
Interactive Office Documents:
A New Face for Web 2.0 Applications

John M. Boyer
IBM Victoria Software Lab
4396 West Saanich Road

Victoria, BC, Canada V8Z 3E9
boyerj@ca.ibm.com

ABSTRACT
As the world wide web transforms from a vehicle of infor-
mation dissemination and e-commerce transactions into a
writable nexus of human collaboration, the Web 2.0 tech-
nologies at the forefront of the tranformation may be seen as
special cases of a more general shift in the conceptual appli-
cation model of the web. This paper recognizes the concep-
tual transition and explores the connections to a new class of
interactive office documents that become possible by tighter
integration of the Open Document Format with the W3C’s
next generation web forms technology (XForms). The con-
nections transcend simple provisioning of office document
editing and persistence capabilities on the web. Rather, the
advantages of office documents as self-contained entities that
flow through a collaborative network or business process are
combined with web application qualities such as intelligent
behavioral interaction, in-process web service access, and
control of server submission content. An office document
mashup called ‘Dual Forms’ is presented to demonstrate the
feasibility of office document centric web applications.

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Prepa-
ration—Markup languages, Standards; H.1.2 [Information
Systems]: User/Machine Systems—Human information pro-
cessing ; K.4.4 [Computers and Society]: Electronic Com-
merce—security

General Terms
Standardization, Languages, Security, Legal Aspects

Keywords
Office Document, Business Process, ODF, web service, SOA,
XForms, XML Signature, user interaction

1. INTRODUCTION
The first ‘killer application’ of the personal computer rev-

olution was the word processor, which transferred a certain
amount of computing power to the hands of the people by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’08, September 16–19, 2008, São Paulo, Brazil.
Copyright 2008 ACM 978-1-60558-081-4/08/09 ...$5.00.

giving them the power to create and, with a little effort,
share content without the aid of computer programmers.
But what sealed the trajectory of the personal computer
revolution was proof that it was more than just a one-trick
pony. The second killer application, the spreadsheet, en-
abled a large class of end-users to declaratively express use-
ful computer applications, again without the aid of computer
programmers. This is a progression that some have called
process democratization [20].

We are now seeing an analogous revolution play itself out
on the world wide web. The web itself is transitioning from
a medium that can only be configured by web developers
to one whose content is controllable by the very consumers
of that content. This writable web medium, which has been
called Web 2.0, essentially began with the blog [4]. However,
the Web 2.0 analog of the word processor is really the wiki
[14], since it allows end-users to collaboratively create and
update shared web content without the aid of web develop-
ers. Similarly, the early Web 2.0 analog of the spreadsheet
is an XML markup called XForms [8], which enables a large
class of web content authors to declaratively express useful
web applications [9], either without the aid of web develop-
ers or with their efforts focused on connecting the results of
completed applications to back-end business processes [13].

To illustrate these analogies, the transition of the concep-
tual model for Web 2.0 applications is presented in Figure
1. Under the current 3-tier model, the web application pro-
grammer uses custom-built middle tier code for two reasons:

• to backfill for an underpowered client tier by driving
user interaction with server code

• to assemble and perform transactions with the rigid
APIs of productized server tier applications

By comparison, Web 2.0 applications do not tend to in-
volve a middle tier web application developer. On the client-
side, this is due to the rise of web browser infrastructure
technologies, e.g. Javascript, DOM and AJAX, that are ca-
pable of meeting the end-user interactivity and live update
requirements of the web application without round-tripping
to custom code on the middle tier. On the server-side, the
early Web 2.0 applications, such as blogs and wikis, have
replaced the rest of the middle tier with specific code for
the application. However, the full generalization of the Web
2.0 application model can be realized on the server-side due
to the trend in productized server tier applications to open
their API interfaces as web services or to allow manipula-
tion of persistent storage by ATOM publishing protocol [19].
Hence, the Web 2.0 client tier can communicate directly with

8

Figure 1: The Transition from the current 3-tier web application model to the 2-tier conceptual model for
Web 2.0 Applications. The server tier is augmented by web services or ATOM publishing protocol to allow
direct communication and interaction with the client tier. The client tier is sufficiently powerful to drive
end-user interactivity for the application and to communicate with the server tier.

the Web 2.0 server tier to gain access to persistent data stor-
age, workflow and business process services.

This is the maturing web context in which office docu-
ments can come to serve as a new face for Web 2.0 ap-
plications. Even at the simplest level, the office document
provides a familiar user interface, so it is natural to consider
the office document as a metaphor for the client side of a
web application. Yet, the office document makes sense for
more than just the ephemeral user interface for back-end
content. By persisting the results of user interaction in an
office document format that is based on XML [12], several
of the more well-known benefits can be realized, including:

• ability to locally save and reload or email the document

• compatibility with the offline document processor for
disconnected and semi-connected users

• simplified data mining and content reusability (e.g.
presentation slide re-use, or spreadsheet content re-use
in a presentation slide or text document pie chart)

Aside from the above core benefits of a document-centric
web application mentioned above, there are three advanced
benefits that comprise the major focus of this paper:

• ability to define, within the document, intelligent be-
haviors for user interaction and web service access

• ability to affix XML Signatures [16] to the document to
make a legally binding agreement for the transaction
represented by the document

• support for document-centric business processes, work-
flows and activity-centric systems, not just document
persist-and-share systems

To realize all of these benefits, this paper explores the
new open standard XML markup for office documents, the
open document format (ODF) [15]. In particular, this paper
focuses on how the three advanced benefits above can be re-
alized through better exploitation of the underlying XForms
model that has been incorporated into the ODF standard.

