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ABSTRACT 
Document Object Modeling (DOM) is widely used approach for 
retrieving data from an XML document. If the size of the XML 
document is very large, however, using the DOM approach for 
retrieving data from the XML document may suffer from a lack of 
memory space for building the associated XML tree in the main 
memory. To alleviate this problem, we propose a method that 
allows the very large XML document to be split into small XML 
documents, retrieves data from the XML tree built from each of 
these small XML documents, and combines the results from all of 
the n XML trees to generate the final result. With this proposed 
approach, the memory space and processing time required to 
retrieve data from the very large XML document using DOM are 
reduced so that they can be managed by one single general-
purpose personal computer. 

Categories and Subject Descriptors 
I.7.1 [Document and Text Processing]: Document management; 
F.2.2 [Nonnumerical Algorithms and Problems]: Computations 
on discrete structures 

General Terms: Algorithms, Performance, Experimentation 

Keywords: XML, DOM, DOM API, Very Large XML 
Documents 

1. INTRODUCTION 
XML is a W3C-recommended general-purpose markup language 
[1]. XML and its related technologies are being used widely as 
the standard methods for representing and exchanging 
information on Web environments due to their flexibility in 
information modeling. Information has been modeled using XML 
in the various fields including information retrieval, document 
exchange, document management, data mining and electronic 
publishing. 

One of the noteworthy trends happening with XML in recent 
years is that large XML documents, whose sizes range from 
several hundreds of MB to several GB, are now being generated. 
Usually, a large XML document is the aggregation of a number of 
relatively small XML data, which have a common tree structure. 
For instance, the sizes of XML files for protein sequences [2] 
range from 1.8~16 GB. But each of these large sizes is due to the 
aggregation number of much smaller XML data, whose size is 
about 1~10 KB. 

XML parsers such as Apache Xerces [3] can be used for 
managing the contents of XML documents. The parsing methods 
of these XML parsers can be classified into two different groups 
with their methods for accessing XML documents: DOM [4] and 
SAX [5]. DOM models an XML document as a tree structure for 
every XML application so that the GET, INSERT, DELETE and 
UPDATE operations can be easily done using the predefined 
DOM API. However, it suffers from a lack of memory space for 
building the tree when the size of a document is very large. On 
the other hand, SAX parses the XML document sequentially from 
the beginning of the document whenever it is requested to find 
some data. Thus, to get some data from the document, each XML 
application using SAX first predefines the related data structure 
and stores the data (from parsing) into this data structure. Then, 
each XML application using SAX is not easily completed with 
the repetitive full file scanning and the work of predefining 
various data structures, when it needs many randomly located 
data with a different data type. 

In this paper, we present a DOM method for retrieving data 
from a very large XML document with manageable memory 
space and processing time by a single general-purpose personal 
computer. A very large XML document is partitioned into n small 
documents, where n varies depending on the capacity of the given 
resource such as a personal computer. Each of the n small 
documents is then modified by a padding process to meet the 
well-formedness of the XML document. A data retrieval 
operation on the original large XML document, which is 
expressed with DOM API, is then executed sequentially on the 
small XML tree that is built from each of the modified n XML 
documents, and the results from all the n XML trees are combined 
to generate the final result. With this approach, the data retrieval 
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operations on the very large XML document can be executed by a 
single general-purpose personal computer. 

2. RELATED WORK 
Several approaches for processing XML data efficiently have 
been published. Noga et al. [6] proposed a lazy XML processing 
approach, which consists of the preprocessing phase and the 
progressive parsing phase. In the preprocessing phase, they built 
the internal representation per each node of the tree by analyzing 
the document structure. In the progressive parsing phase, the 
internal representation of each node is transformed into its 
physical node of the tree when it is accessed for the first time. 
They claimed that the performance of their approach would be 
maximized if the number of transformed nodes does not exceed 
80% of the number of total nodes. This approach is efficient in 
constructing the tree rapidly but is not efficient when 80% nodes 
of the XML tree are accessed during the execution of an operation. 
Further, the advantage of rapid construction of the tree may not be 
realized if the size of the given document is so large that the 
memory necessary for the internal representation exceeds the 
allowed free memory space. 

Huang et al. [7] proposed a model that employs a prefilter to 
remove uninteresting fragments of an input XML document by 
approximately executing a user’s queries. The XML document 
consisting of the candidate-set is then returned to the user’s 
DOM- or SAX-based applications for further processing. The 
performance result of the sample XPath [8] query 
“/site/regions/asia” against XML documents, which are generated 
by XMark [9], showed that it could reduce such computational 
resources as CPU time and memory that are needed for parsing 
and data retrieving. However, this approach has a drawback in 
that it has to execute prefiltering whenever a new query to the 
XML document is given. 

