A
′
:

<doc>
<p>par 3</p>

</doc>

A
′′

:

<doc>
<p>par 1</p>
<p>par 2</p>
<p>par 3</p>

</doc>

A∗:

<doc>
<p>par 2</p>
<p>par 3</p>

</doc>

<doc>
<p>par 3</p>
<p>par 2</p>

</doc>

∆
A→A

′ : del /0

∆
A→A

′′ : ins /1 ∆
A→A

′ : del /0

∆
A→A

′′ : ins /1

Figure 1: Applying a delta to a document version it was not computed for leads to unwanted results easily.
Performing the delta marked with a dashed line would create a wrong document version.

ing hash values. This allows the patch procedure to identify
the correct position of an edit operation using its context –
even if it has moved in the meantime.

Thus, patching an XML document with a delta it was not
computed for becomes possible and reliable.

The remainder of this paper is organized as follows: We
define our XML model and a delta model in Section 2. In
Section 3, we propose a fingerprinting technique using the
context of an edit operation and a delta format using it. A
patch procedure based upon this delta format is described
in Section 4. Section 5 demonstrates the benefits of our
approach using experimental results. After an examination
of related work in Section 6, we conclude the paper and give
an outlook on future work in Section 7.

2. PRELIMINARIES
The basic set of all documents shall be denoted as A. A

is a document of A. A′, A′′, and A∗ are versions of A.

2.1 XML Model
It must be emphasized that with our approach the order of

nodes in the XML tree is significant. We use the term doc-
ument order for the order in which nodes are encountered,
one after another, as the document that contains them is
parsed [6]. Hence, for two nodes i, j ∈ A, i < j is true, if
and only if i comes before j in document order.

In this paper, we use the term node for text, element
and processing instruction nodes. Attributes are regarded
as part of element nodes; comments are ignored, as they
do not affect the semantic meaning of the document. The
terms ancestor, child, descendant, parent, and sibling are
used as defined in [6], too. A subtree is defined as exactly one
node (called root(subtree)), which can have any descendant
nodes without restriction. It is important to distinguish this
document-centric view from a data-centric view, which is
common in the domain of databases (see, e.g. [17]).

Empty text nodes and text nodes only consisting of white-
space are not taken into account by our approach. This
decision was motivated by the intention to increase the in-
formation value of the context of an edit operation, as well
as to be robust against pretty-printing of output (see Sec-
tion 3.2).

We define the distance of two nodes i, j ∈ A to be the

number of nodes to walk in document order from i to j:

dist(i, j) =

8><>:
#{n ∈ A|i < n ≤ j} if i < j

−#{n ∈ A|j < n ≤ i} if j < i

0 otherwise

(1)

A key question in the design of an XML delta format
is how to define the address of an edit operation. With
XPath, a powerful language for addressing nodes within
XML documents exists [6]. However, an XPath expres-
sion typically returns a set of nodes, whereas an edit must
act on a unique node. This problem can be avoided, since
XPath allows to address single nodes on a hierarchy level
using an absolute index like [position()=1]. Note that
this absolute index must be defined on each hierarchy level
to ensure that only one node is addressed. For example,
/doc/text/itemization/item[position()=2] would return
more than one item if the text contains multiple itemiza-
tions.

In our approach, we use a slightly simpler addressing syn-
tax [20], where the expression /0/1 equals the XPath ex-
pression /*[position()=1]/*position()=2]1.

2.2 Delta Model
Two versions of one document, denoted as A,A′ ∈ A, are

compared by a diff-algorithm, which computes the differ-
ences and creates an edit script:

diff : A× A→ ∆ (2)

where ∆ is the basic set of all edit scripts. An element of
∆, denoted by ∆A→A′ , contains the script which must be
performed to construct the new version (A′) from the given
one (A) using a so-called patch-program:

patch : A×∆→ A (3)

In the following, the term delta is used synonymously for an
edit script, meaning an element of ∆.

Thus, a delta is a set of edit operations which must be per-
formed to construct a new version of a document. Formally,

1As you can see, XPath begins its numbering with 1. In
contrast, the proposed addressing scheme starts numbering
with 0, which is more familiar to computer scientists anyway.

53

an edit operation is denoted by a tuple

operation : (type, position, v, v′) (4)

Its parameter items are described below.

2.2.1 Type of Edit Operations
The first item refers to the type of the edit operation,

where the main types are ”insert”, ”delete”, and ”update”.
Basically, every change between two documents can be

represented by a sequence of insert and delete operations.
Still, we consider the update operation to be important for
the following reason: Imagine that the root node of a text
document contains an attribute declaring the document sta-
tus as ”draft” or ”final”. In order to effect a simple change
of status without an update operation being available, one
would have to first delete the whole document and to insert
it again with the new status. This would result in a delta
twice the size of the original document and all benefits of an
XML-aware diff and patch would be lost.

Some approaches additionally make use of the operation
types ”move” [20, 7, 5], and ”glue” [5]. These operation
types would demand an extended notation and more com-
plex patch rules which are both beyond the scope of this
paper.