Furthermore, while XForms provides more features to ODF
than is generally known, ODF references the latest version
of XForms, so still more features will be available to ODF
when the current XForms 1.1 Candidate Recommendation
[8] becomes a W3C Recommendation later this year, espe-
cially in the area of XForms submissions for connecting to
web services and performing full document submissions.

After a discussion of related work in Section 2, a number
of features of the XForms model that are currently available
to ODF are introduced in Section 3, and Section 4 provides
an overview of the document structure of ODF combined
with XForms, especially describing how the ODF presen-
tation layer binds to data in the XForms model. Section
5 describes how those XForms user interface bindings im-
prove interactivity by helping end-users to correctly ‘fill in
the blanks’ of complex agreement documents. The section
also discusses how to improve user experience with a wizard-
like interaction modality that orchestrates the client-side fill
experience of a complex document. Section 6 describes how
the new XForms 1.1 submissions can be used to connect a
running ODF document to an SOA (service oriented archi-
tecture), to RSS and ATOM feeds and ATOM publishing
protocol, and how the entire ODF office document can be
connected to the business process. Section 7 describes how
digital signatures can be applied to ODF documents through
the XForms data layer to create legally binding e-contracts
and e-agreements. Section 8 presents a prototype applica-
tion created to illustrate the value of the many possibilities
that arise from connecting interactive office documents to
the business process. Section 9 presents concluding remarks
and future work.

2. RELATED WORK
A number of recently proposed systems use documents to

drive only the design phase of web applications. The system
in [23] automatically generates classic HTML 4 forms based
on structure of data-centric XML vocabularies. The work in
[23] is focused on generating a traditional web application,
not in changing the information assets over which web appli-
cations operate. The system is extended in [24] to connect

9

the XML data collected into server workflow systems. In
[1], the design experience is divided into separate concerns
of content, navigation and presentation, and each is repre-
sented by a model document. The web application is created
by performing XSLT transformations on the model docu-
ments to generate scripts, stylesheets and presentation con-
tent. Though the model documents separate the concerns,
they are not kept in a single file used to drive the run-time
experience, so the advantages of a document-centric web ap-
plication described in Section 1 are not achieved.

The earliest XML document format to combine dynamic
user interface behaviors, digital signatures, and support for
the document as a mobile agent in the business process was
XFDL [3, 10] (extensible forms description language). Mal-
loy [26] describes an intelligent document as being more like
an application than a traditional document. It is essentially
an instance of an application comprised of a content or data
layer, a layer for logic and behavioral rules, a presentation
layer, and a layer of metadata. Glushko and McGrath [18]
note the importance of a layered document structure to the
document engineering analyses needed to describe business
processes that produce and consume documents, and the
integration of XFDL with XForms reported in [6] achieves
the layered intelligent document structure for precision elec-
tronic forms applications that capture structured data.

In light of the layered approach advocated above, it is
worthwhile comparing other recently reported methods with
the approach to document dynamism in XForms [8]. In [25],
an XML data calculation is achieved by attaching an at-
tribute bearing an XPath expression to the element whose
content is being calculated. The XPath is re-evaluated when-
ever a computationally referenced element is changed at run-
time. The approach in [25] mixes the data layer with the
logic rule layer, which may not even be permitted by the
data schema. Also, it is not capable of computing attribute
values. Similarly, [28] presents a template process for gen-
erating presentation level markup configured according to
parameters representd as XPath variables. Aspects of the
presentation markup requiring configurability invoke a ‘calc’
function in lieu of a literal value. This is analogous to the
method used by XFDL to implement declarative presenta-
tion logic [3, 6, 10], but it requires participation of the pre-
sentation language processor. The method of [28] assumes
the ability to modify the presentation language schema and
the ability to inject XPath evaluation and an update process-
ing model into the presentation language processing. From a
standardization perspective, these assumptions are difficult
because they hinder wide implementation and black box re-
use of existing presentation engines. Thus, the layered doc-
ument approach used in XForms avoids certain difficulties
of the above cited works.

The conceptual separation of layers promoted by XForms
is also what allows it to satisfy its multimodality require-
ment. XForms was designed to make it easy to define the
core XML data process asset and then ‘skin’ the asset with
mulitiple presentation layers according to system/user needs.
This allows systems such as those described in [13, 21] to
deploy the same application asset to a desktop browser, a
mobile device, or a device for the sight-impaired. Moreover,
it allows the same core asset to be presented in multiple offi-
cial languages of a country so that a government can ensure
equality of application behavior regardless of the language
of interaction selected by the citizen.