XDBMS- and RDBMS-based approaches provide another 
solution for processing XML data. Lu et al. [10] reported the 
result on benchmarking a set of XML database implementations 
using XMark and XMach [11] benchmarks. The selected 
implementations represent a wide range of approaches, including 
RDBMS-based systems with document-independent [12, 13, 14] 
and document-dependent XML-relational schema mapping 
approaches [15, 16], and XML native engines [10, 17] based on 
an Object-Oriented Model and the Document Object Model. In 
order to use XDBMS- and RDBMS-based approaches, however, 
XML data must be preprocessed and stored in DBMS and XPath 
queries must be translated into SQL queries. Furthermore, 
XDBMS- and RDBMS-based approaches are too expensive to be 
used in small-scale applications. Some researchers have also 
claimed that the performance of relational XML database 
degrades when dealing with huge XML data [18]. 

Kido et al. [18] proposed a scheme called PC cluster for the 
parallel processing of XML data using a group of personal 
computers. Each computer of the PC cluster runs the same version 
of RDBMS using [14]. To make parallel processing possible, they 
suggested a method of partitioning the XML data based on the 
subgraph decomposition of a schema graph and subset 
decomposition of XML partitions. To allocate XML partitions to 
cluster nodes, they give an algorithm for computing suboptimal 
assignment by applying a greedy method and a genetic algorithm. 
Although they could speed up the performance by using a PC 

cluster, the dependency of the PC cluster may be a barrier to an 
application that uses a stand-alone computing environment. 

The approach of Wei Lu et al. [19] is the one that relates most 
to our method from the viewpoint of data partitioning. Here, they 
designed and implemented a parallel XML parsing on a shared 
memory computer. Their method consists of the pre-parsing phase 
and the parallel parsing phase. In the pre-parsing phase, a 
simplified XML tree of the XML document is constructed. This 
tree contains the logical structure of the XML document and the 
range information of each element in the XML document. They 
partition the XML document, based on the logical structure, in 
order to parse each chunk in parallel. In the parallel parsing phase, 
each chunk from the partitioned XML document is allocated to a 
thread either statically or dynamically. All subtrees generated 
from the chunks are attached to the main XML tree when the 
parallel parsing phase is completed. This approach may be 
efficient in constructing the tree rapidly. However, it also suffers 
from a memory problem when the size of the document becomes 
very large, since the required memory for internal representation 
may exceed the allowed free memory space.  

3. RETRIEVING DATA FROM A VERY 
LARGE XML DOUCMENT USING MULTI 
SMALL XML DOCUMENTS 
In this section, we first discuss the difficulty faced when a very 
large XML document is parsed to build one huge XML tree in the 
main memory by a general-purpose XML parser supporting DOM 
(i.e. a DOM Parser). We then present a method to retrieve data 
from it in terms of multi-manageable small XML documents. 

Through the use of DOM, an XML document can be modeled as 
a tree, called an XML tree in this paper, as shown in Figure 1. 
Each element of an XML document is mapped onto a node where 
the name of a node is the tag name of the corresponding start- and 
end-tag, and the parent-child relationship of two elements is 
mapped onto an edge between the two associated nodes of an 
XML tree. The root element of the XML document becomes the 
root of the XML tree. 

 
Figure 1. XML Document and XML Tree 

Building the corresponding XML tree from an XML document 
is the core process of DOM parsing: a DOM parser scans the full 
contents of the XML document sequentially on a character-by-
character basis from the beginning of the document until it 
reaches the end of the document. If an element is found in the 
scanning process, the DOM parser stores its structure and value 
into memory. All operations expressed with DOM API are 
managed on this XML tree. 
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A general-purpose DOM parser such as Xerces keeps requesting 
memory allocations until the complete XML is generated in the 
virtual memory of a computer. Whenever a DOM parser finds an 
element, it requests memory allocation to store the element into 
memory. Therefore, if we use DOM API to retrieve data from a 
very large XML document, we need sufficient virtual memory 
space during the lifetime of the parsing process. 

We carried out some DOM parsing experiments on various-sized 
XML files in order to check the DOM parsing speed. We used 
100 sample XML files, varying in size from 10 to 1,000 MB in 
increments of 10 MB. These XML files are generated by 
aggregating small XML data, which have a common tree structure. 
Using these XML files, we examined the memory and time 
required for DOM parsing. The hardware platform of this 
experiment was a personal computer with a Pentium 4 CPU (3.0 
GHz, EM64T) and 10 GB of virtual memory (3 GB of physical 
memory plus 7 GB of swap space) and which ran Ubuntu 6.06 
(Linux 2.6, 64 bit) as its operating system. The DOM Parser we 
chose was Xerces-J (implemented with Java, version 2.9.0). To 
restrict the overhead of to increase the heap size in the process of 
parsing, we set the value of –Xms and –Xmx options of JVM 
(Java Virtual Machine) to the same value, 8192m. The results of 
these experiments are shown in Figure 2, 3 and 4. 

In Figure 2, when the size of a test file becomes large, the 
required memory space for storing elements in a tree structure 
increases linearly. This matches the result of the theoretical 
analysis of a DOM parsing algorithm. However, as we can see 
from Figure 3, the DOM parsing time of an XML document does 
not increase linearly with the size of the document. There are two 
jumping points of parsing time. In Figure 3, we see that there is a 
big jump of parsing time at around the 760 MB point. In Figure 4, 
which contains the same data as Figure 3 but with an X range 
narrowed to 100~760 MB, we see that there is another jump of 
parsing time at around the 390 MB point. 

