
A Document Object Modeling Method
to Retrieve Data from a Very Large XML Document

Seung Min Kim
School of Computer Science

and Engineering
Seoul National University

Republic of Korea
mowgli@ailab.snu.ac.kr

*Suk I. Yoo
School of Computer Science

and Engineering
Seoul National University

Republic of Korea
siyoo@ailab.snu.ac.kr

Eunji Hong
Department of Software

Engineering
Sung-Kong-Hoe University

Republic of Korea
hong@skhu.ac.kr

Tae Gwon Kim
Department of Computer and Media Engineering

Kangnam University Republic of Korea
ktg@kangnam.ac.kr

Il Kon Kim
Graduate School of Computer Science

 Kyungpook National University Republic of Korea
ikkim@knu.ac.kr

ABSTRACT
Document Object Modeling (DOM) is widely used approach for
retrieving data from an XML document. If the size of the XML
document is very large, however, using the DOM approach for
retrieving data from the XML document may suffer from a lack of
memory space for building the associated XML tree in the main
memory. To alleviate this problem, we propose a method that
allows the very large XML document to be split into small XML
documents, retrieves data from the XML tree built from each of
these small XML documents, and combines the results from all of
the n XML trees to generate the final result. With this proposed
approach, the memory space and processing time required to
retrieve data from the very large XML document using DOM are
reduced so that they can be managed by one single general-
purpose personal computer.

Categories and Subject Descriptors
I.7.1 [Document and Text Processing]: Document management;
F.2.2 [Nonnumerical Algorithms and Problems]: Computations
on discrete structures

General Terms: Algorithms, Performance, Experimentation

Keywords: XML, DOM, DOM API, Very Large XML
Documents

1. INTRODUCTION
XML is a W3C-recommended general-purpose markup language
[1]. XML and its related technologies are being used widely as
the standard methods for representing and exchanging
information on Web environments due to their flexibility in
information modeling. Information has been modeled using XML
in the various fields including information retrieval, document
exchange, document management, data mining and electronic
publishing.

One of the noteworthy trends happening with XML in recent
years is that large XML documents, whose sizes range from
several hundreds of MB to several GB, are now being generated.
Usually, a large XML document is the aggregation of a number of
relatively small XML data, which have a common tree structure.
For instance, the sizes of XML files for protein sequences [2]
range from 1.8~16 GB. But each of these large sizes is due to the
aggregation number of much smaller XML data, whose size is
about 1~10 KB.

XML parsers such as Apache Xerces [3] can be used for
managing the contents of XML documents. The parsing methods
of these XML parsers can be classified into two different groups
with their methods for accessing XML documents: DOM [4] and
SAX [5]. DOM models an XML document as a tree structure for
every XML application so that the GET, INSERT, DELETE and
UPDATE operations can be easily done using the predefined
DOM API. However, it suffers from a lack of memory space for
building the tree when the size of a document is very large. On
the other hand, SAX parses the XML document sequentially from
the beginning of the document whenever it is requested to find
some data. Thus, to get some data from the document, each XML
application using SAX first predefines the related data structure
and stores the data (from parsing) into this data structure. Then,
each XML application using SAX is not easily completed with
the repetitive full file scanning and the work of predefining
various data structures, when it needs many randomly located
data with a different data type.

In this paper, we present a DOM method for retrieving data
from a very large XML document with manageable memory
space and processing time by a single general-purpose personal
computer. A very large XML document is partitioned into n small
documents, where n varies depending on the capacity of the given
resource such as a personal computer. Each of the n small
documents is then modified by a padding process to meet the
well-formedness of the XML document. A data retrieval
operation on the original large XML document, which is
expressed with DOM API, is then executed sequentially on the
small XML tree that is built from each of the modified n XML
documents, and the results from all the n XML trees are combined
to generate the final result. With this approach, the data retrieval

*Suk I.Yoo is a corresponding author.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DocEng’07, August 28-31, 2007, Winnipeg, Manitoba, Canada.
Copyright 2007 ACM 978-1-59593-776-6/07/0008...$5.00.

59

operations on the very large XML document can be executed by a
single general-purpose personal computer.

2. RELATED WORK
Several approaches for processing XML data efficiently have
been published. Noga et al. [6] proposed a lazy XML processing
approach, which consists of the preprocessing phase and the
progressive parsing phase. In the preprocessing phase, they built
the internal representation per each node of the tree by analyzing
the document structure. In the progressive parsing phase, the
internal representation of each node is transformed into its
physical node of the tree when it is accessed for the first time.
They claimed that the performance of their approach would be
maximized if the number of transformed nodes does not exceed
80% of the number of total nodes. This approach is efficient in
constructing the tree rapidly but is not efficient when 80% nodes
of the XML tree are accessed during the execution of an operation.
Further, the advantage of rapid construction of the tree may not be
realized if the size of the given document is so large that the
memory necessary for the internal representation exceeds the
allowed free memory space.

Huang et al. [7] proposed a model that employs a prefilter to
remove uninteresting fragments of an input XML document by
approximately executing a user’s queries. The XML document
consisting of the candidate-set is then returned to the user’s
DOM- or SAX-based applications for further processing. The
performance result of the sample XPath [8] query
“/site/regions/asia” against XML documents, which are generated
by XMark [9], showed that it could reduce such computational
resources as CPU time and memory that are needed for parsing
and data retrieving. However, this approach has a drawback in
that it has to execute prefiltering whenever a new query to the
XML document is given.

