
A Unified Process for the
Integration of Large-scale,

Distributed, Object-Oriented,
Real-time Systems

in Layered Architectures

M. Mortazavi1 and J. Connell
Teknowledge Corporation, Palo Alto, CA 94303

Abstract
Over the past few decades a great deal of
research has been devoted to the development of
real-time components and systems. Examples
include real-time operating systems, real-time
schedulers, real-time object models and real-
time object brokers. Nevertheless, efforts to build
such large scale systems have lagged behind due
to interoperability problems, programming
paradigms which are difficult to use, an absence
of a standard QoS specification language, a
general lack of maturity in software engineering
processes involved, and logistic difficulties of
building large-scale, distributed, real-time
systems within reasonable expenditure of
resources. This paper focuses on the initial
phases of a recent effort (the QUITE project) to
build a large-scale, QoS-aware, real-time system
based on the integration of research
technologies that have received funding from the
Defense Advanced Research Project Agency’s
Quorum program. It emphasizes the process
aspects of the QUITE integration effort.

1. Introduction

Here, we describe the initial phases of the
Quorum [19] Integration, Testbed and
Exploitation (QUITE) project. Funded by
Defense Advanced Research Projects Agency
(DARPA), QUITE has several objectives, some
of which are relevant to this report. One
objective has been to evolve a component-based,
Object-Oriented architecture for a Quality of
Service (QoS) aware system with end-to-end

1 The authors are the chief software architects and project
leads for the Quorum Integration, Testbed and Exploitation
(QUITE) project, funded by Defense Advanced Research
Projects Agency (DARPA). The views expressed in this
paper do not represent those of DARPA, Teknowledge or its
contracting partners, The Open Group Research Institute and
S/TDC. (Addendum: M. Mortazavi has moved to Sun
Microsystems. His work on QUITE was conducted while he
was at Teknowledge Corporation.)

capabilities spanning timeliness, volume and
reliability. Today, real-time capabilities are one
of the dimensions in the QoS parameter space
[25] which also include volume and reliability of
service as well as data fidelity. An example of
timeliness QoS parameter is the delay in data
delivery, commonly known as latency. Another
example is the variation in the delay with respect
to time, or jitter.

A strategic goal of QUITE has been the
specification of abstract objects and their
interfaces. The second goal has been the
adoption of multiple (enterprise, information,
computational, engineering and technology)
views the elaboration of architecture definition
and integration. The evolving, architecture for
component software developed under the
Quorum program is a layered architecture as
shown in Figure 1. This high-level architecture
had already been implicitly proposed by DARPA
[19]. Most layer names suggest their function.
There are also two columns. The “Quorum
Services” column stands for those functional
components that provide transparency and drill
down through the horizontal layers. “Distributed
Objects & Object Services” collect a set of
components and services that provide for a
distributed objects computing paradigm based on
CORBA. Several technologies are being
integrated in the Distributed Objects (DO) layer
to provide QoS along timeliness, volume and
reliability dimensions. The real-time
specifications being generated by the OMG [23]
inform the DO integration but since the overall
integration needs to be based on actual existing
components, DO approaches which may be non-
standard but currently provide timeliness QoS
are included.

Due to the fact that QoS negotiation requires
awareness of QoS, available at layers that are

D
is

tr
ib

ut
ed

 O
bj

ec
ts

 &
O

bj
ec

t S
er

vi
ce

s

Q
uo

ru
m

 S
er

vi
ce

s

Adaptive, QoS-
Aware Applications

Middleware &
Translucent APIs

Operating Systems

Network

Figure 1. Integration Architecture Service and
Functional Layers

more than one removed from any particular
level, it becomes necessary to speak of the
concept of drill-down when discussing such
systems. Drill-down exposes those services of
layers that are more than one removed from any
given layer and are needed by the requesting
layer for QoS negotiation.

Yet another goal of QUITE is the
production of reference implementations for the
evolving architecture. The software engineering
process employed is based on incremental and
iterative rapid prototyping, and we have used
UML as a language for use case, class model,
API, object interaction and call protocol
specification. While there are alternative
architecture description languages, UML remains
the de facto standard of most software engineers
and as system integrators, we are interested in
providing expressive enough languages for
architecture description which facilitate
architectural understanding by software
engineers who are engaged in implementation of
the integrated system.

Quorum is a very large research
program, with software components being
developed at many widespread research
institutions concurrently. We sought to provide
an architecture definition that would unify this
community around a vision of the system to be
implemented as a result of the integration of their
software. More rigorous software description
languages such as Z may provide a greater level
of conciseness in software specification [18] and
architecture. We selected UML for QUITE
because it provided the right balance to make it
useful to people with a range of backgrounds in
formal languages, including managers and
software developers. We have found UML to be
highly useful in this respect. It is the
specification language most likely to be
understood by any random member of the
software engineering community. UML is also in
widespread enough use to justify a need for
acquiring the literacy where it is lacking. UML
was also considered rich enough to capture the
broad as well as the specific constraints imposed
by requirements. It provided the QUITE
architects not only with a means to reflect the
requirements onto the growing software
specification but also with a means to conduct
design activities in a uniformly understood
language. Finally, the Object Management
Group (OMG), a respected and industry-backed
standards body, has selected UML as its object
design language.