In every experiment, the jumping points are not exactly the 
same as before, but this pattern of having two jumping points has 
always been observed. When there are repeated requests for 
memory allocation in spite of the exhaustion of free space in the 
physical memory, swapping occurs frequently between the 
physical memory and swap area in a second memory device. This 
explains the first jumping point. If the size of memory, which is 
required for building the XML tree of an XML document, reaches 
the total size of virtual space, every process in the computer 
spends most of its time waiting for the completion of memory 
access operations. This explains the second jumping point. The 
inefficiency for handling large memory caused by the heap space 
managing algorithms of the JVM is also a critical factor of this 
pattern. 

This result shows that the DOM method using one single XML 
tree is not a good approach for a very large XML document; the 
memory space and processing time are not manageable by one 
single general-purpose personal computer. Based on this analysis, 
we designed a DOM method that uses n manageable small XML 
trees instead of using one large XML tree to avoid the shortage of 
free memory size and low efficiency in parsing. 
To execute a data retrieval operation on the n manageable small 

XML trees in terms of the original XML tree, the associated n 
XML documents are first generated from the original XML 
document. Our method generates the n XML documents in two 

steps, partitioning and padding. In the partitioning step, the 
original XML document is split into n nearly equal-sized 
documents where n is decided depending on the resource 
available, such as the capacity of the personal computer. In the 
padding step, each of the n documents is modified to meet the 
requirement of a well-formed XML document. The data retrieval 
operation is then performed sequentially on each of the n XML 
trees built from the n-associated XML documents in the retrieving 
step. The result of the operation from the first XML tree is then 
combined with the one from the second XML tree, which 
continues until the result from the last XML tree is combined. 
Partitioning, padding and retrieving are each explained in further 
detail below. 
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Figure 2. Memory Size required for DOM Parsing 
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Figure 3. DOM Parsing Time of 100~1,000 MB XML files 
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Figure 4. DOM Parsing Time of 100~760 MB XML files 

3.1 Partitioning 
The contents of any document, including XML documents, are 
considered to be a sequence of characters. In this paper, we define 
a partition of a document as follows. 

Definition Let D be a document given by a sequence of 
characters. If each of n documents, F1, F2, …, and Fn, is a 
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subsequence of D such that the concatenation of F1, F2,…, and Fn 
is equal to D, then a sequence of the n documents, <F1, F2, …, 
Fn>, is a partition of a document D where each Fi, i=1,…,n, is 
called a fragment of D. 

In explaining how to partition the given XML document, we use 
some notations defined as follows:  

1. The size of a document D is expressed as D.length. 
2. The i-th character of a document D is expressed as     

D[i] (1 ≤ i ≤ D.length). 
3. The sequence of characters from i-th character to j-th 

character of a document D is expressed as D[i, j].
 Therefore, the contents of a document D are               
expressed as D[1, D.length]. 

4. The document generated by concatenating two            
documents D1 and D2 is expressed as D1·D2. 

The crux of partitioning a document lay in the way to find the 
boundary between fragments, called the cut point. Let Do be a 
given XML document and n be the expected number of fragments 
in the partition of Do. First, the ⎣ ⎦n.length / Do  characters are 
scanned from the beginning of Do, and around the location right 
after these characters, the range of width, h, is formed as shown in 
Figure 5. 

 
Figure 5. Finding a cut point 

Next, we compute the length of the path from the root element of 
Do to each of the elements whose start-tags are contained in this 
range. For computing the path without building the XML tree of 
Do in memory, we use a stack containing strings. This stack keeps 
the list of element names from the beginning of Do to the current 
scan position: When a start-tag is found, we push the element 
name into this stack, and when an end-tag is found, we pop the 
latest pushed element name from the stack. Since an XML 
document has the well-formed structure of element definitions, 
the size of this stack is the length of the path from the root 
element of Do to the current element being processed. 

The first cut point is then selected to be the location right after 
the start-tag of the element that has the shortest path from the root, 
called the cut element. If there are no start-tags in this range, the 
cut point is selected to be the location right after a start-tag, which 
is retrieved first in the scanning of Do after the range. For the 
second cut point, the range of width, h, is again formed around the 
location right after ⎣ ⎦n.length / Do characters from the first cut 
point, and the length of the path from the root to each of those 
elements whose start-tags are in this range is computed. Like the 
selection of the first cut point, the second cut point is then 
selected again to be the location right after the start-tag of the 
second cut element, the element having the shortest path from the 
root. This process is repeated until the last cut point is set up. 