XDBMS- and RDBMS-based approaches provide another
solution for processing XML data. Lu et al. [10] reported the
result on benchmarking a set of XML database implementations
using XMark and XMach [11] benchmarks. The selected
implementations represent a wide range of approaches, including
RDBMS-based systems with document-independent [12, 13, 14]
and document-dependent XML-relational schema mapping
approaches [15, 16], and XML native engines [10, 17] based on
an Object-Oriented Model and the Document Object Model. In
order to use XDBMS- and RDBMS-based approaches, however,
XML data must be preprocessed and stored in DBMS and XPath
queries must be translated into SQL queries. Furthermore,
XDBMS- and RDBMS-based approaches are too expensive to be
used in small-scale applications. Some researchers have also
claimed that the performance of relational XML database
degrades when dealing with huge XML data [18].

Kido et al. [18] proposed a scheme called PC cluster for the
parallel processing of XML data using a group of personal
computers. Each computer of the PC cluster runs the same version
of RDBMS using [14]. To make parallel processing possible, they
suggested a method of partitioning the XML data based on the
subgraph decomposition of a schema graph and subset
decomposition of XML partitions. To allocate XML partitions to
cluster nodes, they give an algorithm for computing suboptimal
assignment by applying a greedy method and a genetic algorithm.
Although they could speed up the performance by using a PC

cluster, the dependency of the PC cluster may be a barrier to an
application that uses a stand-alone computing environment.

The approach of Wei Lu et al. [19] is the one that relates most
to our method from the viewpoint of data partitioning. Here, they
designed and implemented a parallel XML parsing on a shared
memory computer. Their method consists of the pre-parsing phase
and the parallel parsing phase. In the pre-parsing phase, a
simplified XML tree of the XML document is constructed. This
tree contains the logical structure of the XML document and the
range information of each element in the XML document. They
partition the XML document, based on the logical structure, in
order to parse each chunk in parallel. In the parallel parsing phase,
each chunk from the partitioned XML document is allocated to a
thread either statically or dynamically. All subtrees generated
from the chunks are attached to the main XML tree when the
parallel parsing phase is completed. This approach may be
efficient in constructing the tree rapidly. However, it also suffers
from a memory problem when the size of the document becomes
very large, since the required memory for internal representation
may exceed the allowed free memory space.

3. RETRIEVING DATA FROM A VERY
LARGE XML DOUCMENT USING MULTI
SMALL XML DOCUMENTS
In this section, we first discuss the difficulty faced when a very
large XML document is parsed to build one huge XML tree in the
main memory by a general-purpose XML parser supporting DOM
(i.e. a DOM Parser). We then present a method to retrieve data
from it in terms of multi-manageable small XML documents.

Through the use of DOM, an XML document can be modeled as
a tree, called an XML tree in this paper, as shown in Figure 1.
Each element of an XML document is mapped onto a node where
the name of a node is the tag name of the corresponding start- and
end-tag, and the parent-child relationship of two elements is
mapped onto an edge between the two associated nodes of an
XML tree. The root element of the XML document becomes the
root of the XML tree.

Figure 1. XML Document and XML Tree

Building the corresponding XML tree from an XML document
is the core process of DOM parsing: a DOM parser scans the full
contents of the XML document sequentially on a character-by-
character basis from the beginning of the document until it
reaches the end of the document. If an element is found in the
scanning process, the DOM parser stores its structure and value
into memory. All operations expressed with DOM API are
managed on this XML tree.

60

A general-purpose DOM parser such as Xerces keeps requesting
memory allocations until the complete XML is generated in the
virtual memory of a computer. Whenever a DOM parser finds an
element, it requests memory allocation to store the element into
memory. Therefore, if we use DOM API to retrieve data from a
very large XML document, we need sufficient virtual memory
space during the lifetime of the parsing process.

We carried out some DOM parsing experiments on various-sized
XML files in order to check the DOM parsing speed. We used
100 sample XML files, varying in size from 10 to 1,000 MB in
increments of 10 MB. These XML files are generated by
aggregating small XML data, which have a common tree structure.
Using these XML files, we examined the memory and time
required for DOM parsing. The hardware platform of this
experiment was a personal computer with a Pentium 4 CPU (3.0
GHz, EM64T) and 10 GB of virtual memory (3 GB of physical
memory plus 7 GB of swap space) and which ran Ubuntu 6.06
(Linux 2.6, 64 bit) as its operating system. The DOM Parser we
chose was Xerces-J (implemented with Java, version 2.9.0). To
restrict the overhead of to increase the heap size in the process of
parsing, we set the value of –Xms and –Xmx options of JVM
(Java Virtual Machine) to the same value, 8192m. The results of
these experiments are shown in Figure 2, 3 and 4.

In Figure 2, when the size of a test file becomes large, the
required memory space for storing elements in a tree structure
increases linearly. This matches the result of the theoretical
analysis of a DOM parsing algorithm. However, as we can see
from Figure 3, the DOM parsing time of an XML document does
not increase linearly with the size of the document. There are two
jumping points of parsing time. In Figure 3, we see that there is a
big jump of parsing time at around the 760 MB point. In Figure 4,
which contains the same data as Figure 3 but with an X range
narrowed to 100~760 MB, we see that there is another jump of
parsing time at around the 390 MB point.

In every experiment, the jumping points are not exactly the
same as before, but this pattern of having two jumping points has
always been observed. When there are repeated requests for
memory allocation in spite of the exhaustion of free space in the
physical memory, swapping occurs frequently between the
physical memory and swap area in a second memory device. This
explains the first jumping point. If the size of memory, which is
required for building the XML tree of an XML document, reaches
the total size of virtual space, every process in the computer
spends most of its time waiting for the completion of memory
access operations. This explains the second jumping point. The
inefficiency for handling large memory caused by the heap space
managing algorithms of the JVM is also a critical factor of this
pattern.