A side-effect of this multimodal design is that new presen-
tation languages (host languages) for XForms can be con-
ceived beyond traditional web markup languages. One such
markup language is the open document format (ODF) [15],
the open standard XML markup language for office docu-
ments. Toward the direction of using office documents as a
familiar user interface metaphor for web applications, Gib-
son [17] suggests that it can help provide a solution for the
problem of web application accessibility. Also, Quint and
Vatton [27] advocate that web browsers should be able to
write web pages, not just browse them, and Di Iorio and Vi-
tali [22] describe a simple word processor interface for editing
web pages. However, this paper advocates the use of the of-
fice document as more than just a user interface metaphor,
but rather as the underlying unit of information in web ap-
plications and business processes. In particular, the rich
Web 2.0 client tier interactivity and Web 2.0 server tier com-
munications can be achieved by the ODF office document
format via its integration with XForms 1.1, as discussed in
the sections below.

Finally, the flexibility of deployment models noted in [13]
is also feasible for interactive office documents. The run-
time processing can be offered by client-side software or by
server-side conversion to the HTML, Javascript and AJAX
code that is natively understood by web browsers. In fact,
the logical client-side interactivity expressed in XForms can
be executed on the physical client-side in the web browser
using a Javascript and AJAX library such as the Ubiquity
XForms processor [2].

3. INTRODUCING THE XFORMS MODEL
The backbone of XForms is the processing model that is

defined for XML data within the document. A document can
have one or more instances of XML data, each of which is
handled as if it were a separate in-memory document object
model (DOM) during execution of the document. The name
instance comes from the possibility that the XML data is an
instance of an XML schema, though an XForms instance is
not required to be associated with a schema.

The XForms model augments the XML instance data with
model item properties such as type, readonly, relevant,
required, and constraint. These model item properties
associate run-time metadata with nodes of XML data, and
they are attached to nodes of XML data using using XPath
expressions. The values of most of the model item properties
are also determined using XPath expressions. This allows
the form author to specify the model item property value
by a formula that is automatically re-evaluated whenever
dependent nodes of XML data are changed. Perhaps the
most important model item property of an XML data node is
its intrinsic value, which may be set by a calculate formula.
Figure 2 gives a markup example of a small XForms model.

A critical part of the XForms model is its submission ca-
pability. A model can contain any number of submission

elements, each of which can respond to events that perform
further actions, such as data mutations or further submis-
sions. The result of a submission can replace the entire doc-
ument containing the XForms, or it can replace some data
within the XForms model, or it can be ignored. Figure 3
provides an example of XForms submission that submits a
term to a dictionary service and places the definition text
obtained from the service into a node of the data without
replacing the entire containing document.

10

<xf:model xmlns:xf=“http://www.w3.org/2002/xforms”
functions=“power”>

<xf:instance xmlns=“”>
<Pythagorus>

<a>5
12
<c>13

</Pythagorus>
</xf:instance>

<xf:bind nodeset=“a | b” required=“true()”/>

<xf:bind nodeset=“c”
calculate=“power(../a*../a+../b*../b, 0.5)”/>

</xf:model>

Figure 2: An XForms model containing one instance
and a few model item property (MIP) definitions.
The bind element expresses MIPs using attributes to
hold the XPath expressions. The nodeset attribute
indicates the node or nodes to which the MIP values
are associated. The first bind attaches a true value
for the required property to the union of nodes a and
b. The second bind calculates the value of c accord-
ing to the well-known hypotenuse length formula.

<xf:model xmlns:xf=“http://www.w3.org/2002/xforms”>
<xf:instance xmlns=“”>

<search>
<term>omnify</term>
<meanings> ... </meanings>

</search>
</xf:instance>

<xf:submission ref=“term” target=“meanings”
replace=“text” method=“get”
resource=“http://dictionary.com/service”/>

</xf:model>

Figure 3: An XForms model can perform submis-
sions to a server while the document is running,
and the results can be placed back into the docu-
ment. For example, the meaning of a word could be
searched using an online service.

4. ODF INTEGRATED WITH XFORMS
ODF integrates the XForms model into its form element,

which also includes a set of abstract form control elements
such as form:text that select XML data to operate upon
and set other basic user interface properties. ODF exposes
its abstract form controls to the free-flowing presentation
layer markup using the draw:control element. Figure 4 de-
picts the main layers in the integration of ODF and XForms.

The relationship between the XML data nodes, abstract
form controls and presentation layer elements is handled
mostly by ID references. From Section 3, an XForms model
can contain any number of xf:bind elements, each of which
indicates one or more nodes using a nodeset attribute. An
xf:bind can also have an id attribute, which makes it a
named site for a set of nodes that can be referenced by the
id attribute value. An ODF form control uses an xf:bind

Figure 4: The document structure of the ODF inte-
gration of XForms. The basis in XML means in-
teroperability from the ground up, which is why
XForms was able to be incorporated into ODF.

attribute to indicate an xf:bind element by ID reference.
Similarly, each ODF form control has a form:id attribute
that allows the presentation layer draw:control element to
refer to it with a draw:control attribute. Figure 5 puts the
relevant markup components together to illustrate the ID
referencing mechanism that binds the ODF layers together.