We selected this policy to decide the cut points because we 
observed three major things from experiences with a very large 

XML document D. First, D is in general an aggregation of small 
XML documents Xi, i=1,…, k, which have a common structure 
and are almost the same size. Second, each Xi is directly or very 
closely connected to the root element of D. Third, the data 
retrieval operations on D can usually be applied on each Xi 
independently. Therefore, considering these characteristics, it is a 
good approach not to split each Xi into different fragments. Each 
cut point, which comes as near to the root element as possible in a 
given range, is selected for achieving this purpose. This is why we 
use an external variable, h, for defining the width of ranges. If the 
value of h is carefully selected, each fragment generated could be 
associated easily and rapidly with a set of these Xi’s. 
It is noted, however, that the actual number of fragments 

generated by this process may become less than n, the expected 
number of fragments, due to its policy of deciding the cut points. 
For example, if the total number of start-tags of Do is less than n, 
or the positions of start tags of Do lean severely toward some 
positions of Do, then the actual number of fragments generated by 
this partitioning algorithm becomes less than n.  
In spite of the drawback described above, we selected this policy 

of deciding the cut points because we concluded that, in seeking 
to find the benefits of using small XML documents, dividing the 
contents of an XML document into almost the same-sized 
fragments without breaking the aggregation pattern is more 
important than just guaranteeing the number of fragments to be 
generated. Besides, there are very small possibilities that the 
situations that prevent the work of our partitioning algorithm 
occur in real areas having very large XML documents. 
The partitioning process explained above is more formally 

described as follows. 

Algorithm PARTITION(D, n, h) 
<Input> 

1. D : An XML document to be partitioned 
2. n : The expected number of fragments to be generated 
3. h : The width of a range for finding a cut point 

<Output> 
1. n’ : The actual number of fragments generated 
2. <F1 F2 …Fn’> : A partition of D (1 ≤  n’ ≤  n) 
3. <C1 C2 …Cn’-1> : A sequence of cut points 
4. P : The prolog of D 

Declare StackOfStartTags as a stack of strings; 
Declare Ts, Tnew as variables pointing to start- or end-tags; 

TargetSize := ⎣ ⎦ nD.length / ;  

Initialize StackOfStartTags; 
Prolog := the prolog of D; 
StartPoint := the offset of the end of prolog of D + 1; 
CutPoint := StartPoint; 
i := 1; 
While ((StartPoint < D.length) and (i < n))  do                                                    

InitCutPoint := StartPoint + TargetSize; 
From := CutPoint; 

    While (there is a tag in [From, D.length] of D) do                                         
Scan a tag and set Ts to point to the tag retrieved;                           

        If (Ts points to a start-tag)                                                                        
           Push the name of the pointed start-tag by Ts into StackOfStartTags; 
           If (the start-tag pointed by Ts is in  [InitCutPoint – h/2, D.length] of D) 
             jump FindCutPoint; 
        End if                                                                                                    
        If (Ts points to an end-tag) 
          Pop the last item from StackOfStartTags; 

    From := (the offset of the end of the pointed tag by Ts)+1; 
End while                                                                                                  

FindCutPoint:  
minimalDistance := the number of items in StackOfStartTags; 
CutPoint:= (the offset of the end of the pointed tag by Ts) + 1; 
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    Scan a tag and set Tnew to point to the tag retrieved; 
    While (the tag pointed by Tnew is in [CutPoint, InitCutPoint + h/2] of D) do 
        If (Tnew points to a start-tag)                                                                     
          Push the name of the pointed tag by Tnew into StackOfStartTags; 
          Distance := the number of items in StackOfStartTags; 
          If (minimalDistance > Distance)                                                              
            minimalDistance:= Distance; 

Ts:= Tnew; 
            CutPoint:= (the offset of the end of the pointed tag by Ts)+1; 
         End if                                                                                                               
       End if                                                                                                     
       If (Tnew points to an end-tag) 
         Pop the last item from StackOfStartTags; 
      Scan a tag and set Tnew to point to the tag retrieved;  
   End while                                                                                                   
   Fi := D[StartPoint, CutPoint]; 
   StartPoint := CutPoint + 1; 
   Ci := CutPoint; 
   i := i + 1; 
End while                                                                                                     
Fi := D[StartPoint, Do.length]; 
n’:= i; 
Return n’, <F1 F2 … Fn’ >, <C1 C2 … Cn’ > and Prolog; 

 

3.2 Padding 
Since each fragment generated in the partitioning step does not 
comprise a well-formed XML document, it is modified into a 
well-formed XML document in the padding step.  
All the fragments have three characteristics, which are given by 

the algorithm PARTITION(D, n, h). First, every fragment, 
excluding the last one, ends with the start-tag of a cut element. 
Second, every fragment, excluding the first one in this time, starts 
without the start-tag of a cut element. Finally, there are no 
elements that can play the role of the root element in each 
fragment. Therefore, in this step, we make well-formed XML 
documents from fragments by padding missing tags to both the 
beginning and end of the fragments. 
Before describing our padding algorithm, we define front and 

back pads as follows. 

Definition Let ei1 and ein be two nodes of an XML tree where ei1 is 
an ancestor of ein. If the sequence of nodes on the path from ei1 to 
ein is given by ei1ei2…ei(n-1)ein , then  
(1) The front pad from ei1 to ein is a string given by 

<ei1><ei2>…<ei(n-1)> 
(2) The back pad from ei1 to ein is a string given by 

</ei(n-1)>…</ei2></ei1> 
Some other notations used for explaining the padding algorithm 

are defined as follows: 
1. The cut element, split at the position of Ci into two         

fragments, is expressed as CutElement(Ci). 
2. The first start-tag of a fragment F is expressed as F.first

. 
3. The last end-tag of a fragment F is expressed as F.last. 
4. The root of an XML document D is expressed as D.root. 
5. The front pad from ei1 to ein is expressed as  

FPad(ei1, ein). 
6. The back pad from ei1 to ein is expressed as 

BPad(ei1, ein). 
Let Do be a given very large XML document and F1,…,Fn be n 

fragments generated by the partitioning step as shown in Figure 6. 