2.2.2 Addressing Changes
The position addresses a node in the document A where

the edit operation will be performed. Later on in this paper,
the term designated point of operation is used as a synonym
for the position defined in an edit operation.

To state this more precisely, position addresses a node
depending on the type of the edit operation.

• For insert operations, the position refers to the ad-
dress, where the subtree to be inserted will be placed.
An already existent node at this address and all of its
following siblings will be shifted one position to the
right. A subtree designated to be inserted as the last
element of a subtree would also refer to the address
where it will be placed, even if the address did not
exist in the original document A (see Figure 2).

• In case of delete operations, the position addresses the
root node of the subtree to be deleted in document A.

• An update operation addresses the node to be updated
in document A.

Note that insert and delete operations address a subtree,
whereas an update operation just addresses a single node.
An example clarifies this: A delete operation deletes the
addressed node itself and all of its children. If a delete oper-
ation would only delete the node addressed, all its children
would have to move up one hierarchy level higher. We as-
sume that this is probably not in conformance with a DTD,
Schema or similar. Vice versa, an insert operation is not
allowed to insert a node as a parent of existing nodes in
document A. This behavior conforms with [5, 21], but is
contradictory to [18, 20].

2.2.3 Value
The content of the area affected by the edit operation

before and after its application is stored in v and v′. Both

doc
/

styles
/0

text
/1

T1
/0/1

T2
/0/1

p style=T2
/1/0

p style=T1
/1/1

dolor
/1/0/0

sit amet
/1/1/0

p style=T1

Lorem ipsum

ins /1/0

ins /1/2

Figure 2: An insert operation addressing /1/0 would
shift the existing node at this position to the right,
including all subsequent nodes w.r.t. the parent
node text, and force the re-calculation of their paths.
To insert the subtree as last child of /1, it must ad-
dress /1/2.

refer to a node or a subtree, depending on the type of the
edit operation2.

• In case of an insert operation, v remains empty, and
v′ describes the subtree to insert.

• For delete operations, v contains the subtree to delete,
whereas v′ is empty.

• An update operation addresses single nodes. The old
value of the node is stored in v, the new one in v′

This definition ensures the completeness of the delta in terms
of [21], allowing a delta to be used both ways to construct
a new version, and to revert the changes made (see Sec-
tion 3.4).

2.2.4 Commutativity of Edit Operations
Finally, all edit operations within one delta have to be

commutative. This results from the set property of the delta,
which does not specify the order of the edit operations, thus
allowing any permutations of operations.

Definition 1. Two edit operations op1, op2 ∈ ∆, with
op1 6= op2 are commutative, if the position of op1 does not
depend on the position of op2 itself or a descendant of op2

and vice versa.

Commutativity ensures that an edit operation can possibly
be performed, even in a situation where another one has
been rejected due to a conflict (see Section 4.2). Note that
this precondition can only be stated in a state-based model.
Operation-based approaches cannot ensure the commutativ-
ity of operations.

Each edit operation within the same delta will be per-
formed only once, and only on one node. An edit opera-
tion must not address multiple nodes (like template rules in
XSLT can do).

2In terms of GNU diff, v and v′ would be called a hunk.

54

doc

styles text

T1 T2 p style=T1 p style=T2 p style=T1

Lorem ipsum dolor sit amet

Figure 3: This fingerprint with radius r = 2 stores
context-information for an update operation. The
anchor node is the first paragraph, located at /1/0.
For insert and delete operations addressing this
node, the resulting fingerprint would differ slightly.

3. CONTEXT-ORIENTED DELTA
In general, documents have an order on a higher, non-

technical level of abstraction. For example, the sequence
of paragraphs within a text document is significant, even
though no formal order on them would be defined.

We assume that most edit operations performed on a doc-
ument are context-sensitive. A person working on a text for
example, would insert a paragraph semantically relating to
the paragraph before. An insertion at the right absolute po-
sition but in context of another paragraph would be highly
arguable. Therefore, we assume that the context of an edit
operation is a reliable indication, whether an edit operation
should be performed or rejected.

To describe the context of an edit operation we introduce
a fingerprinting technique in Section 3.1, which uses a hash-
ing scheme presented in Section 3.2. The resulting delta
format is described in Section 3.3. Finally, we show the
completeness of the delta by presenting inversion rules in
Section 3.4.

3.1 Fingerprinting Edit Operations
The context of an edit operation is stored in a so-called

fingerprint, which is a sequence of the hash values of all
nodes in a radius r (r ≥ 0) around the edit operation in
document order.