This result shows that the DOM method using one single XML
tree is not a good approach for a very large XML document; the
memory space and processing time are not manageable by one
single general-purpose personal computer. Based on this analysis,
we designed a DOM method that uses n manageable small XML
trees instead of using one large XML tree to avoid the shortage of
free memory size and low efficiency in parsing.
To execute a data retrieval operation on the n manageable small

XML trees in terms of the original XML tree, the associated n
XML documents are first generated from the original XML
document. Our method generates the n XML documents in two

steps, partitioning and padding. In the partitioning step, the
original XML document is split into n nearly equal-sized
documents where n is decided depending on the resource
available, such as the capacity of the personal computer. In the
padding step, each of the n documents is modified to meet the
requirement of a well-formed XML document. The data retrieval
operation is then performed sequentially on each of the n XML
trees built from the n-associated XML documents in the retrieving
step. The result of the operation from the first XML tree is then
combined with the one from the second XML tree, which
continues until the result from the last XML tree is combined.
Partitioning, padding and retrieving are each explained in further
detail below.

0

1000

2000

3000

4000

5000

6000

10
0

13
0

16
0

19
0

22
0

25
0

28
0

31
0

34
0

37
0

40
0

43
0

46
0

49
0

52
0

55
0

58
0

61
0

64
0

67
0

70
0

73
0

76
0

79
0

82
0

85
0

88
0

91
0

94
0

97
0

10
00

File Size (MBytes)
M

em
or

y
Si

ze
 (M

By
te

s)

Figure 2. Memory Size required for DOM Parsing

0

2000

4000

6000

8000

10000

12000

10
0

13
0

16
0

19
0

22
0

25
0

28
0

31
0

34
0

37
0

40
0

43
0

46
0

49
0

52
0

55
0

58
0

61
0

64
0

67
0

70
0

73
0

76
0

79
0

82
0

85
0

88
0

91
0

94
0

97
0

10
00

File Size (MBytes)

Se
co

nd

Figure 3. DOM Parsing Time of 100~1,000 MB XML files

0

50

100

150

200

250

300

350

400

10
0

13
0

16
0

19
0

22
0

25
0

28
0

31
0

34
0

37
0

40
0

43
0

46
0

49
0

52
0

55
0

58
0

61
0

64
0

67
0

70
0

73
0

76
0

File Size (MBytes)

Se
co

nd

Figure 4. DOM Parsing Time of 100~760 MB XML files

3.1 Partitioning
The contents of any document, including XML documents, are
considered to be a sequence of characters. In this paper, we define
a partition of a document as follows.

Definition Let D be a document given by a sequence of
characters. If each of n documents, F1, F2, …, and Fn, is a

61

subsequence of D such that the concatenation of F1, F2,…, and Fn
is equal to D, then a sequence of the n documents, <F1, F2, …,
Fn>, is a partition of a document D where each Fi, i=1,…,n, is
called a fragment of D.

In explaining how to partition the given XML document, we use
some notations defined as follows:

1. The size of a document D is expressed as D.length.
2. The i-th character of a document D is expressed as

D[i] (1 ≤ i ≤ D.length).
3. The sequence of characters from i-th character to j-th

character of a document D is expressed as D[i, j].
 Therefore, the contents of a document D are
expressed as D[1, D.length].

4. The document generated by concatenating two
documents D1 and D2 is expressed as D1·D2.

The crux of partitioning a document lay in the way to find the
boundary between fragments, called the cut point. Let Do be a
given XML document and n be the expected number of fragments
in the partition of Do. First, the ⎣ ⎦n.length / Do characters are
scanned from the beginning of Do, and around the location right
after these characters, the range of width, h, is formed as shown in
Figure 5.

Figure 5. Finding a cut point

Next, we compute the length of the path from the root element of
Do to each of the elements whose start-tags are contained in this
range. For computing the path without building the XML tree of
Do in memory, we use a stack containing strings. This stack keeps
the list of element names from the beginning of Do to the current
scan position: When a start-tag is found, we push the element
name into this stack, and when an end-tag is found, we pop the
latest pushed element name from the stack. Since an XML
document has the well-formed structure of element definitions,
the size of this stack is the length of the path from the root
element of Do to the current element being processed.

The first cut point is then selected to be the location right after
the start-tag of the element that has the shortest path from the root,
called the cut element. If there are no start-tags in this range, the
cut point is selected to be the location right after a start-tag, which
is retrieved first in the scanning of Do after the range. For the
second cut point, the range of width, h, is again formed around the
location right after ⎣ ⎦n.length / Do characters from the first cut
point, and the length of the path from the root to each of those
elements whose start-tags are in this range is computed. Like the
selection of the first cut point, the second cut point is then
selected again to be the location right after the start-tag of the
second cut element, the element having the shortest path from the
root. This process is repeated until the last cut point is set up.

We selected this policy to decide the cut points because we
observed three major things from experiences with a very large

XML document D. First, D is in general an aggregation of small
XML documents Xi, i=1,…, k, which have a common structure
and are almost the same size. Second, each Xi is directly or very
closely connected to the root element of D. Third, the data
retrieval operations on D can usually be applied on each Xi
independently. Therefore, considering these characteristics, it is a
good approach not to split each Xi into different fragments. Each
cut point, which comes as near to the root element as possible in a
given range, is selected for achieving this purpose. This is why we
use an external variable, h, for defining the width of ranges. If the
value of h is carefully selected, each fragment generated could be
associated easily and rapidly with a set of these Xi’s.
It is noted, however, that the actual number of fragments

generated by this process may become less than n, the expected
number of fragments, due to its policy of deciding the cut points.
For example, if the total number of start-tags of Do is less than n,
or the positions of start tags of Do lean severely toward some
positions of Do, then the actual number of fragments generated by
this partitioning algorithm becomes less than n.
In spite of the drawback described above, we selected this policy

of deciding the cut points because we concluded that, in seeking
to find the benefits of using small XML documents, dividing the
contents of an XML document into almost the same-sized
fragments without breaking the aggregation pattern is more
important than just guaranteeing the number of fragments to be
generated. Besides, there are very small possibilities that the
situations that prevent the work of our partitioning algorithm
occur in real areas having very large XML documents.
The partitioning process explained above is more formally

described as follows.