5. INTERACTIVE OFFICE DOCUMENTS
The xf:bind attribute in XForms has more meaning than

just connecting an ODF form control to an XForms bind
site. The xf:bind attribute expresses a user interface bind-
ing, which has several implications for the XForms model
processor, which must:

• expose the node value and model item property values
to the bound form control

• dispatch value and model item property change notifi-
cation events to the bound form control

If the XForms model binds a type or constraint model
item property (MIP) to a node, and the user enters incorrect
data content, then the form control must prominently indi-
cate that there is an error, and the XForms model proces-
sor must dispatch an xforms-invalid event to the element
containing the user interface binding attribute. XForms au-
thors have the option of hooking this event and performing
an action script, such as raising a message to help the user
understand how to correct the error or perhaps executing a
setvalue to fix the error under certain conditions.

If the XForms model binds a readonly MIP to a node,
and the value is true, then the user is not allowed to modify
the data. Note that the readonly MIP has an inheritance
rule, so it is easy to make all nodes in a DOM subtree read-
only by just setting the subtree root to readonly. This can
make entire sets of bound form controls behave as if they
were readonly. Form authors (as well as implementations

11

<office:document-content ... >
...
<office:body>

<office:text>
<office:forms ... >

<xf:model ...>
<xf:instance ...>

<name>Wanda</name>
</xf:instance>

<xf:bind id=“Data Name”
nodeset=“/name”/>

</xf:model>

<form:form ...>
<form:text xf:bind=”Data Name”

form:id=”Ctl Name” ... >
<form:properties>

...
</form:properties>

</form:text>
...

</form:form>
</office:forms ... >
...
<text:p text:style-name=”P20”>

<text:span>Name: </text:span>
<draw:control svg:x=”2in” svg:y=”1.5in”

draw:control=”Ctl Name” .../>
</text:p>
...

</office:text>
</office:body>

</office:document-content>

Figure 5: The ID referencing mechanism that con-
nects XML data to the ODF presentation layer. The
xf:bind associates an ID with a data node. The ODF
form control element associates an ID for the control
with the ID for the data so the ODF presentation
layer element can present the data by referencing
the ID of the associated ODF form control.

like an ODF processor) can detect changes of state after
initialization by listening for xforms-readonly and xforms-

readwrite events dispatched by the XForms model.
If the XForms model binds a relevant MIP to a node,

and the value is false, then the form control must be either
hidden or disabled. This MIP also has an inheritance rule
that makes it easy to affect many form controls bound to
nodes in a subtree by setting the subtree root node’s rele-
vance. For this MIP, it is especially important to note that
the XForms model supports dynamic recalculation of MIPs
because conditional relevance can be used to choreograph
wizard-like behaviors that take a user through a step-by-
step process for completing a complex fill experience.

Although it is beneficial to the user to simplify the user
interaction with a stepwise wizard experience, a common
concern about using relevance to choreograph the user ex-
perience is that the non-relevant data is also unavailable to
data submissions. It would be beneficial to use relevance for
user experience choreography without having any side effects
on the data that can be submitted to a server or service. One

answer to this problem is to simply hook the xforms-submit
event in the model and use the insert action to copy the
data to a second instance that has no relevance rule bind-
ings. Figure 6 contains illustrative XForms 1.1 markup for
this method.

<xf:model xmlns:xf=“http://www.w3.org/2002/xforms”>
<xf:instance xmlns=“” id=“X”>

<data>
<stepA>...</stepA>
<stepB>...</stepB>
...

</data>
</xf:instance>

<xf:instance xmlns=“” id=“Y”>
<data>...</data>

</xf:instance>

<xf:bind nodeset=“instance(‘X’)/stepA”
relevant=“condition A”/>

<xf:bind nodeset=“instance(‘X’)/stepB”
relevant=“condition B”/>

<xf:submission ref=“instance(‘Y’)” ...>
<xf:insert ev:event=“xforms-submit”

nodeset=“instance(‘Y’)”
origin=“instance(‘X’)”/>

</xf:submission>
</xf:model>

Figure 6: An XForms model that uses relevance to
implement a step-by-step wizard. The user interface
controls bind to instance X. At submission time, the
data is copied to instance Y, a fully relevant location.

Yet another answer to the above problem, though, is to
stop doing data submissions and instead use XForms sub-
mission to connect the document to the business process.

6. XFORMS 1.1 SUBMISSIONS FOR
DOCUMENT-CENTRIC
WEB 2.0 APPLICATIONS

XForms 1.1 submissions have been substantially improved
to allow both document-centric web applications and Web
2.0 interactions during document run-time. This will al-
low an ODF document to submit its entire content, rather
than just data, to the back-end business process. It will also
allow an ODF document to consume SOAP-based web ser-
vices and ATOM services exposed by the Web 2.0 server tier
described in Section 1.

The rationale for full document submission is simplified
user experience during collaboration. Directly supporting
collaborative content creation significantly reduces inefficien-
cies relative to manual collaboration based only on change
tracking, saving to disk, emailing, and manually pushing
only completed document into business process systems. Fig-
ure 7 is an example system diagram in which intelligent doc-
uments “know” what process they belong to and how to get
themselves from each collaborator back to the server without
need of local saving or email.

12

Figure 7: The Intelligent Document Programming Model goes beyond the traditional usage paradigm of
office documents to get at some of the underlying reasons why people are using office documents. Users are
able to retrieve an office document on which they are collaborating, update it, and return it to the enterprise
content bus on the server-side so it can be accessed by other users in the business process workflow. As
the document proceeds through the business process, users can interact with it manually, and they can also
access web services to enhance the completion experience.