To be able to define a meaningful fingerprint, we introduce
the context of an edit operation, called Afingerprint:

Afingerprint
def
= A\descendants(v) (5)

As the fingerprint is defined using the document order, this
definition ensures that the fingerprint does not refer to itself
in a delete operation. The fingerprint around the designated
point of operation i is a sequence, ordered by the distance
relating to i:

fingerprint(i) = {hash(j)},where j ∈ Afingerprint ∧
0 < |dist(i, j)| ≤ r

(6)

The element of the fingerprint with distance d relating to i
is denoted as fingerprinti[d]. The value of fingerprinti[0] is
denoted as anchor node and is assigned a value depending

of the type of the edit operation:

fingerprinti[0]
def
=

(
hash(root(v′)) for insert operations

hash(root(v)) otherwise

(7)
This ensures that the anchor of a fingerprint always refers to
the first node of the area affected by an edit operation, even
for insert operations, as they do not have an explicit node
in A, which they could address. By this, edit operations
are allowed to be inverted, as described in Section 3.4. For
delete and update operations, the anchor node is used for a
fast decision, whether a conflict occurs (see Section 4.2).

Figure 3 shows an example of a fingerprint which reveals
the consequences of introducing Afingerprint. An update oper-
ation referring to node /1/0 would result in the fingerprint
as shown. For a delete operation, the fingerprint would not
include the descendants of the node to delete, which affects
the right part of the shown fingerprint. Instead, p style=T2

and dolor would be used for computing the fingerprint right
of the anchor. An insert operation on the node /1/0 would
mean to ”insert a subtree as the first child of text, push-
ing p style=T1 and its siblings to the right”. Therefore,
p style=T1 and Lorem ipsum would be used as right con-
text. The anchor node would refer to the node to insert,
which is not shown in this example.

If there do not exits enough nodes to fill the fingerprint,
which happens near the document borders, a special ”null
node” is used, which is identified by its unique hash value.

The fingerprint has a size of n = 2r + 1, with the anchor
node in the middle of the sequence. The computation of the
hash values will be discussed in Section 3.2. According to
the definition of fingerprint as a sequence, hash values are
allowed to occur multiple times.

Note that the fingerprint basically does not contain any
information about the address or position of the edit oper-
ation within the document tree. As a result, it would be
possible to change the hierarchy level in our example by in-
troducing a new parent node for styles and text, without
affecting the fingerprint.

3.2 Reliable XML Hashing
A key property of reliable hash functions is the recognition

of slight changes. In the context of XML, hashing is not
trivial, as some properties of XML have to be considered.

Many ways exist to construct semantically equivalent doc-
uments which differ syntactically. This can be easily showed
using an empty element, which can be both represented by
<element/> or <element></element>. Therefore, equivalent
semantics should map to equivalent syntactic values to be
able to compute a meaningful hash value.

On the other hand, it is possible that within distinct doc-
uments, elements equal syntactically, but have a different se-
mantic meaning. As an example, just consider namespaces:
A change in the namespace declaration with the same prefix
could change the semantic meaning of the elements using
that prefix extremely, without changing them directly. To
avoid this hazard, it must be assured that expanded names
are used and that links are resolved to prevent equivalent
hash values for different elements.

These problems have been recognized earlier, and sev-
eral solutions have been proposed, for example DOMHash
[22] and XML-Signature [9], where the latter generally uses
CanonicalXML [2] for document normalization. Both ap-

55

proaches are robust against different encodings, namespace
declarations, and attribute ordering. However, their aims
differ.

DOMHash assigns a hash value to each XML element,
where the hashes are computed recursively over the sub-
sequent tree of that element. Hence, a change in one node
affects all nodes on the path up to the root element. This al-
lows an easy decision, whether a document was changed and
if so, which part of the tree has been changed. The following
example shows why this is not useful to our approach: A fin-
gerprint contains an element as parent of a subtree probably.
If any of its descendants would be updated – even outside
the fingerprint – the hash of the parent element would have
changed irrespective of the fact that the element itself did
not change. Thus, the fingerprint could not be used as reli-
able indicator for the correct position of an edit operation.
Furthermore, DOMHash does not allow the addressing of
text nodes directly.

XML-Signature was designed to create a signature for a
whole document or single parts of it. This approach has
some major drawbacks for our scenario, too: First, each
signature holds a substantial header. Considering that each
fingerprint contains at least one hash value, whereas they
usually contain more, the overhead seems to be significant.
Second, the header must contain a path expression, which
defines the signed part of the document or must contain the
part itself. The latter is obviously useless when using hash
values in a fingerprint for space saving reasons. The former
is not very useful, either, because in our case, a fingerprint
should be matched with its counterpart which has probably
moved in terms of an absolute path.

Our approach is based on CanonicalXML [2], which is also
recommended as a normalizing technique for XML-Signature,
slightly extended towards the handling of text nodes, as al-
ready defined in Section 2.1. Thus, the pretty printed ver-
sion of a document equals the in-line representation of it
due to the disregard of text nodes consisting of white space
exclusively.

For hash values computation, we use MD5 [23], which
has been widely established as fast and reliable hashing al-
gorithm with efficient implementations on most platforms.
The different node types are hashed as follows:

• Element nodes are hashed on a concatenation of the
expanded element name and their sorted attributes in-
cluding their values.

• Text nodes are hashed on their unicode representa-
tion. Before hashing, leading and trailing whitespace
is trimmed. This is a tribute to the behaviour of some
pretty-printers, too.

• Processing instructions are hashed on their unicode
representation.