Algorithm PARTITION(D, n, h)
<Input>

1. D : An XML document to be partitioned
2. n : The expected number of fragments to be generated
3. h : The width of a range for finding a cut point

<Output>
1. n’ : The actual number of fragments generated
2. <F1 F2 …Fn’> : A partition of D (1 ≤ n’ ≤ n)
3. <C1 C2 …Cn’-1> : A sequence of cut points
4. P : The prolog of D

Declare StackOfStartTags as a stack of strings;
Declare Ts, Tnew as variables pointing to start- or end-tags;

TargetSize := ⎣ ⎦ nD.length / ;

Initialize StackOfStartTags;
Prolog := the prolog of D;
StartPoint := the offset of the end of prolog of D + 1;
CutPoint := StartPoint;
i := 1;
While ((StartPoint < D.length) and (i < n)) do

InitCutPoint := StartPoint + TargetSize;
From := CutPoint;

 While (there is a tag in [From, D.length] of D) do
Scan a tag and set Ts to point to the tag retrieved;

 If (Ts points to a start-tag)
 Push the name of the pointed start-tag by Ts into StackOfStartTags;
 If (the start-tag pointed by Ts is in [InitCutPoint – h/2, D.length] of D)
 jump FindCutPoint;
 End if
 If (Ts points to an end-tag)
 Pop the last item from StackOfStartTags;

 From := (the offset of the end of the pointed tag by Ts)+1;
End while

FindCutPoint:
minimalDistance := the number of items in StackOfStartTags;
CutPoint:= (the offset of the end of the pointed tag by Ts) + 1;

62

 Scan a tag and set Tnew to point to the tag retrieved;
 While (the tag pointed by Tnew is in [CutPoint, InitCutPoint + h/2] of D) do
 If (Tnew points to a start-tag)
 Push the name of the pointed tag by Tnew into StackOfStartTags;
 Distance := the number of items in StackOfStartTags;
 If (minimalDistance > Distance)
 minimalDistance:= Distance;

Ts:= Tnew;
 CutPoint:= (the offset of the end of the pointed tag by Ts)+1;
 End if
 End if
 If (Tnew points to an end-tag)
 Pop the last item from StackOfStartTags;
 Scan a tag and set Tnew to point to the tag retrieved;
 End while
 Fi := D[StartPoint, CutPoint];
 StartPoint := CutPoint + 1;
 Ci := CutPoint;
 i := i + 1;
End while
Fi := D[StartPoint, Do.length];
n’:= i;
Return n’, <F1 F2 … Fn’ >, <C1 C2 … Cn’ > and Prolog;

3.2 Padding
Since each fragment generated in the partitioning step does not
comprise a well-formed XML document, it is modified into a
well-formed XML document in the padding step.
All the fragments have three characteristics, which are given by

the algorithm PARTITION(D, n, h). First, every fragment,
excluding the last one, ends with the start-tag of a cut element.
Second, every fragment, excluding the first one in this time, starts
without the start-tag of a cut element. Finally, there are no
elements that can play the role of the root element in each
fragment. Therefore, in this step, we make well-formed XML
documents from fragments by padding missing tags to both the
beginning and end of the fragments.
Before describing our padding algorithm, we define front and

back pads as follows.

Definition Let ei1 and ein be two nodes of an XML tree where ei1 is
an ancestor of ein. If the sequence of nodes on the path from ei1 to
ein is given by ei1ei2…ei(n-1)ein , then
(1) The front pad from ei1 to ein is a string given by

<ei1><ei2>…<ei(n-1)>
(2) The back pad from ei1 to ein is a string given by

</ei(n-1)>…</ei2></ei1>
Some other notations used for explaining the padding algorithm

are defined as follows:
1. The cut element, split at the position of Ci into two

fragments, is expressed as CutElement(Ci).
2. The first start-tag of a fragment F is expressed as F.first

.
3. The last end-tag of a fragment F is expressed as F.last.
4. The root of an XML document D is expressed as D.root.
5. The front pad from ei1 to ein is expressed as

FPad(ei1, ein).
6. The back pad from ei1 to ein is expressed as

BPad(ei1, ein).
Let Do be a given very large XML document and F1,…,Fn be n

fragments generated by the partitioning step as shown in Figure 6.

To make each fragment Fi into a well-formed XML document Di,
the padding algorithm consists of two sub steps. First, for each
fragment Fi ending with the start-tag <ei>, i=1, …, n-1, the end-
tag </ei> is added to the end of Fi and the start-tag <ei> is added
to the beginning of Fi+1. For differentiating the cut elements from
original elements, an attribute known as a cut attribute is added to
each start-tag <ei> additionally. In Figure 7, the dotted rectangles
show the added start-tags or end-tags. The shaded rectangles
represent the start-tags of cut elements.