To make each fragment Fi into a well-formed XML document Di, 
the padding algorithm consists of two sub steps. First, for each 
fragment Fi ending with the start-tag <ei>, i=1, …, n-1, the end-
tag </ei> is added to the end of Fi and the start-tag <ei> is added 
to the beginning of Fi+1. For differentiating the cut elements from 
original elements, an attribute known as a cut attribute is added to 
each start-tag <ei> additionally. In Figure 7, the dotted rectangles 
show the added start-tags or end-tags. The shaded rectangles 
represent the start-tags of cut elements. 

 
Figure 6. Well-formed XML Documents generated by 

Padding  

 
Figure 7. Generated start- and end-tags of cut elements 

Let F´i, i=1,…,n, be the modified fragments generated by the 
above step. Next, the element of Do.root is set to be the root 
element of each of F´i, i=1,…,n. This can be done by 
concatenating FPad(Do.root, CutElement(Ci-1)), the contents of 
F´i, and BPad(Do.root, CutElement(Ci)). Let F´´i be the newly 
generated fragments by this concatenation. For differentiating the 
elements, which are generated by this concatenation, from 
original elements, an attribute known as a dummy attribute is 
added to each start-tag forming FPad(Do.root, CutElement(Ci-1)). 
Note that the element that has a dummy attribute added start-tag 
would be called the dummy element, and each of dummy or cut 
elements keeps all attributes of the corresponding original 
element in order to  forward XML namespace [23] information of 
Do to each F’’

i.  
The last operation of the padding step is to generate each Di by 

attaching the prolog of Do to the head of each F’’
i. This is for 

preserving the version and encoding information of Do. If Do has a 
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number of XML DTDs (Document Type Declaration) [1], these 
DTDs are also preserved in each of Di’s. 
Figure 8 shows the well-formed XML document D1, D2, D3 and 

Figure 9 shows the tree structures of T1, T2 and T3, which are 
generated from the given XML document Do with a tree structure 
of To by the partitioning and padding steps. In Figure 9, the 
shaded ellipses represent the cut elements, and the ellipses filled 
with lines represent the dummy elements. 

 
Figure 8. Applying PAD algorithm 

 
Figure 9. XML Trees generated by                          
PARTITION and PAD algorithm 

The padding step explained above can be summarized more 
formally as follows. 

Algorithm PAD(D, <F1 F2 …Fn>, <C1 C2 …Cn>, P) 
<Input> 

1. D : An XML document 
2. <F1 F2 …Fn> : A partition of D 
3. <C1 C2 …Cn> : A sequence of cut points 
4. P : The prolog of D 

<Output> 
1. <D1 D2 …Dn> : A sequence of XML documents 

Declare <F´1 F´2 … F´n>,  <F´´1 F´´2 … F´´n> as sequences of documents; 
For each Fi  from i=1 to n                                                                                          
If (Fi is not the first fragment of  <F1 F2 …Fn>)                                                    

StartTag :=Duplicate the start-tag of CutElement(Ci-1);  
Add a cut attribute to StartTag; 
Add an identification attribute to StartTag;  
F´i:= StartTag ·F´i; 

Else 
F´i:= Fi; 

End if 
If (Fi is not the last fragment of  <F1 F2 …Fn>)                                                      

     EndTag := Generate the end-tag of CutElement(Ci); 
F´i := F´i·EndTag; 

Add a cut attribute to the corresponding start-tag of F´i.last; 

Add an identification attribute to the corresponding start-tag of F´i.last; 

End if                                                                                                                 
If (Fi is not the first fragment of  <F1 F2 …Fn>)                                                     

Front := Compute FPad(D.root, CutElement(Ci-1)); 
For each start-tag in Front 
Add an identification attribute to the start-tag; 
Add a dummy attribute to the start-tag; 

End for 
End if 
If (Fi is not the last fragment of  <F1 F2 …Fn>) 

Rear := Compute BPad(D.root, CutElement(Ci)); 
F´´i := Front · F´i  · Rear; 

End for 
For each F´´i  from i=1 to n 

Di:= P · F´´i; 
End for  
Return <D1 D2 … Dn>; 

 

3.3 Retrieving 
In this section, we explain how to execute a given data retrieval 
operation using a number of small XML documents, which are 
generated by the previous partitioning and padding steps. The 
data retrieval operation is expressed with DOM API, and this 
operation is given on the assumption that the XML tree of an 
original large XML document exists in main memory.  
We selected following GET operations from DOM API as the 

representatives of data retrieval operations. 

Table 1. Data Retrieval Operations in DOM API 

Interface Operation Name Description 

Document getElementsByTagName 
Returns a nodelist of all the 
elements in document order 
with a given tag name  

getChildNodes 
Returns a nodelist that 
contains all children of this 
node 

getFirstChild Returns the first child of this 
node. 