One might argue that MD5 as a 128bit cryptographic hash
function is too extensive for hashing single XML nodes which
maybe have a smaller size. We plan to investigate for more
suitable hash functions in the future.

By default, our approach hashes only the node itself. This
behaviour is used for fingerprint generation. Moreover, it
is also possible to hash complete subtrees in the style of
DOMHash, which is used for conflict detection (see Sec-
tion 4.2).

<?xml version="1.0" encoding="utf-8"?>
<delta>

<insert path="/1/0" radius="2" digester="md5">
<fingerprint>

<hash dist="-2">
-1263-6172-987-31-5624-45125-664-67-7258

</hash>
<hash dist="-1">

75306-6037210511218-106-55-127-40107-62-47
</hash>
<hash dist="0">

17-45-6-93-69-54-11709510561-1215453073
</hash>
<hash dist="1">

96-8443-9-11-39113-540102-31744141-37
</hash>
<hash dist="2">

17-45-6-93-69-54-11709510561-1215453073
</hash>

</fingerprint>
<oldval>
</oldval>
<newval>

<p style=T1>Lorem ipsum</p>
</newval>

</insert>
</delta>

Figure 4: An example delta containing just one in-
sert operation.

3.3 Delta Format
At this point, we extend our definition of an edit opera-

tion (see Equation 4) by introducing the fingerprint defined
above:

operation : (type, position, v, v′, fingerprint(position)) (8)

We stored the delta itself within an XML file, using the root
node <delta>. Edit operations are mapped to the XML
domain as follows:

• type maps to the element name of the edit operation
and can be either insert, delete, or update. This
node is the parent node of the rest of the edit opera-
tion.

• position is mapped to the attribute pos.

• fingerprint is stored in a subtree called fingerprint.

– The attribute radius contains the radius of the
fingerprint.

– The attribute digester refers to the hash alorithm
used (md5 in our implementation).

– The discrete values of the fingerprint are stored
as text nodes as child of a hash element node with
the attribute dist, which refers to the distance in
relation to the anchor node.

• v is stored as child of oldval.

• v′ is stored as child of newval.

Figure 4 shows an example delta3.

3The different length of the hash values results from the
fact that the hashes are stored as byte-array internally and
only serialized in a string representation. The hash length
is always 128bit.

56

Original edit operation Inverted edit operation Additional operation
(insert,position, ∅, v′, fingerprint) (delete, position, v′, ∅, fingerprint)
(delete, position, v, ∅, fingerprint) (insert,position, ∅, v, fingerprint)
(update,position, v, v′, fingerprint) (update,position, v′, v, fingerprint) fingerprint[0] = hash(v′)

Table 1: Delta inversion is simple. Only update operations require to modify the fingerprint during inversion.

3.4 Inverting a Delta
As we store completed deltas in terms of [21], the inversion

of a delta can be performed easily. Due to its definition, the
fingerprint has just to be updated in case of update opera-
tions. Table 1 shows the rules for inverting edit operations.

4. APPLYING A DELTA
We contrast two cases for delta application. In the first

one, the delta is applied to the document it was computed
for. In the second one, however, the delta is applied to a
different version of the document. For the first case (called
standard case) we demand that every edit operation must
be applied correctly. In the second case (called merge case)
we could only promise a best-effort solution. Most of this
section concentrates on the question how to deal with the
merge case. Our solution for the standard case is described
in Section 4.4.

Any change performed on a document can have a deep
impact on the paths to the following nodes. A basic require-
ment for our patch function is to find the correct position of
an edit operation, even if the address in the delta points to a
wrong node in the meantime. As we do not want to perform
an exhaustive search for that correct position, we define a
neighborhood around the designated point of operation in
which the correct delta position is supposed to be in Section
4.1. Conflicting edit operations could be identified, which
is discussed in Section 4.2. Afterwards, we present a weight
function to measure the quality of a potential position of an
edit operation in Section 4.3. The patch procedure and its
implementation is presented in Section 4.4.

4.1 Defining a Neighborhood
The merge case implies that the position of an edit opera-

tion potentially addresses a wrong node, as described before.
In this case, our patch procedure has to search the correct
node within the document to apply the edit operation. How-
ever, it is also possible that the node has been deleted or
updated meanwhile, which prevents the patch procedure to
identify the node accurately.

In both cases, we identify the best candidate node using
a heuristic weight function described in Section 4.3. Using
a complete approach, this weight function must compute
the quality of all nodes within the document to find the
best match. This exhaustive approach leads easily into a
complexity trap. To avoid this, we define the neighborhood
of the position of an edit operation as a set of nodes, which
elements are regarded as candidate nodes for our weight
function. The neighborhood has a radius ρ, with ρ ≥ 0 and
a size m = 2ρ+ 1.

In our implementation, the neighborhood is computed ac-
cording the rules shown in Figure 5, using XPath expres-
sions. A so-defined neighborhood is composed only of nodes
on the same hierarchy level. Figure 6 shows the neighbor-
hood generation for the node /1/0 of our example tree.