Figure 6. Well-formed XML Documents generated by

Padding

Figure 7. Generated start- and end-tags of cut elements

Let F´i, i=1,…,n, be the modified fragments generated by the
above step. Next, the element of Do.root is set to be the root
element of each of F´i, i=1,…,n. This can be done by
concatenating FPad(Do.root, CutElement(Ci-1)), the contents of
F´i, and BPad(Do.root, CutElement(Ci)). Let F´´i be the newly
generated fragments by this concatenation. For differentiating the
elements, which are generated by this concatenation, from
original elements, an attribute known as a dummy attribute is
added to each start-tag forming FPad(Do.root, CutElement(Ci-1)).
Note that the element that has a dummy attribute added start-tag
would be called the dummy element, and each of dummy or cut
elements keeps all attributes of the corresponding original
element in order to forward XML namespace [23] information of
Do to each F’’

i.
The last operation of the padding step is to generate each Di by

attaching the prolog of Do to the head of each F’’
i. This is for

preserving the version and encoding information of Do. If Do has a

63

number of XML DTDs (Document Type Declaration) [1], these
DTDs are also preserved in each of Di’s.
Figure 8 shows the well-formed XML document D1, D2, D3 and

Figure 9 shows the tree structures of T1, T2 and T3, which are
generated from the given XML document Do with a tree structure
of To by the partitioning and padding steps. In Figure 9, the
shaded ellipses represent the cut elements, and the ellipses filled
with lines represent the dummy elements.

Figure 8. Applying PAD algorithm

Figure 9. XML Trees generated by
PARTITION and PAD algorithm

The padding step explained above can be summarized more
formally as follows.

Algorithm PAD(D, <F1 F2 …Fn>, <C1 C2 …Cn>, P)
<Input>

1. D : An XML document
2. <F1 F2 …Fn> : A partition of D
3. <C1 C2 …Cn> : A sequence of cut points
4. P : The prolog of D

<Output>
1. <D1 D2 …Dn> : A sequence of XML documents

Declare <F´1 F´2 … F´n>, <F´´1 F´´2 … F´´n> as sequences of documents;
For each Fi from i=1 to n
If (Fi is not the first fragment of <F1 F2 …Fn>)

StartTag :=Duplicate the start-tag of CutElement(Ci-1);
Add a cut attribute to StartTag;
Add an identification attribute to StartTag;
F´i:= StartTag ·F´i;

Else
F´i:= Fi;

End if
If (Fi is not the last fragment of <F1 F2 …Fn>)

 EndTag := Generate the end-tag of CutElement(Ci);
F´i := F´i·EndTag;

Add a cut attribute to the corresponding start-tag of F´i.last;

Add an identification attribute to the corresponding start-tag of F´i.last;

End if
If (Fi is not the first fragment of <F1 F2 …Fn>)

Front := Compute FPad(D.root, CutElement(Ci-1));
For each start-tag in Front
Add an identification attribute to the start-tag;
Add a dummy attribute to the start-tag;

End for
End if
If (Fi is not the last fragment of <F1 F2 …Fn>)

Rear := Compute BPad(D.root, CutElement(Ci));
F´´i := Front · F´i · Rear;

End for
For each F´´i from i=1 to n

Di:= P · F´´i;
End for
Return <D1 D2 … Dn>;

3.3 Retrieving
In this section, we explain how to execute a given data retrieval
operation using a number of small XML documents, which are
generated by the previous partitioning and padding steps. The
data retrieval operation is expressed with DOM API, and this
operation is given on the assumption that the XML tree of an
original large XML document exists in main memory.
We selected following GET operations from DOM API as the

representatives of data retrieval operations.

Table 1. Data Retrieval Operations in DOM API

Interface Operation Name Description

Document getElementsByTagName
Returns a nodelist of all the
elements in document order
with a given tag name

getChildNodes
Returns a nodelist that
contains all children of this
node

getFirstChild Returns the first child of this
node.

Node

getLastChild Returns the last child of this
node.

Element getElementsByTagName

Returns a nodelist of all
descendant elements with a
given tag name, in document
order.

The operations in Table 1 have a difference in external forms.
However, each of these GET operations can be considered to
receive some nodes that satisfy the specified condition from the
given XML tree, T. Thus, it suffices to show how to implement the
operation of GET(T,e,P,S), which returns the nodes that satisfy the
condition P from a subtree, having e as its root, of T. The 4th
parameter S specifies how to make the result of the operation from
the retrieved data. The value of S can be one of three values, ALL,
FIRST and LAST. Let Nr be the nodes satisfying the condition P
from a subtree, having e as its root, of T. If the value of S is ALL,
this GET operation returns Nr as a list of nodes. Yet, if the value of
S parameter is FIRST or LAST, this GET operation returns the first
or last node of Nr correspondingly.
For example, the operation of getElementsByTagName(XXX) with

Document interface on an XML tree T can be given by GET (T, the
root of T, tagname=XXX, ALL) and the operation of getFirstChild()

64

with Node, e, interface on an XML tree T can be given by GET(T, e,
child of e, FIRST).
Let To be the XML tree of a very large XML document Do, and

T1,…,Tn be n XML trees built from small n XML documents
D1,…,Dn, which are generated from Do by the partitioning and
padding steps. In this retrieving step, a given GET(To,e,P,S)
operation is then executed sequentially on each of Ti, i=1,…n, as To
replaced with Ti, using a general-purpose DOM parser. These
replacements are valid, since any ancestor of each element of Do is
preserved in any of the n small XML trees containing that element.
On completing the GET operation on each of Ti, i=1,…n, a list of

elements that satisfy the given condition, if it exists, is found. Next,
to combine the results from T1,…,Tn, in the form of another XML
tree, a tree Tr having only one root node is first generated and then
updated sequentially after each GET(Ti,e,P,S) is executed.
Let N1,…,Nn be the n results of the GET operations from T1,…,Tn,

where each Ni is either a list of nodes or an empty list. For each
nonempty Ni, each node of Ni is checked to see if it has either a
dummy attribute or a cut attribute. If it has either of these, we first
check that there is a node of Tr which has the same value of the
identification attribute of Ni. If it exists, the contents of Ni, including
its descendant in Ti, are copied to the contents of the node having
same value of the identification attribute. Otherwise, the copy of Ni,
also including its descendant in Ti, is added to be a new child node
of the root of Tr. This process repeats until the last search result Nn is
reflected on the tree Tr. Based on the tree Tr which is formulated this
way, the final result of the GET(To,e,P,S) operation is returned after
applying S on the child nodes of the root of Tr; if S is ALL, this GET
operation returns all child nodes as a list of nodes. However, if the
value of S is either FIRST or LAST, this GET operation returns
either the first or last child node of the root of Tr correspondingly.
For example, suppose that the GET(To, A, the child node of A,