To transport an ODF document to a server, it is possi-
ble to use a feature of XForms 1.1 submission in a novel
way. A new event called xforms-submit-serialize has
been added to allow form authors greater control over the
server post data. For example, a form author can submit
text rather than XML to the server. The XForms 1.1 sub-
mission now also supports a serialization attribute that
allows the form author to indicate the content type of the
alternate serialization, especially if it is not XML content.

This feature can also be used to allow host document pro-
cessors to control the content uploaded by an XForms sub-
mission. Since xforms-submit-serialize bubbles up to the
root of the document, an ODF processor can be defined to
listen for the event, detect if an ODF content type appears in
the value of the serialization attribute of the event target
submission element, and if so, redefine the XForms sub-
mit serialization to contain the entire ODF document. This
will allow the document to return itself to the server-side
business process to participate in further workflow steps or
be stored in a content repository as a completed document.
Figure 8 show a markup example of full ODF office docu-
ment submission to the server.

Figure 7 also illustrates the possibility of end-user interac-
tion with the Web 2.0 server tier during document run-time.
The specific example shows consumption of credit check and
electronic funds transfer services. These services may pro-
duce record locator data that must be stored in the docu-
ment before it is finalized. Other services such as database
search results can be invoked throughout the collaborative
fill experience to reduce typing and data entry errors.

RSS and ATOM feeds obtained by the ‘get’ or ‘post’ HTTP
method can be consumed by XForms 1.0 applications. XForms

<xf:submission
resource=“http://www.example.org/someServerScript...”
serialization=“application/vnd.oasis.opendocument.text;

content-encoding=base64”
... />

Figure 8: An XForms submission whose serialization
can be defined by an ODF processor to send the
entire ODF document to the server, connecting it
to the business process. The base-64 encoding is
used to account for the possible binary result of the
ODF packaging format.

1.1 adds the ‘put’ and ‘delete’ methods so that all CRUD
operations can be performed through ATOM publishing di-
rectly from an XForm with no middle tier coding. XForms
1.1 also adds full SOA enablement for both REST services
and SOAP-based web services. REST services are supported
due to the following additions to submissions:

• control of submission method using a static or compu-
tationally derived NCName in the method attribute

• control of submission headers using any number of
header child elements of submission

• ability to invoke functions hmac, digest, and random

in combination with setting headers.

• access to headers, return codes and other metadata
about the submission result in the context information
of the xforms-submit-done event

13

Finally, web services can be invoked via the HTTP SOAP
binding for XForms submissions defined in Section 11.11 of
[8]. The section includes a complete markup example writ-
ten by the author for a request-response web service, in-
cluding separating the core instance data from the SOAP
request and response envelopes. The key to the request,
though, is simply setting the mediatype attribute to appli-

cation/soap+xml plus the action MIME parameter to spec-
ify the SOAPAction. While this is the information needed
for a SOAP 1.2 service, the XForms submission processor
automatically converts to the settings needed for SOAP 1.1
if the submission data is rooted by a SOAP envelope element
in the SOAP 1.1 namespace.

Although access to web services can enhance the user ex-
perience, at some point the user interaction is completed and
the user would like to submit the completed document to the
server-side business process. In some systems designed for
highly regulated industries, the last step of user interaction
before full document submission may be to affix a digital sig-
nature to ensure that no malicious third party can corrupt
the document as completed by the user. The next section is
focused on digital signature security for office documents.

7. XML SIGNATURES IN ODF
Digital signatures are a natural part of the theme of con-

necting office documents to the business process in order
to meet the auditability and security needs associated with
execution of legally binding contracts and agreements.

Since ODF is an XML format, it is reasonable to add
digital signature support to ODF by integrating with the
W3C standard for XML Signatures [16]. Note that the XML
Signatures standard defines an XML markup for expressing
digital signatures that can sign any number of resources,
whether or not they are encoded as XML. This is ideal for
ODF since the ODF packaging format [15] allows a single
ODF document to be comprised of any number of resources,
including binary files for embedded images.

Since digital signatures are a kind of structured input, it
is reasonable to integrate them into ODF through XForms.
A framework for integrating XML Signatures with XForms
appears in [7]. The design presented in [7] is predominantly
concerned with the mechanics of activating digital signature
generation and validation in such a way that host language
processors can augment these operations with visual secu-
rity algorithms described in [5]. These algorithms, or other
alternative augmentations, are useful additions to document
security in advanced multiple signer scenarios.

However, the main consideration for a basic integration
of XML signatures with ODF via XForms is to recall that
XForms treats the data layer as a set of separate DOMs from
the main document during run-time. Therefore, a same-
document URI-reference as defined in [16] refers to the root
of the containing XForms instance, not the office:document-
content element. In order to sign the ODF content, a
dsig:Reference must use a package-relative URI to indi-
cate the content.xml file.

This leads to an interesting problem because the signa-
ture is still being added indirectly to the content.xml file via
adding it to the XForms instance data in the ODF content.
Such a signature is defined by [16] to be an enveloped sig-
nature because the signature is enveloped by the content it
signs. An enveloped signature must remove itself from the
content it signs because otherwise core signature generation

will modify part of the content after it has been digested (the
dsig:SignatureValue is empty when the content containing
the signature is digested).