Note that these rules for neighborhood generation are pre-

takeNext(actNode, direction) {
if (direction = left) {

next := ./preceding-sibling
if next = null {

next:=../preceding-sibling::*/*[position()=last()]
}

} elsif (direction = right) {
next := ./following-sibling
if next = null {

next := ../following-sibling::*/*[position()=1]
}

}
}
generateNeighborhood(anchor) {

neighborhood[0] := anchor
i := -1
while abs(i) < ρ {

neighborhood[i] := takeNext(neighborhood[i+1], left)
i := i - 1

}
i := 1
while i < ρ {

neighborhood[i] := takeNext(neighborhood[i-1], right)
i := i + 1

}
}

Figure 5: The neighborhood of a designated point of
operation is computed using XPath expressions.

liminary rules, which are designed to fit many different doc-
ument types. However, document type specific rule sets
promise to be more appropriate, as the design could be tai-
lored to the special characteristic of the document type. For
example, for a spreadsheet document, a rule set is imagin-
able which would just look for matchings in the same col-
umn. An according interface for user-defined rule sets is
planned.

4.2 Conflict Detection
Generally speaking, a conflict occurs when an edit opera-

tion tries to affect a node or subtree which has been changed
in the meantime. Obviously, only update and delete op-
erations can conflict, as insert operations do not act on a
specific node. An insert operation can lead to a subtree in-
serted at a position if was no expect to, indeed. However,
this is no conflict and will be denoted as false positive (see
Section 5.1).

Definition 2. An update operation op conflicts, if for a
candidate p, the anchor node of the fingerprint of op does
not match the anchor node of p.

It is possible to decide whether an update operation conflicts
by just considering the fingerprint, as it just affects one node.
For a delete operation, the subtree must be regarded, too.

Definition 3. A delete operation op conflicts, if for a
candidate p, the anchor node of the fingerprint of op does
not match the anchor node of p, or if v of op does not equal
the corresponding subtree of p.

57

doc

styles text

T1 T2 p style=T1 p style=T2 p style=T1

Lorem ipsum dolor sit amet

Figure 6: The neighborhood of the node /1/0 with a radius ρ = 2 including the surrounding hash values.

Whether two subtrees equal, is decided on the basis of the
recursively computed hash over v and v′ described in Sec-
tion 3.2.

In some cases, it might be useful to ignore conflicts, hence
our patch procedure allows to ignore them.

4.3 Weighted Matching
Each edit operation will be performed only once during a

patch run. Therefore, we need the ability to decide, which
of the nodes in the neighborhood will likely be the correct
point of operation.

We introduce a function which weights the quality of a
candidate node with respect to the given fingerprint of that
edit operation. It is not required that the fingerprint matches
all of its counterpart nodes in the context of the candidate.
The key idea of the weight function is that a fingerprint
matching near to the anchor node is assigned a higher pri-
ority than a matching far away.

Before computing the fingerprint matchings, we must con-
sider the type of the edit operation. For an insert operation,
the anchor of the fingerprint points to the root element of
the subtree to insert, which is obviously not part of the doc-
ument to patch yet. Therefore, the anchor node can not
match. To respect this fact, we define the sequence I, where
r is the radius of the fingerprint.

I
def
=

(
−r, ..,−1, 1, .., r for insert operations

−r, .., r otherwise
(9)

The context of a candidate is computed in analogy to the
rules presented for fingerprints defined in section 3.1.

A fingerprint matching is given, if the hash value of a
node ki in the context of the candidate p matches the ac-
cording element of the fingerprint with the same distance i
(dist(p, k) = i, i ∈ I):

match(ki)
def
=

(
1 if fingerprint[i] = hash(ki)

0 otherwise
(10)

Thus, the quality of the candidate p is measured, depend-

distance i quality if match(ki) = 0
0 0.636
1 0.818
2 0.909
3 0.955

Table 2: The match quality for a fingerprint of an
update operation with r = 3 if one node in distance
i to the anchor does not match.

x

f(x) = 1

2|i|

0 1

1

Figure 7: The influence of a node on the match qual-
ity decreases dramatically when gaining distance to
the anchor.

ing on the amount of matching nodes in its context:

MatchQuality(p) =

P
i∈I

match(ki)

2|i|P
i∈I

1

2|i|

(11)

The numerator counts all matches, whereas the denomina-
tor makes sure that the result is mapped to a value between
0 and 1. Table 2 shows example matching weights for update
and delete operations.

As you can see, the distance to the anchor node has a
strong influence on the weight (see Figure 7). Obviously, a
fingerprint radius r > 4 would not contribute to the match
quality in a noticable way.

The candidate with the best match quality is called best
candidate.

58

4.4 Patching
The behavior of the presented patch procedure can be

controlled by two parameters. The first one causes the patch
procedure to skip the conflict detection. By using the second
parameter, the patch procedure is given a threshold value
which will be used as lower bound for accepting a computed
matchQuality.