FIRST) operation is executed on the structure of To shown in Figure
9. If a general DOM parser is directly applied on To for executing
this operation, it finds B from this subtree as the one which satisfies
the given condition, and returns <B of To> as the final answer. If it is
executed on the three small trees T1, T2 and T3 in Figure 9,we get
three search results from T1, T2 and T3, which are <B of T1>, <B of
T2>, and <E of T3>. These results are combined into <B of Tr, E of
Tr>, because the nodes B of T1 and B of T2 have the same value of
the identification attribute. The S of this operation is FIRST, so <B
of Tr> is returned as the final result of this operation, as shown in
Figure 10.

Figure 10. Combining N1, N 2 and N 3 into N r

As explained above, in combining n results of GET operations, if
a node contained in some of n results has either a dummy or cut
node as a child node, the copy of this dummy or cut node is also
contained in the combined result, as shown from two C nodes of
<B of Tr> in Figure 10. This is because the original C element in
the original XML Document Do was split by the PARTITION and
PAD algorithm intentionally. Therefore, the final step for
retrieving data is to unify the split nodes by removing the
duplicate information generated due to such dummy or cut nodes.
We apply a lazy approach to unify the split child nodes: at the
first time a node e of a node list is referred by an XML
application, we combine child nodes of e having a dummy or cut
attribute and the same identifier. This can avoid time consumption
caused by complete navigation of subtrees for unifying unused
nodes of Tr.
The final result from Figure 10 is then as follows.

Figure 11. Unifying the split child nodes

The above overall retrieval procedure of GET(T,e,P,S) can be
summarized by the following algorithm RETRIEVE(D,e,P,S)
where T is the XML tree of the given XML document D. The
following algorithm UNIFY(e) is called to unify the split child
nodes of node e.

Algorithm RETRIEVE(D, e, P, S)
<Input>

1. D : An XML document from which data is to be retrieved
2. e : An element of D
3. P: A condition that can be satisfied by an element of D
4. S: one of three values, ALL, FIRST and LAST

<Output>
1. Nr: A node list that is the same result of the GET(T, e, P, S).

Declare Tr as an XML Tree having only a root node;
Declare Nr as an empty node list;
Declare DP as a general- purpose DOM parser;
Generate a sequence of multi-small XML documents <D1D2…Dn> by using
algorithms PARTITION and PAD on D;
For each Di from i=1 to n
 Ti := Build an XML tree from Di by using DP;
 Ni := Execute GET(Ti, e, P, S) by using DP;
 For each node e of Ni
 If ((e is a cut element) or (e is a dummy element))
 et := Find the original element of e from Nr by using the identification

 attribute of e;
 If (et exists)
 Copy the contents of e into et by using DP;
 Else
 Copy e as a child of Tr by using DP;
 Add e into Nr using P;
 End if
 Else
 Copy e as a child of Tr by using DP;
 Add e into Nr by using DP;
 End if
 End for
End for
Remove cut attributes from every node e of Nr;
Return Nr;

65

Algorithm UNIFY(e)
<Input>

1. e: An element
<Output>

1. Unified e: An element having no dummy and cut child elements

For each child element ec of e
If ((ec is a cut element) or (ec is a dummy element))

 et := Find the original element of ec from all child elements of e
 by using the identification attribute of ec;
 If (et exists)

Copy the contents of ec into et;
 Remove the link from e to ec;
 End if
 End if
End for
Return e;

4. EXPERIMENTS
In this section, the performance of the proposed DOM method to
retrieve data from a very large XML document is evaluated in
terms of comparing the processing time required to execute a
number of GET operations on some sample XML documents [2,
20]. We chose XML documents from two different categories as
sample XML documents for performance evaluation: (1) various-
sized XML documents generated artificially for performance
evaluation purpose only, (2) very large XML documents which
are used actively and also downloadable from the Internet without
any permission required.

The hardware platform for experiments using sample XML
documents was exactly the same computer with the same
configuration, which was used for checking DOM parsing speed
in section 3. We implemented a prototype of the proposed method
using JDK 5, and chose Xerces-J (version 2.9.0) as a general-
purpose DOM parser. We used Xerces-J for building XML trees
of the generated XML documents and for executing GET
operations on the XML trees.

Case 1: Retrieving data from various-sized XML documents
The purpose of using various-sized XML documents as sample

XML documents was for checking the performance of our
algorithms as the number of fragments was changed. For
generating these various-sized XML documents, we used xmlgen
[20], because this software is used in many XML related
researches as a tool for generating XML files which can be used
as sample XML files for evaluating performances. We generated a
set of XML documents from 100 MB to 1 GB in increments of
100 MB using xmlgen. Figure 12 shows the common structure of
every XML document generated by xmlgen.
We evaluated the processing time required to execute GET

operations, which are expressed with DOM API, on each of
sample XML documents. For choosing meaningful GET
operations, we referred the twenty queries from XMark [21]
because these queries are used widely in many research papers for
benchmark performance on the files generated by xmlgen.
These queries are expressed with XQuery [22]. Any XQuery

processor using DOM API to access XML documents executes a
number of GET operations for finding nodes, which are specified
in any given query. Therefore, in the viewpoint of checking the
performance of GET operations, there are no critical differences
in these queries. So, we chose two queries that need relatively

short execution time among the queries of Q1~Q20 for evaluation
of our method: Q1 (return the name of the person with ID
‘person0’) and Q6 (return the number of items, which are listed
on all continents). For experiments, we implemented two XML
applications which call a number of GET operations for finding
nodes specified in the Q1 and Q6.