Although the ODF content envelopes the XML signature,
the enveloped signature transform cannot remove the signa-
ture from the ODF content being signed because enveloped
signature transforms and the here() function only work on
same-document URI-references. This is all for the best,
though, because the original XPath filtering method in [16]
is too slow to use on office documents, so the typical imple-
mentation of the enveloped signature transform is likely to
be too slow as well. Instead, as exemplified in Figure 9, the
signature must be subtracted using XPath Filter 2.0 [11].

<office:document-content ... >
...
<xf:instance ...>

<my:data >
...
<ds:Signature id=“X”>

...
<ds:Reference URI=“content.xml”>

<ds:Transforms>
<ds:Transform

Algorithm=“.../xmldsig-filter2”
xmlns:f2=“.../xmldsig-filter2”>
<f2:XPath Filter=“subtract”>

//ds:Signature[id=‘X’]
</f2:XPath>

</ds:Transform>
</ds:Transforms>

</ds:Reference>
...

</ds:Signature>
</my:data>

</xf:instance>
...

</office:document-content>

Figure 9: The pertinent parts of an XML Signature
that signs ODF content while subtracting itself as
an enveloped signature.

The basic ability to add an enveloped XML signature to an
office document lends directly to solving more complicated
signing scenarios that arise in highly regulated industries.
Often, such documents need more than one signer to re-
flect the due diligence of an approval process. For example,
consider the signer/approver pattern. When the first signer
affixes a signature, the signed content becomes immutable,
which means the approver cannot affix a second signature
without invalidating the signature of the first signer. The
solution is to use another XPath filter subtraction like that
in Figure 9 in the first signature to omit the approver signa-
ture from the content signed by the first signer. This allows
the approver to affix the signature without invalidating the
signature of the first signer. More generally, a digital signa-
ture should subtract from the signed content the portion of
the document that is expected to change during future steps
of the business process workflow.

8. AN OFFICE DOCUMENT MASHUP
This section reports on an experimental prototype de-

signed to illustrate the feasibility and advantages of con-

14

necting interactive office documents to the business process.
The prototype was dubbed ‘Dual Forms’ because it exploits
the XForms markup support in two rich document formats,
XFDL [6] and ODF [15].

At the document level, the XFDL form has a file attach-
ment/containment capability, and it also has a full docu-
ment submission capability. So, the XFDL form is used as
the container and transport envelope for an ODF office doc-
ument representing a complex contract or agreement. The
XFDL form also has digital signature support, and once af-
fixed, a digital signature protects not only the XFDL form,
but also the ODF attachment within it.

The ODF document provides editable free-flowing text for
the complex, multi-page contract. It may also including rich
content elements like pie charts and bar graphs to serve as
visual aids. The XFDL form provides a wizard-like front-end
for the contract to help the user enter data systematically.
This interaction may include accessing to SOAP-based web
services and ATOM services from the XFDL form.

The client-side usage pattern for a ‘Dual Form’ begins
with receiving the XFDL form, from a web resource or an
email. Figure 10 shows a screen for a hypothetical consumer
loan application in which end-users receive a step-by-step
wizard experience to help guide them through the process
of providing the more structured data required by the overall
office document application.

Figure 10: The first phase of a Dual Form is the
step-by-step wizard experience for a hypothetical
consumer loan application. This could just as easily
be a patent filing, a healthcare or insurance docu-
ment, or any kind of contract.

The author of the Dual Form application decides at what
point the end-user is allowed to proceed to the ODF docu-
ment embedded in the XFDL form. Figure 11 depicts some
of the sample content for the hypothetical consumer loan ap-
plication, which can include the structured data along with
rich content items that serve as visual aids as well as free-
flowing text for customizing the agreement with specialized
terms and conditions.

When the end-user finishes interacting with the office doc-
ument, a toolbar button allows the end-user to return to
the XFDL form view. Typically, the same condition that
switches the Dual Form to the office document view will
also advance the wizard view to the signatures step, if the

Figure 11: The second phase of a Dual Form is
the office document experience for a hypotheti-
cal consumer loan application. This may include
some structured data such as names, addresses and
amounts, some rich content items such as pie charts
and bar graphs, and some free-flowing unstructured
data such as special terms and conditions.

application includes digital signatures, or to the document
submission step. Figure 12 depicts the completion of a digi-
tal signature over the XFDL form, including the ODF doc-
ument it contains.

The final step of interacting with the Dual Form is to press
a button to submit it to the server-side business process.
The document could enter the next stage of a workflow, such
as an approval, or it could represent a completed agreement
that kicks off a business transaction and is otherwise saved
to a content repository for future reference.

From a technical perspective, the above usage pattern
was supported by creating an an office document mashup
of the Lotus Forms viewer and the Lotus Symphony ODF
editors under the Lotus Notes/Expeditor Composite Appli-
cation Framework. Figure 13 illustrates the block wiring
diagram for Dual Forms mashup.