Our implementation works in two phases. First, all match-
ings are computed and stored in a accept- or reject-list. In
the second phase, the matchings are either applied to the
document or stored in a log file. The reasons for this sepa-
ration in phases are as follows:

Any edit operations applied to the document potentially
affect other edit operations. As the fingerprints are defined
with respect to the original document, a second edit opera-
tion addressing a node near the first one could be prevented
finding appropriate matchings – the fingerprint would not
match as the document has been updated in the meanwhile.
In addition, a re-labeling of nodes is extremely cost-intensive
[14]. This re-labeling becomes necessary after an insert or
delete operation to reconstruct a consistent node numbering.
To avoid this task, our patch procedure stores a pointer to
the in-memory representation of the node addressed by the
matching instead of using its path in the accept-list. This
allows a fast modification of the document tree in the second
phase.

Up to now, we did not consider the question, what to
do when a position in an edit operation does not refer to
a node in the document to patch, except for the insert as
last element of a subtree. First, we try to find the right
most node in the subtree adressed by the edit operation,
which would correspond to the XPath expression ../*[po-

sition()=last()]. If no node is found, we repeat this re-
cursively, following the hierarchy levels of the tree higher
and higher, until we reach the root node of the document
(which would mean that the document to patch is empty).

Our patch procedure also allows to ignore the fingerprints
and to act like a ”traditional” patch tool. This mode is
obviously faster and can be used for a simple reconstruction
of linear document versions.

The implementation was performed using the Java pro-
gramming language and the XOM XML API4.

5. EVALUATION
In order to evaluate our approach, OpenOffice text doc-

uments have been used. Changes have been performed on
them, resulting in two different versions of each document,
A′, and A′′. The deltas have been generated with a program
extracting the operations which have been recorded using
the ”track changes” feature of OpenOffice. These deltas have
been applied to the respectively other document version, as
shown in Figure 1. The resulting documents have been com-
pared with the expected merge result A∗.

The tests were performed on 6 documents with a size be-
tween 2 and 100 KB. The deltas consist of 1 to 10 edit op-
erations, resulting in overall 60 edit operations.

5.1 Quality of the Result
To measure the quality of our patch procedure, we define

following 4 categories for applied edit operations:

4http://www.xom.nu

0.5 0.6 0.7 0.8 0.9 1.0

20%

40%

60%

80%

100%

threshold value

positives

false positives

negatives

Figure 8: The test results show the high impact of
the threshold value on the ratio of positives. No
false positives could be found for a threshold ≥ 0.7.

• positives are edit operations, which have been applied
to the delta.

• false positives are positives, which have been applied
to a position where they were not supposed to.

• negatives are edit operations which have been rejected
due to a match quality below the threshold value.

• false negatives are negatives, which have been rejected,
even if a matching position would have been available.

Our test results are promising. The ratio of positives,
false positives and negatives relating to all edit operations
is shown in Figure 8. The ratio of false negatives is not
indicated separately, as it almost equals the ratio of neg-
atives. A ”not false” negative indicates an edit operation
which must not be applied, as a correct position does not
exist anymore, thus meaning a conflict. In our test scenario,
5% of the edit operations match this criterion. All of them
have already been found at a threshold of 0.5, therefore they
are not indicated separately.

As a first conclusion, we state that a threshold value of
1 heavily decreases the amount of positives. Interestingly,
no false positive occured using a threshold of 0.7 or higher.
Between these both threshold values, the ratio of positives
decreases significantly from 78% to 43%. Therefore, we rec-
ommend to use a threshold of 0.7 for a high reliabilty of the
result without too much rejected edit operations.

If a high rate of positives is preferred, and few false pos-
itives are tolerated, we would consider a threshold of 0.55,
where only 2% of the operations are false positives, with
overall 93% positives.

5.2 Space and Time Complexity
Storing the context fingerprint of an edit operation impli-

cates a higher space complexity of the resulting deltas. In
our approach, this overhead is 0.6 KB per edit operation for
a fingerprint radius of r = 4, and 0.5 KB for r = 3. This
is significantly higher than XyDiff, which only requires an
0.2 KB overhead. To decrease the overhead of context fin-
gerprints, one could pass on the ability to directly address
the particular hash values of the fingerprint. By storing the

59

0 2 4 6 8 10

edit operations

1s

2s

Figure 9: The performance of the patch procedure
against the number of edit operations with a con-
stant neighborhood radius of 10.

hashes sequentially, we are able to limit the overhead to
0.3 KB per edit operation, which is fairly in the range of
traditional XML delta formats like XyDiff.

Figure 9 shows the performance of our implementation on
a 2 GHz Pentium IV. Due to the restricted neighborhood
(see Section 4.1), the runtime of the patch procedure only
depends on the number of edit operations and the size of the
document. Unfortunately, we can not perform a comparison
of the execution time with other approaches, as they are
not able to handle our test scenario (see Section 6). Still,
our implementation could be improved. A speed-optimized
version will be written and extensively tested.

6. RELATED WORK
The idea to respect the context of an edit operation is not

new. In the domain of line-based deltas, this concept has
proven its strength in the GNU diffutils [11, 13]. Its appli-
cation to the XML domain and the use of hashing techniques
however is new – no similar approach is known to us.