Node 

getLastChild Returns the last child of this 
node. 

Element getElementsByTagName 

Returns a nodelist of all 
descendant elements with a 
given tag name, in document 
order. 

The operations in Table 1 have a difference in external forms. 
However, each of these GET operations can be considered to 
receive some nodes that satisfy the specified condition from the 
given XML tree, T. Thus, it suffices to show how to implement the 
operation of GET(T,e,P,S), which returns the nodes that satisfy the 
condition P from a subtree, having e as its root, of T. The 4th 
parameter S specifies how to make the result of the operation from 
the retrieved data. The value of S can be one of three values, ALL, 
FIRST and LAST. Let Nr be the nodes satisfying the condition P 
from a subtree, having e as its root, of T. If the value of S is ALL, 
this GET operation returns Nr as a list of nodes. Yet, if the value of 
S parameter is FIRST or LAST, this GET operation returns the first 
or last node of Nr correspondingly.  
For example, the operation of getElementsByTagName(XXX) with 

Document interface on an XML tree T can be given by GET (T, the 
root of T, tagname=XXX, ALL) and the operation of getFirstChild() 
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with Node, e, interface on an XML tree T can be given by GET(T, e, 
child of e, FIRST). 
Let To be the XML tree of a very large XML document Do, and 

T1,…,Tn be n XML trees built from small n XML documents 
D1,…,Dn, which are generated from Do by the partitioning and 
padding steps. In this retrieving step, a given GET(To,e,P,S) 
operation is then executed sequentially on each of Ti, i=1,…n, as To 
replaced with Ti, using a general-purpose DOM parser. These 
replacements are valid, since any ancestor of each element of Do is 
preserved in any of the n small XML trees containing that element. 
On completing the GET operation on each of Ti, i=1,…n, a list of 

elements that satisfy the given condition, if it exists, is found. Next, 
to combine the results from T1,…,Tn, in the form of another XML 
tree, a tree Tr having only one root node is first generated and then 
updated sequentially after each GET(Ti,e,P,S) is executed. 
Let N1,…,Nn be the n results of the GET operations from T1,…,Tn, 

where each Ni is either a list of nodes or an empty list. For each 
nonempty Ni, each node of Ni is checked to see if it has either a 
dummy attribute or a cut attribute. If it has either of these, we first 
check that there is a node of Tr which has the same value of the 
identification attribute of Ni. If it exists, the contents of Ni, including 
its descendant in Ti, are copied to the contents of the node having 
same value of the identification attribute. Otherwise, the copy of Ni, 
also including its descendant in Ti, is added to be a new child node 
of the root of Tr. This process repeats until the last search result Nn is 
reflected on the tree Tr. Based on the tree Tr which is formulated this 
way, the final result of the GET(To,e,P,S) operation is returned after 
applying S on the child nodes of the root of Tr; if S is ALL, this GET 
operation returns all child nodes as a list of nodes. However, if the 
value of S is either FIRST or LAST, this GET operation returns 
either the first or last child node of the root of Tr correspondingly. 
For example, suppose that the GET(To, A, the child node of A, 

FIRST) operation is executed on the structure of To shown in Figure 
9. If a general DOM parser is directly applied on To for executing 
this operation, it finds B from this subtree as the one which satisfies 
the given condition, and returns <B of To> as the final answer. If it is 
executed on the three small trees T1, T2 and T3 in Figure 9,we get 
three search results from T1, T2 and T3, which are <B of T1>, <B of 
T2>, and <E of T3>. These results are combined into <B of Tr, E of 
Tr>, because the nodes B of T1 and B of T2 have the same value of 
the identification attribute. The S of this operation is FIRST, so <B 
of Tr> is returned as the final result of this operation, as shown in 
Figure 10. 

 
Figure 10. Combining N1, N 2 and N 3 into N r 

As explained above, in combining n results of GET operations, if 
a node contained in some of n results has either a dummy or cut 
node as a child node, the copy of this dummy or cut node is also 
contained in the combined result, as shown from two C nodes of 
<B of Tr> in Figure 10. This is because the original C element in 
the original XML Document Do was split by the PARTITION and 
PAD algorithm intentionally. Therefore, the final step for 
retrieving data is to unify the split nodes by removing the 
duplicate information generated due to such dummy or cut nodes. 
We apply a lazy approach to unify the split child nodes: at the 
first time a node e of a node list is referred by an XML 
application, we combine child nodes of e having a dummy or cut 
attribute and the same identifier. This can avoid time consumption 
caused by complete navigation of subtrees for unifying unused 
nodes of Tr. 
The final result from Figure 10 is then as follows. 

 
Figure 11. Unifying the split child nodes 

The above overall retrieval procedure of GET(T,e,P,S) can be 
summarized by the following algorithm RETRIEVE(D,e,P,S) 
where T is the XML tree of the given XML document D. The 
following algorithm UNIFY(e) is called to unify the split child 
nodes of node e. 