Based on an event in the XFDL form that can be con-
trolled by the form author, the mashup switches from the
form view to the ODF view. When this occurs, the view
component uses the Lotus Form Viewer’s javascript API
to obtain the XForms instance data and the ODF attach-
ment and set them into the matching properties of form
view component. This triggers the composite application
mashup wires to invoke the corresponding setter methods in
the ODF view component. The setter method implementa-
tions use the UNO API to instantiate the ODF content and
update it with the XML data. Thus, the ODF content is

15

Figure 12: In the completion phase of the Dual Form
for the hypothetical consumer loan application, the
end-user affixes a digital signature over the full doc-
ument, including the ODF content, and then sub-
mits the Dual Form containing the ODF and the
signature to the server.

Figure 13: The block wiring diagram for the Dual
Forms office document mashup.

only rendered after it is updated by the latest XML data
entered into the XFDL form.

The end-user may edit the XML data using ODF form
controls. The end-user may also edit the free-flowing text of
the ODF, for example to add special terms and conditions
beyond those that might reasonably appear in a document
template. When the user hits a ‘return to form’ button on
the toolbar of the ODF view component, the UNO API is
again used to obtain the XML data from the XForms in-
stance as well as a serialization of the ODF content. These

are used to set the data and ODF properties of the ODF
view component. The mashup wires then invoke the corre-
sponding setter methods in the XFDL form view. The im-
plementations of the setter functions use the javascript API
to push the updated ODF content and the XML data into
the running XFDL form. Thus, when the end-user affixes
a digital signature onto the XFDL form, the form contains
the latest ODF content and is rendering the correct data as
amended during the ODF view experience.

The mashup wiring for the print capability is the same as
the Form to ODF view wiring described above. The main
difference is that ODF view component simply prints the
ODF without taking the focus from the form view. For
both view and print operations, the simplicity of the mashup
wiring is made possible by the fact that both rich document
formats have an underlying basis in XForms.

9. CONCLUSION AND FUTURE WORK
This paper first recognizes that the evolution of Web 2.0 is

following the same trend as the personal computer revolution–
a trend from content democratization (e.g. word processing,
the wiki) to process democratization (e.g. the spreadsheet,
declarative markup for the Web 2.0 client tier). This paper
then provides a vision of connecting office documents to the
business process based on having intelligent and interactive,
secure, mobile ODF documents. One or many collaborators
are able to create, modify and secure content based on an
ODF document that freely transitions between the client-
side and server-side as needed.

An office document mashup called ‘Dual Forms’ was pre-
sented to illustrate the feasibility and advantages of imbu-
ing office documents with rich interactivity, web service ac-
cess, digital signature security, and full document mobil-
ity within business processes. This prototype combined the
Lotus Symphony ODF editors with the document-centric
precision electronic forms of Lotus Forms under the Lotus
Notes/Expeditor Composite Application Framework.

Fully realizing this vision depends mainly on strengthen-
ing the integration between ODF and a companion W3C
standard that ODF already contains. XForms became a
W3C standard in 2003, and XForms 1.1 reached the candi-
date standard in November 2007. XForms 1.1 allows the full
realization of the vision presented here due to enablement of
features that allow it to be used with a service-oriented archi-
tecture (SOA). If the SOA-enabled Web 2.0 is the medium,
then the XForms-based ODF document is the message. In
the philosophy of Marshall McLuhan, they are one.

10. ACKNOWLEDGMENTS
The author gratefully acknowledges the Biztech Extreme

Blue grant funding from the IBM China Software Devel-
opment Lab as well as the diligence of the implementation
team for the “Dual Forms” office document mashup, includ-
ing Eric Dunn, Maureen Kraft, Jun Liu, Mihir Shah, He
Feng Su, and Saurabh Tiwari.

11. REFERENCES
[1] Andrea R. de Andrade, Ethan V. Munson, and Maria

da G. Pimentel. Document-based Approach to the
Generation of Web Applications. Proceedings of the
2004 ACM Symposium on Document Engineering, pp.
45-47, Oct. 28-30, 2004. Milwaukee, Wisconsin, USA.

16

[2] Mark Birbeck and John M. Boyer (eds.). The Ubiquity
XForms Processor.
http://code.google.com/p/ubiquity-xforms/

[3] Barclay Blair and John M. Boyer. XFDL: Creating
Electronic Commerce Transaction Records Using
XML. Proceedings of the 8th World Wide Web
Conference and Computer Networks: The
International Journal of Computer and
Telecommunications Networking, vol. 31, pp.
1611-1622, 1999.

[4] Rebecca Blood. Weblogs: A history and perspective.
Weblog: rebecca’s pocket. September 7, 2000.
Available at:
http://www.rebeccablood.net/essays/weblog history.html

[5] John M. Boyer. Bulletproof Business Process
Automation: Securing XML Forms with Document
Subset Signatures. Proceedings of the ACM Workshop
on XML Security, October 31, 2003. Fairfax, VA,
USA.

[6] John M. Boyer. Enterprise-level Web Form
Applications with XForms and XFDL. Proceedings of
the XML 2005 Conference and Exposition, November
14-18, 2005. Atlanta, GA, USA.
Available at: http://www.idealliance.org/proceedings
/xml05/ship/74/XFormsAndXFDL Boyer.HTML

[7] John M. Boyer. Applying XML Signatures to XForms
Documents. Proceedings of XML 2006 Conference and
Exposition, December 5-7, 2006. Boston, MA, USA.
Available at: http://2006.xmlconference.org
/proceedings/100/slides.pdf

[8] John M. Boyer (ed.). XForms 1.1. W3C Candidate
Recommendation, November 29, 2007.
Available at: http://www.w3.org/TR/2007/CR-
xforms11-20071129/

[9] John M. Boyer and Mikko Honkala. The XForms
Computation Engine: Rationale, Theory and
Implementation Experience. Proceedings of the 6th

IASTED International Conference on Internet and
Multimedia Systems and Applications, pp. 196-204,
August 12-14, 2002. Kauai, Hawaii, USA.