Figure 12. Structure of an XML Document

generated by xmlgen
Figure 13 and 14 show the execution time of Q1 and Q6 on 10

sample XML documents correspondingly. In checking the
executing time of both queries, we first computed the execution
time on non-partitioned XML documents, and we computed the
execution time on 3 partitions with 10, 50, and 100 fragments for
every XML document. We performed every experiment on each
XML document 5 times repeatedly to get the average time as an
execution time. In these figures, the time required for the
partitioning and padding steps is included in the time on each
partitioned XML document.
In Figure 13, when an XML document is smaller than 400 MB,

the execution time of Q1 on non-partitioned XML documents is
shorter than on any-partitioned XML documents. This is due to
the overheads caused by the partitioning, padding and combining
their results. But, when the size of an XML document increases to
the 1 GB, there are steep increases of execution time on non-
partitioned XML documents. This is the same pattern as the
results described in section 3. In partitioned XML documents,
however, there are relatively gradual increases of execution time.
Figure 14 shows almost the same pattern of execution time
increasing shown in Figure 13.
The results of these experiments show that the method suggested

in this paper can reduce the time required for retrieving data from
very large XML documents, which were very ineffective to be
processed with general-purpose DOM parsers. For example, the
execution time of Q6 on the non-partitioned 1 GB XML
document is 253,381 seconds, i.e. almost 3 days. It is actually
meaninglessness. However, the time required for executing the
same query on the partition of 100 fragments is reduced to 205
seconds, a manageable level by one single general-purpose
personal computer.

Case 2: Retrieving data from XML documents containing
Protein Sequence Database
For checking the efficiency of our method in the fields where a

number of very large XML documents exist, we used two XML
documents from UniProt [2] as sample XML documents. UniProt
is the consortium for supporting biological research. They

66

maintain high quality protein sequence databases. We
downloaded two XML documents from the web site of UniProt:
uniref100.xml and uniprot_trembl.xml. The properties of these
two files are summarized in Table 2, and the structure of
uniprot_trembl.xml is described in Figure 15 (the structure of
uniref100.xml is a simplified version of the structure of
uniprot_trembl.xml). These two files are the aggregations of
protein sequences, a subtree under an ‘entry’ node represent a
protein sequence.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

File Size

Se
co

nd

1 5 8 11 185 207 302 9528 10096 10847 40595
10 20 35 50 84 262 266 527 835 2998 3410
50 22 35 51 71 189 233 215 276 506 509
100 22 35 54 79 111 142 170 339 443 684

100M 200M 300M 400M 500M 600M 700M 800M 900M 1G

Figure 13. Execution of Q1 on various-sized XML Documents

from 100 MB to 1 GB in increments of 100 MB

0

50000

100000

150000

200000

250000

300000

File Size

Se
co

nd

1 6 10 175 231 333 9814 11422 37599 39679 253381
10 19 35 49 69 104 203 161 222 454 683
50 20 32 52 64 98 113 142 186 207 236
100 17 33 52 71 98 109 132 152 184 205

100M 200M 300M 400M 500M 600M 700M 800M 900M 1G

Figure 14. Execution of Q6 on various-sized XML Documents

from 100 MB to 1 GB in increments of 100 MB
Table 2. Sample XML Documents from the Biological

Information Area
File Name File Size (MB) # of Elements

uniref100.xml 4,518 53,523,902

uniprot_trembl.xml 12,999 242,506,824

Figure 16 and 17 show the time required for retrieving data with
GET operations of DOM API from uniref100.xml,
uniprot_trembl.xml correspondingly. First, we tried to retrieve
data on these two files without applying our method. Next, we
tried to retrieve data on partitioned XML documents while
increasing the number of fragments. Like the experiments of case
1, we performed every experiment with same condition 5 times
repeatedly to get the average time as the time required for
retrieving data. We forced a process of retrieving to be stopped
when that process did not finish in a day.
In Figure 16, the time required for retrieving the names of every

protein from uniref100.xml is shown. DOM parsing failed on non-

partitioned uniref100.xml because of the shortage of memory.
When partitioning was applied, it did not finish in a day when the
number of fragments is less than 40. As the number of fragments
increase from 40 to 100, we can see the time required for
retrieving data is stabilized less than 1 hour (3,600 seconds).

Figure 15. Structure of uniprot_trembl.xml

0

2000

4000

6000

8000

10000

12000

Number of Fragments

Se
co

nd

10727 1786 1724 1316 1533 2074 1389
1 10 20 30 40 50 60 70 80 90 100

Figure 16. Retrieving Gene Names from uniref100.xml

In Figure 17, the time required for retrieving the names of every
protein from unprot_trembl.xml is shown. The size of
unprot_trembl.xml is almost four times bigger than the size of
uniref100.xml. Therefore it was clear that DOM parsing failed on
non-partitioned unprot_trembl.xml due to the shortage of memory.
When partitioning was applied on unprot_trembl.xml, it did not
finish in a day while the number of fragments is less than 150. As
the number of fragments increase to 500, we can see the time
required for retrieving data is going to down near 1 hour.
We also checked the ratio of the time required for generating

small XML documents to the time required for retrieving data
using these XML documents. In Figure 18, the result shown in
Figure 16 is reorganized using two categories: P&P and R. P&P
(abbreviated from the partitioning and padding) represents the
time required for generating small XML documents, and R
(abbreviated from the retrieving) represents the time required for
retrieving data using the generated XML documents.
Figure 18 shows that the time required for generating small