Our rapid prototyping approach when
applied to a multi-site, multi-component, cutting-
edge technology such as Quorum includes a
WWW-augmented development environment
and software configuration management, tele-
video conference which bring great savings in
coordination of effort, centralized requirements
commissioning, continuous monitoring, testing
and dynamic validation of components.

This report covers the activities carried
out for the first phase of this three-year project
and summarizes future plans. The following
sections describe our architecture definition
process, research component solicitation process,
component evaluation process, our rapid
prototyping approach and the current
components being integrated into the first
prototype of our reference implementation (with
a brief justification for the selection of these
components) and our future plans.

2. The Component Integration Process

In proposing this high-level integration
architecture, our multi-site, multi-organization
integration team of software professionals sought
to maximize our ability to identify research
components, to evaluate their growing levels of
maturity and to apportion them to the right layer
or service within an easily comprehensible high-
level, layered architecture. Very early on, we
identified eight major categories of functional
capabilities need to be present in order to meet
our requirements: real-time OS extensions,
resource management, adaptive applications,
real-time distributed objects and object model
technologies, group communications and fault
tolerance, dynamic validation and a test harness.

2.1 Architecture Definition

The architecture definition has been carried out
in continuously emerging and evolving detail, in
keeping with requirements set by our target
customers as specified by DARPA, and in
conformance with our growing understanding of
available research and COTS technologies.
Specifically, we used the Unified Modeling
Language (UML) [1, 7, and 8] to describe
software packages, class composition of
packages, object interfaces, use cases, interaction
and deployment diagrams. It should be noted that
while there has been much work to extend UML
in order to accommodate real-time design and
development, no standard methodology exists for

DependabilityAgent

setMinimumReplicaCount(group : CommunicationGroup) : void
checkMinimum ReplicaCount(group : CommunicationGroup) : int
addReplicas (group : CommunicationGroup, numberOfReplicasToAdd : int) : void
loadBalanceReplicas (group : CommunicationGroup) : return

<<Interface>>

CannotAccessGroup

ResourceManagementException

cause() : String

(from M anagem en tAgent)
ResourceManagementAgent

id() : String
type() : String
repl icable() : boolean

(from M anagem entAgent)

<<Interface>>

ConnectionFailed
(from ManagementAgen t)

Figure 3. Examples of Preliminary Interfaces
to Support Dependability Management within

a QoS Management System

designing real-time OO systems. Therefore,
architects and designers have used their own
modes of extension (using UML’s inherent
extension possibilities) to design, model and
reason about real-time behaviors of systems. A
particular example is Douglass’s work as
presented in [6]. However, OMG’s Real-time

Analysis and Design working group is
developing requirements to be included in an
RFP (request for proposal) to be released for
real-time extensions to UML. Principle concerns
here are the inclusion of time semantics.

In our rapid prototyping approach, we
do not attempt to force the requirements
definition to completion and hurry to develop a
complete detailed design specification before
beginning to implement the prototype system. In
fact, the prototype is used to discover, iteratively,
the true and complete system requirements,
specification and design. We specify an
increment, implement an increment and repeat in
small such increments until we have both a
specification and a system that represents the
true set of complete requirements. This process
is well documented in a text on object-oriented
rapid prototyping [3].

We have found that the tools available
within UML provide ways to model all
necessary system characteristics. In fact, there is
a growing danger that UML, once a relatively
simple notational convention with a very few
model types, is experiencing growth that will
tend to make design completion overly

cumbersome and brittle for modern systems.
Modern systems tend to have severe time and
budget constraints. This is so even for complex
domains such as Quorum. There seems to be a
tendency for sets of notational conventions used
in specification methodologies to become
increasingly obese (some would say robust) over
time, adding new notations and new models to
capture yet more of the characteristics of the
systems to be designed. This is understandably
natural and yet it may lead to the notational
convention eventually becoming too
cumbersome for general use without significant
tailoring. In our opinion, UML may already have
arrived at this point in its evolution.

We are required on QUITE, for
instance, to have a complete reference
implementation prototype the first year and a
complete, ready-for-use, end-to-end Quality of
Service system within three years. We cannot
afford to spend a year on design. We have,
therefore, selected a subset of available UML
modeling tools wherein we feel that 20% of the
tools will provide 80% of a complete design
specification and, further, that 80% will be
sufficient to implement a high quality system
within time and budget constraints.