As already stated, only two XML diff/patch approaches
can handle the complex task of finding all changes in two
versions of one document efficiently, namely XyDiff [7] and
faxma [20]. XyDiff identifies XML nodes using persistent
identifiers, called XIDs [21], which are used to ensure the
correctness of the diff and patch results. Consequently, Xy-
Diff is not able to patch a document with a delta it was
not computed for and aborts throwing an exception. The
basic concept of XIDs hinders using XyDiff for document
versioning and tracking outside the context of the Xyleme
data warehouse, which for XyDiff was developed.

Faxma uses an own delta format, called XMLR [19]. Inter-
estingly, the edit operations themselves are not addressed di-
rectly, but are embedded in a transformation script for con-
structing the new document version using the former one.
This script works on absolute paths, however. Therefore,
the correctness of the result can not be guaranteed. Abso-
lute paths pointing to a no longer existing node lead to a
program abort. This was the case in all of our tests (analo-
gous to Section 5), except for two testruns.

Instead of applying a delta to a version of a document it
was not computed for, a 3-way diff could be used to merge
changes in the line-based domain [11], as well as in the XML
domain [18]. These approaches are based on two internal
2-way diff runs – actually, the merges are computed by com-

paring the resulting edit sripts. In [11], a best-effort ap-
proach for merging is used, too, which assets and drawbacks
are discussed in [13]. The delta model in [18] differs from
ours, reverting changes is not possible.

Some state-based versioning approaches avoid the prob-
lem of addressing the edit operations by in-lining them into
the updated document itself [10, 26], which requires stor-
ing and transmitting the complete document instead of just
the deltas. Furthermore, embedding all version information
might be unwanted due to privacy or security reasons, which
is also the major drawback of systems using the operation-
based approach [12].

Approaches exist to define edit operations on XML doc-
uments in a general way [3, 4, 28, 16]. However, these ap-
proaches use a database centric view towards XML docu-
ments and are not able to deal with documents updated in
the meantime either, as they also use XPath expressions or
similar languages for addressing nodes.

In the last years, an emerging community works on the
idea of fingerprinting whole documents for similarity search.
The main idea is to identify the similarity of documents by
making use of hash collisions [15, 27]. This approach needs a
minimum document size to be able to compute a meaningful
fingerprint. As the context of edit operations is quite small,
this technique is not promising for our scenario. Another
approach tailored for XML documents was presented in [8].
As our fingerprint technique maps to linear data, thus dis-
solving the tree structure, this approach is not applicable,
either.

7. CONCLUSIONS AND FURTHER WORK
This paper presents a new approach to handling edit op-

erations on XML documents. Instead of enforcing a linear
evolution of documents, our approach permits to merge dif-
ferent versions of a document.

Using the context of an edit operation, we are able to
identify its correct position in the document to patch, even
if it moved with respect to the position stored in the delta.
This context is stored in a so-called fingerprint using hashing
techniques.

The delta contains both the new and the old value of any
edit operations. Therefore, our delta could also be used
to revert changes. Furthermore, conflict detection becomes
possible, which avoids the presented patch procedure to act
on the wrong position by mistake. By defining a neighbor-
hood, we restrict the search environment to possibly moved
nodes, thus preventing an exhaustive search.

We present a weight function to measure the quality of
a potential edit position with respect to the stored finger-
print. The accuracy of the patch can be controlled using a
threshold value for the match quality.

Experimental results indicate that our approach gener-
ates reliable results. If possible errors are accepted by using
a lower threshold value, the ratio of correctly applied edit
operations increases strongly, whereas the drawback of false
positives tends to be small.

During our research, some interesting questions emerged,
which we plan to investigate in the future. First, we would
like to perform tests using different hash functions, in par-
ticular fuzzy hash functions [27]. A major property of these
hash functions is that their hash values are not affected by
very small changes. The impact on real-world examples
should be explored. Second, an API will be provided to in-

60

tegrate custom rule sets for neighborhood generation, which
allows to tailor the neighborhood to the specific document
type used. Finally, the usability of our patch program could
be improved by a graphical user interface, which supports
the user in resolving conflicts.

A precondition for a wide-spreaded use of our approach
is the availability of good transformations from popular for-
mats into the delta format we defined. Therefore, we will
improve our implementation for the extraction of tracked
changes out of ODF documents, which was used for our ex-
periments. A transformation from deltas generated by XyD-
iff into our format is in progress. A corresponding transfor-
mation of faxma and possibly other approaches is to come.

Working with versions of XML documents is still not as
handy as the line-based GNU diff and patch. Still, we have
made progress in solving every-day problems in the handling
of XML documents.

8. REFERENCES
[1] S. Balasubramaniam and B. C. Pierce. What is a file

synchronizer? In Fourth Annual ACM/IEEE
International Conference on Mobile Computing and
Networking (MobiCom ’98), Oct. 1998.

[2] J. Boyer. Canonical XML version 1.0, 2001.

[3] E. Bruno, J. L. Maitre, and E. Murisasco. Extending
xQuery with transformation operators. In DocEng ’03:
Proceedings of the 2003 ACM symposium on
Document engineering, pages 1–8, New York, NY,
USA, 2003. ACM.