XML documents was not changed widely during the number of
fragments increased from 40 to 100. However, the time required
for retrieving data using the generated XML documents dropped
sharply when the number of fragments increased from 40 to 50.
This demonstrates that, in spite of the costs due to the generation
of small XML documents, there is a possibility to enhance the

67

performance of DOM parsing by the using of these small XML
documents.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Number of Fragments

Se
co

nd

42522 5558 5571 4742 4177 3934 3941 3853
1 50 100 150 200 250 300 350 400 450 500

Figure 17. Retrieving Gene Names from uniprot_tembl.xml

Figure 18. Ratio of the time required for generating fragments

to the time required for retrieving data using fragments

5. CONCLUSIONS
In this paper, we presented a method to retrieve data from a very
large XML document with DOM. When an XML document is
very large and various operations for finding elements are to be
executed on this XML document frequently, the method presented
in this paper can reduce the execution time of these operations on
the XML document to the level of usefulness. In the future, we
plan to conduct a study on the automatic and dynamic selections
of (1) the number of fragments to be generated and (2) cut points
without the help of the external variables, currently given by users,
and to extend this method to support INSERT, DELETE, and
UPDATE operations on very large XML documents as well.

6. REFERENCES
[1] Extensible Markup Language (XML) 1.0 (Third Edition),

http://www.w3.org/TR/2004/REC-XML-20040204/
[2] UniProt, http://www.uniprot.org/database/download.shtml
[3] Apache Xerces, http://xerces.apache.org/
[4] Document Object Model (DOM) Level 3 Core Specification,

http://www.w3.org/TR/DOM-Level-3-Core/
[5] SAX: A Simple API for XML, http://www.saxproject.org
[6] Markus L. Noga, Steffen Schott, Welf Löwe, XML

manipulations: Lazy XML processing, In Proceedings of the
2002 ACM symposium on Document engineering, 2002, 88-
94.

[7] Chia-Hsin Huang, Tyng-Ruey Chuang, Hahn-Ming Lee,
Prefiltering Techniques for Efficient XML Document

Processing, In Proceedings of the 2005 ACM Symposium on
Document Engineering, 2005, 149-158.

[8] XML Path Language (XPath), http://www.w3.org/TR/xpath
[9] A. R. Schmidt, Florian Waas, Martin L. Kersten, D.

Florescu, I. Manolescu, M. J. Carey, R. Busse, The XML
benchmark project, Technical Report, CWI, 2001.

[10] Hongjun Lu, Jeffrey Xu Yu, Guoren Wang, Shihui Zheng,
Haifeng Jiang, Ge Yu, Aoying Zhou, What makes the
differences: benchmarking XML database implementations,
ACM Transactions on Internet Technology, 5, 1 (February
2005), 154-194.

[11] Timo Böhme, Erhard Rahm, Multi-user Evaluation of XML
Data Management Systems with XMach-1, In Proceedings
of the VLDB 2002 Workshop EEXTT and CAiSE 2002
Workshop DTWeb on Efficiency and Effectiveness of XML
Tools and Techniques and Data Integration over the Web-
Revised Papers, 2003, 148-158.

[12] H. Jiang, H. Lu, W. Wang, J.X. Yu, XParent: An Efficient
RDBMS-Based XML Database System, In Proceedings of
the 18th International Conference on Data Engineering,
2002, 335-336.

[13] Albrecht Schmidt, Martin L. Kersten, Menzo Windhouwer,
Florian Waas, Efficient Relational Storage and Retrieval of
XML Documents, Selected papers from the Third
International Workshop WebDB 2000 on The World Wide
Web and Databases, 2000, 137-150.

[14] M. Yoshikawa, T.Amagasa, T.Shimula and S.Uemura, XRel:
A Path-Based Approach to Storage and Retrieval of XML
Documents Using Relational Databases, ACM Transactions
on Internet Technology, 1, 1 (August 2001), 110-141.

[15] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang,
Gang He, David J. DeWitt, Jeffrey F. Naughton, Relational
Databases for Querying XML Documents: Limitations and
Opportunities, In Proceedings of the 25th International
Conference on Very Large Data Bases, 1999, 302-314.

[16] Aoying Zhou, Hongjun Lu, Shihui Zheng, Yuqi Liang, Long
Zhang, Wenyun Ji, Zengping Tian, VXMLR: A Visual
XML-Relational Database System, In Proceedings of the
27th International Conference on Very Large Data Bases,
2001, 719-720.

[17] Tian, F., DeWitt, D. J., Chen, J., and Zhang, C. The design
and performance evaluation of alternative XML storage
strategies. Tech. rep., Computer Science Department,
University of Wisconsin, Madison, WI, 2000.

[18] Kentarou Kido, Toshiyuki Amagasa and Hiroyuki Kitagawa,
Processing XPath Queries in PC-Clusters Using XML Data
Partitioning, In Proceedings of the 22nd International
Conference on Data Engineering Workshops, 2006, 11-16.

[19] Wei Lu, Kenneth Chiu and Yinfei Pan, A Parallel Approach
to XML Parsing, In Proceedings of the 7th IEEE/ACM
International Conference on Grid Computing, 2006, 223-230.

[20] XMark, http://monetdb.cwi.nl/xml/generator.html
[21] XMark Benchmark Queries,

http://www.ins.cwi.nl/projects/xmark/Assets/xmlquery.txt
[22] XML Query (XQuery), http://www.w3.org/XML/Query
[23] XML Namespace, http://www.w3.org/TR/REC-xml-names/

68