[10] John M. Boyer, Tim Bray and Maureen Gordon (eds).
Extensible Forms Description Language (XFDL) 4.0.
W3C Note. September 2, 1998.
Available at: http://www.w3.org/TR/NOTE-XFDL

[11] John M. Boyer, Merlin Hughes and Joseph Reagle
(eds). XML-Signature XPath Filter 2.0. W3C
Recommendation. November 8, 2002.
Available at: http://www.w3.org/TR/xmldsig-filter2/

[12] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve
Maler, and Francois Yergeau (eds). Extensible Markup
Language (XML) 1.0 (Fourth Edition) W3C
Recommendation, September 29, 2006.
Available at:
http://www.w3.org/TR/2006/REC-xml-20060816/

[13] Richard Cardone, Danny Soroker, and Alpana Tiwari.
Using XForms to Simplify Web Programming.
Proceedings of the 14th World Wide Web Conference,
pp. 215-224, May 10-14, 2005. Chiba, Japan.

[14] W. Cunningham and B. Leuf. The Wiki Way, New
York, Addison-Wesley, 2001.

[15] Patrick Durusau, Michael Brauer, and Lars Opperman
(eds.). Open Document Format for Office Applications

(OpenDocument) v1.1. OASIS Standard, Feb. 1, 2007.
Available at: http://docs.oasis-
open.org/office/v1.1/OS/OpenDocument-v1.1.odt

[16] Donald Eastlake, Joseph Reagle, David Solo, Mark
Bartel, John M. Boyer, Barb Fox, Brian LaMacchia,
and Ed Simon. XML-Signature Syntax and Processing.
W3C Recommendation, February 12, 2002.
Available at: http://www.w3.org/TR/2002/REC-
xmldsig-core-20020212/

[17] Becky Gibson. Enabling an Accessible Web 2.0.
W4A2007 - Keynote, Co-located with the 16th

International World Wide Web Conference, May 7-8,
2007. Banff, Canada.

[18] Robert J. Glushko and Tim McGrath. Document
Engineering for e-Business. Proceedings of the 2002
ACM Symposium on Document Engineering, pp.
42-48, Nov. 8-9, 2002. McLean, Virginia, USA.

[19] Joe Gregorio and Bill de hOra (eds.). The Atom
Publishing Protocol. IETF RFC 5023, October 2007.
Available at:
http://www.rfc-editor.org/rfc/rfc5023.txt

[20] Charles Hill, Robert Yates, Carol Jones, Sandra L.
Kogan. Beyond predictable workflows: Enhancing
productivity in artful business processes. IBM Systems
Journal vol. 45, no. 4, pp. 663-682, 2006.

[21] Mikko Honkala and Mikko Pohja. Multimodal
interaction with XForms. Proceedings of the 6th

International Conference on Web Engineering, pp.
201-208, July 11-14, 2006. Palo Alto, California, USA.

[22] Angelo Di Iorio and Fabio Vitali. From the Writable
Web to Global Editability. Proceedings of ACM
Hypertext 2005, pp. 35-45, Sept. 6-9, 2005. Salzburg,
Austria.

[23] Y. S. Kuo, N.C. Shih, Lendle Tseng, and Hsun-Cheng
Hu. Generating Form-Based User Interfaces for XML
Vocabularies. Proceedings of the 2005 ACM
Symposium on Document Engineering, pp. 58-60, Nov.
2-4, 2005. Bristol, UK.

[24] Y. S. Kuo, Lendle Tseng, Hsun-Cheng Hu, and N.C.
Shih. An XML Interaction Service for Workflow
Applications. Proceedings of the 2006 ACM
Symposium on Document Engineering, pp. 53-55, Oct.
10-13, 2006. Amsterdam, The Netherlands.

[25] Dongxi Liu, Zhenjiang Hu, Masato Takeichi. An
Environment for Maintaining Computation
Dependency in XML Documents. Proceedings of the
2005 ACM Symposium on Document Engineering, pp.
42-51, Nov. 2-4, 2005. Bristol, UK.

[26] Tom Malloy. The Future of Documents. Proceedings of
the 2005 ACM Symposium on Document Engineering,
Keynote abstract, Nov. 2-4, 2005. Bristol, UK.

[27] Vincent Quint and Irene Vatton. Toward Active Web
Clients. Proceedings of the 2005 ACM Symposium on
Document Engineering, pp. 168-176, Nov. 2-4, 2005.
Bristol, UK.

[28] Simon Thompson, Peter R. King, and Patrick
Schmitz. Declarative Extensions of XML Languages.
Proceedings of the 2007 ACM Symposium on
Document Engineering, pp. 89-91, Aug. 28-31, 2007.
Winnipeg, Canada.

17