[4] D. Chamberlin, D. Florescu, J. Melton, J. Robie, and
J. Siméon. XQuery Update Facility 1.0, 2008.

[5] S. S. Chawathe and H. Garcia-Molina. Meaningful
change detection in structured data. In SIGMOD
Conference, pages 26–37, 1997.

[6] J. Clark and S. deRose. XML Path Language (XPath).
Technical report, World Wide Web Consortium, 1999.

[7] G. Cobéna, S. Abiteboul, and A. Marian. Detecting
Changes in XML Documents. In Proceedings of the
18th International Conference on Data Engineering,
26 February - 1 March 2002, San Jose, CA, pages
41–52. IEEE Computer Society, 2002.

[8] D. de Brum Saccol, N. Edelweiss,
R. de Matos Galante, and C. Zaniolo. XML version
detection. In DocEng ’07: Proceedings of the 2007
ACM symposium on Document engineering, pages
79–88, New York, NY, USA, 2007. ACM.

[9] D. Eastlake, J. Reagle, and D. Solo. XML-Signature
syntax and processing, 2002.

[10] R. L. Fontaine. Merging XML files: a new approach
providing intelligent merge of XML data sets. In
Proceedings of XML Europe 2002, 2002.

[11] Free Software Foundation. Comparing and Merging
Files, 2002.

[12] C.-L. Ignat and M. C. Norrie. Flexible collaboration
over XML documents. In CDVE, pages 267–274, 2006.

[13] S. Khanna, K. Kunal, and B. C. Pierce. A formal
investigation of diff3. In Arvind and Prasad, editors,
Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), Dec. 2007.

[14] H.-K. Ko and S. Lee. An efficient scheme to
completely avoid re-labeling in XML updates. In
WISE, pages 259–264, 2006.

[15] J. Kornblum. Identifying almost identical files using
context triggered piecewise hashing. Digital
Investigation, 3(Supplement-1):91–97, 2006.

[16] F. Lam, N. Lam, and R. Wong. Efficient
synchronization for mobile XML data. In CIKM ’02:
Proceedings of the eleventh international conference on
Information and knowledge management, pages
153–160, New York, NY, USA, 2002. ACM.

[17] E. Leonardi, S. S. Bhowmick, and S. K. Madria.
Xandy: Detecting changes on large unordered XML
documents using relational databases. In L. Zhou,
B. C. Ooi, and X. Meng, editors, DASFAA, volume
3453 of Lecture Notes in Computer Science, pages
711–723. Springer, 2005.

[18] T. Lindholm. A three-way merge for XML documents.
In DocEng ’04: Proceedings of the 2004 ACM
symposium on Document engineering, pages 1–10,
New York, NY, USA, 2004. ACM.

[19] T. Lindholm, J. Kangasharju, and S. Tarkoma. A
hybrid approach to optimistic file system directory
tree synchronization. In V. Kumar, A. B. Zaslavsky,
U. Çetintemel, and A. Labrinidis, editors, MobiDE,
pages 49–56. ACM, 2005.

[20] T. Lindholm, J. Kangasharju, and S. Tarkoma. Fast
and simple XML tree differencing by sequence
alignment. In DocEng ’06: Proceedings of the 2006
ACM symposium on Document engineering, pages
75–84, New York, NY, USA, 2006. ACM.

[21] A. Marian, S. Abiteboul, G. Cobéna, and L. Mignet.
Change-centric management of versions in an XML
warehouse. In The VLDB Journal, pages 581–590,
2001.

[22] H. Maruyama, K. Tamura, and N. Uramoto. Digest
Values for DOM (DOMHASH), 2000.

[23] R. Rivest. The md5 message-digest algorithm, 1992.

[24] S. Rönnau and U. M. Borghoff. Intelligent merging of
XML documents for distributed collaboration. In
Proceedings of the Distributed Intelligent Systems and
Technologies Workshop, pages 71–78, St. Petersburg,
Russia, 2008.

[25] S. Rönnau, J. Scheffczyk, and U. M. Borghoff.
Towards XML version control of office documents. In
DocEng ’05: Proceedings of the 2005 ACM symposium
on Document engineering, pages 10–19, New York,
NY, USA, 2005. ACM.

[26] L. A. Rosado, A. P. Márquez, and J. M. Gil.
Managing branch versioning in versioned/temporal
XML documents. In D. Barbosa, A. Bonifati,
Z. Bellahsene, E. Hunt, and R. Unland, editors,
XSym, volume 4704 of Lecture Notes in Computer
Science, pages 107–121. Springer, 2007.

[27] B. Stein. Fuzzy-fingerprints for text-based information
retrieval. In I-KNOW’05: Proceedings of the 5th
International Conference on Knowledge Management,
pages 572–579. Journal of Universal Computer
Science, 2005.

[28] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld.
Updating XML. In SIGMOD ’01: Proceedings of the
2001 ACM SIGMOD international conference on
Management of data, pages 413–424, New York, NY,
USA, 2001. ACM.

61