Algorithm RETRIEVE(D, e, P, S) 
<Input> 

1. D : An XML document from which data is to be retrieved 
2. e : An element of D 
3. P: A condition that can be satisfied by an element of D 
4. S: one of three values, ALL, FIRST and LAST 

<Output> 
1. Nr: A node list that is the same result of the GET(T, e, P, S). 

Declare Tr as an XML Tree having only a root node; 
Declare Nr as an empty node list; 
Declare DP as a general- purpose DOM parser; 
Generate a sequence of multi-small XML documents <D1D2…Dn> by using 
algorithms PARTITION and PAD on D; 
For each Di from i=1 to n                                                                                         
   Ti :=  Build an XML tree from Di by using DP;  
   Ni := Execute GET(Ti, e, P, S) by using DP; 
   For each node e of Ni                                                                                                                                             
     If ((e is a cut element) or (e is a dummy element))                                 
        et := Find the original element of e from Nr by using the identification                

 attribute of e; 
        If (et exists)                                                                       
          Copy the contents of e into et by using DP; 
        Else 
          Copy e as a child of Tr by using DP; 
          Add e into Nr using P; 
        End if                                                                                                                 
     Else 
        Copy e as a child of Tr by using DP; 
        Add e into Nr by using DP; 
     End if                                                                                                                    
   End for                                                                                                                   
End for                                                                                                                     
Remove cut attributes from every node e of Nr; 
Return Nr; 
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Algorithm UNIFY(e) 
<Input> 

1. e: An element 
<Output> 

1. Unified e: An element having no dummy and cut child elements 

For each child element ec of e 
If ((ec is a cut element) or (ec is a dummy element))  

       et :=  Find the original element of ec from all child elements of e                          
              by using the identification attribute of ec; 
       If (et exists)                                                                        

Copy the contents of ec into et; 
         Remove the link from e to ec; 
       End if                                                                                                                  
    End if                                                                                                                                                                              
End for                                                                                                              
Return e; 

 

4. EXPERIMENTS 
In this section, the performance of the proposed DOM method to 
retrieve data from a very large XML document is evaluated in 
terms of comparing the processing time required to execute a 
number of GET operations on some sample XML documents [2, 
20]. We chose XML documents from two different categories as 
sample XML documents for performance evaluation: (1) various-
sized XML documents generated artificially for performance 
evaluation purpose only, (2) very large XML documents which 
are used actively and also downloadable from the Internet without 
any permission required. 

The hardware platform for experiments using sample XML 
documents was exactly the same computer with the same 
configuration, which was used for checking DOM parsing speed 
in section 3. We implemented a prototype of the proposed method 
using JDK 5, and chose Xerces-J (version 2.9.0) as a general-
purpose DOM parser. We used Xerces-J for building XML trees 
of the generated XML documents and for executing GET 
operations on the XML trees. 

Case 1:  Retrieving data from various-sized XML documents 
The purpose of using various-sized XML documents as sample 

XML documents was for checking the performance of our 
algorithms as the number of fragments was changed. For 
generating these various-sized XML documents, we used xmlgen 
[20], because this software is used in many XML related 
researches as a tool for generating XML files which can be used 
as sample XML files for evaluating performances. We generated a 
set of XML documents from 100 MB to 1 GB in increments of 
100 MB using xmlgen. Figure 12 shows the common structure of 
every XML document generated by xmlgen. 
We evaluated the processing time required to execute GET 

operations, which are expressed with DOM API, on each of 
sample XML documents. For choosing meaningful GET 
operations, we referred the twenty queries from XMark [21] 
because these queries are used widely in many research papers for 
benchmark performance on the files generated by xmlgen. 
These queries are expressed with XQuery [22]. Any XQuery 

processor using DOM API to access XML documents executes a 
number of GET operations for finding nodes, which are specified 
in any given query. Therefore, in the viewpoint of checking the 
performance of GET operations, there are no critical differences 
in these queries. So, we chose two queries that need relatively 

short execution time among the queries of Q1~Q20 for evaluation 
of our method: Q1 (return the name of the person with ID 
‘person0’) and Q6 (return the number of items, which are listed 
on all continents). For experiments, we implemented two XML 
applications which call a number of GET operations for finding 
nodes specified in the Q1 and Q6. 

 
Figure 12. Structure of an XML Document                 

generated by xmlgen 
Figure 13 and 14 show the execution time of Q1 and Q6 on 10 

sample XML documents correspondingly. In checking the 
executing time of both queries, we first computed the execution 
time on non-partitioned XML documents, and we computed the 
execution time on 3 partitions with 10, 50, and 100 fragments for 
every XML document. We performed every experiment on each 
XML document 5 times repeatedly to get the average time as an 
execution time. In these figures, the time required for the 
partitioning and padding steps is included in the time on each 
partitioned XML document. 
In Figure 13, when an XML document is smaller than 400 MB, 

the execution time of Q1 on non-partitioned XML documents is 
shorter than on any-partitioned XML documents. This is due to 
the overheads caused by the partitioning, padding and combining 
their results. But, when the size of an XML document increases to 
the 1 GB, there are steep increases of execution time on non-
partitioned XML documents. This is the same pattern as the 
results described in section 3. In partitioned XML documents, 
however, there are relatively gradual increases of execution time. 
Figure 14 shows almost the same pattern of execution time 
increasing shown in Figure 13. 
The results of these experiments show that the method suggested 

in this paper can reduce the time required for retrieving data from 
very large XML documents, which were very ineffective to be 
processed with general-purpose DOM parsers. For example, the 
execution time of Q6 on the non-partitioned 1 GB XML 
document is 253,381 seconds, i.e. almost 3 days. It is actually 
meaninglessness. However, the time required for executing the 
same query on the partition of 100 fragments is reduced to 205 
seconds, a manageable level by one single general-purpose 
personal computer. 

Case 2:  Retrieving data from XML documents containing 
Protein Sequence Database 
For checking the efficiency of our method in the fields where a 

number of very large XML documents exist, we used two XML 
documents from UniProt [2] as sample XML documents. UniProt 
is the consortium for supporting biological research. They 
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maintain high quality protein sequence databases. We 
downloaded two XML documents from the web site of UniProt: 
uniref100.xml and uniprot_trembl.xml. The properties of these 
two files are summarized in Table 2, and the structure of 
uniprot_trembl.xml is described in Figure 15 (the structure of 
uniref100.xml is a simplified version of the structure of 
uniprot_trembl.xml). These two files are the aggregations of 
protein sequences, a subtree under an ‘entry’ node represent a 
protein sequence. 
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Figure 13. Execution of Q1 on various-sized XML Documents 

from 100 MB to 1 GB in increments of 100 MB 
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Figure 14. Execution of Q6 on various-sized XML Documents 

from 100 MB to 1 GB in increments of 100 MB 
Table 2. Sample XML Documents from the Biological 

Information Area 
File Name File Size (MB) # of Elements 

uniref100.xml 4,518 53,523,902 

uniprot_trembl.xml 12,999 242,506,824 

Figure 16 and 17 show the time required for retrieving data with 
GET operations of DOM API from uniref100.xml, 
uniprot_trembl.xml correspondingly. First, we tried to retrieve 
data on these two files without applying our method. Next, we 
tried to retrieve data on partitioned XML documents while 
increasing the number of fragments. Like the experiments of case 
1, we performed every experiment with same condition 5 times 
repeatedly to get the average time as the time required for 
retrieving data. We forced a process of retrieving to be stopped 
when that process did not finish in a day. 
In Figure 16, the time required for retrieving the names of every 

protein from uniref100.xml is shown. DOM parsing failed on non-

partitioned uniref100.xml because of the shortage of memory. 
When partitioning was applied, it did not finish in a day when the 
number of fragments is less than 40. As the number of fragments 
increase from 40 to 100, we can see the time required for 
retrieving data is stabilized less than 1 hour (3,600 seconds). 

 
Figure 15. Structure of uniprot_trembl.xml 

0

2000

4000

6000

8000

10000

12000

Number of Fragments

Se
co

nd

10727 1786 1724 1316 1533 2074 1389
1 10 20 30 40 50 60 70 80 90 100

 
Figure 16. Retrieving Gene Names from uniref100.xml 

In Figure 17, the time required for retrieving the names of every 
protein from unprot_trembl.xml is shown. The size of 
unprot_trembl.xml is almost four times bigger than the size of 
uniref100.xml. Therefore it was clear that DOM parsing failed on 
non-partitioned unprot_trembl.xml due to the shortage of memory. 
When partitioning was applied on unprot_trembl.xml, it did not 
finish in a day while the number of fragments is less than 150. As 
the number of fragments increase to 500, we can see the time 
required for retrieving data is going to down near 1 hour. 
We also checked the ratio of the time required for generating 

small XML documents to the time required for retrieving data 
using these XML documents. In Figure 18, the result shown in 
Figure 16 is reorganized using two categories: P&P and R. P&P 
(abbreviated from the partitioning and padding) represents the 
time required for generating small XML documents, and R 
(abbreviated from the retrieving) represents the time required for 
retrieving data using the generated XML documents. 
Figure 18 shows that the time required for generating small 

XML documents was not changed widely during the number of 
fragments increased from 40 to 100. However, the time required 
for retrieving data using the generated XML documents dropped 
sharply when the number of fragments increased from 40 to 50. 
This demonstrates that, in spite of the costs due to the generation 
of small XML documents, there is a possibility to enhance the 
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performance of DOM parsing by the using of these small XML 
documents. 
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Figure 17. Retrieving Gene Names from uniprot_tembl.xml 

 
Figure 18. Ratio of the time required for generating fragments 

to the time required for retrieving data using fragments 

5. CONCLUSIONS 
In this paper, we presented a method to retrieve data from a very 
large XML document with DOM. When an XML document is 
very large and various operations for finding elements are to be 
executed on this XML document frequently, the method presented 
in this paper can reduce the execution time of these operations on 
the XML document to the level of usefulness. In the future, we 
plan to conduct a study on the automatic and dynamic selections 
of (1) the number of fragments to be generated and (2) cut points 
without the help of the external variables, currently given by users, 
and to extend this method to support INSERT, DELETE, and 
UPDATE operations on very large XML documents as well. 
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