As an example, Figure 2 provides a
partial view of one of the simple use cases
defined for Resource Management (RM) which
is among a large set of QoS services under the
umbrella of Quorum Services. Figure 3 provides
some object interfaces that we have found
representative of a large number of resource
managers developed within the Quorum research
program. In this particular case, we have
specified those interfaces within Resource
Management services implemented to provide
management of some pre-existing dependability
or fault-tolerance service based on object
replicas. In other words, these are Resource

Application Level
User

Specify Num ber of Fault-tolerence
Replicas

Create A Local Service

Manage Dependability

<<uses>>

Manage Availability

<<uses>>

Manage Cpu Bandwidth

Manage Network Bandwidth

Reserve Cpu Bandwidth

<<uses>>

Reserve Network Bandwidth

<<uses>>

Figure 2. A Partial View of A Use Case For
Resource Management Through Reservation

Management interfaces for arranging the
appropriate provision of replicas for fault-
tolerance. No research-based resource
management system within Quorum that we
presently know of provides this kind of
dependability management in a QoS-aware
systems. AQuA, which is a replica management
system developed at the University of Illinois,
Urbana-Champaigne, contains a starting point in
the direction of implementing such interfaces [4].
(Currently, standard fault tolerance services are
being specified by the OMG [22].) Part of the
problem lies in the fact that some research
groups have to go beyond their areas of expertise
to provide for needed functionality and interfaces
which other research groups are more capable
and expert in designing and implementing.

Using other UML diagrams such as
interaction diagrams, we can express negotiation
among entities within the functional architecture
layers. Examples of these figures are not shown
here but our whole architecture can be viewed at
our web site [21]. We are using Rational Rose as
our CASE tool but we have built additional tools
to provide HTML versions of the UML models.

There are inevitable discrepancies, such
as the one briefly described above, between
existing research software at various levels of
maturity and the evolving Quorum architecture.
Nevertheless, we believe our interaction with the
research groups developing the Quorum research
software will eventually close all major gaps. We
post regular monthly updates to our architecture
specification so that we may collect appropriate
feedback from various stakeholders and target
customers affected by our system integration
work.

2.2 Component-based Architecture and
Rapid Prototyping

Our integration approach is based on long
experience gained by the QUITE project
management in rapid prototyping techniques [3].
It is also informed by previous, positive and
negative experience gained in the design and
development of integrated systems. For example,
our team’s experience indicated that integration
projects such as the Distributed Computing
Environment (DCE [11]) which were driven by
existing components, rather than by a desire for
architectural purity, were generally very
successful. On the other hand, other projects,
e.g., “Distributed Management Environment” or

DME2, which was primarily driven by an
emphasis on architectural purity in the absence
of existing components in critical functional
domains, had much less success. The QUITE
team opted for the first approach, i.e., the
component-based architecture approach, which
places emphasis on existing components for
rapid prototyping of a system based on an
architectural specification that provides guidance
and rigorous specification for component
integration.

2.3 Component Solicitation and
Evaluation Process

The QUITE project seeks to meet the needs of
specified technology transfer targets (external
non-DARPA customers). This goal is met by
working with the Quorum research community
to incorporate existing technology into a single
system that will meet those needs. There may be
more than one reference implementation for that
system. DARPA’s Quorum research program has
already developed a number of approaches to
various aspects of the QoS problem. A key goal
of the QUITE project, which has also been the
subject of the present report, is to develop an
architectural framework, along the lines
summarized above, that can adopt the most
relevant existing Quorum research components.
We have specified, through formal architectural
description methods based on UML, a level of
detail that will enable us to incorporate selected
components into an integrated system based on
our architecture definition.

As a way to solicit components from the
researchers, we used a Component Solicitation
Form (CSF), whose content was modeled after
those recommended in the request for technology
(RFT) letters used in the DCE integration effort
by The Open Group, in order to identify and
characterize the technologies that may be
integrated into the reference implementations in
as seamless a manner as possible. The CSF is not
a formal specification document. While some
level of uniformity was expected in the set of
questions answered by a CSF, the format and
level of specificity of a CSF submission was
expected to vary depending on the technology
under consideration and the technical goals of
the Quorum reference implementation.

2 Our presentation of the case for DME are based on private
communications with OSF architects such as David Black.
DME never got off the ground.

More than 40 components were
submitted from 28 research organizations. The
submissions were in the areas of adaptive
applications, global and local resource
management, middleware, distributed objects,
dependability components and object paradigms,
object models and real-time object execution
engines, network QoS components for both
implicit and explicit active networks, as well as
backwards-compatible packet flow and video
frame compression protocols. The evaluation
criteria for measuring the degree of fitness for
integration of submitted components was derived
using a fair, open, and consensus-based process,
that is intended to provide sound procedures of
selecting components for integration into a
working whole.

The primary purpose of the CSF was to
solicit contributions from the Quorum and other
QoS related research communities of
technologies to be used in the Quorum integrated
reference implementation. The CSF helps to
ensure that all reasonable alternatives are
evaluated, not just those known to the integrator
team. The CSF was also useful for sampling the
existing state of a technology, according to the
claims of the technology developers, in order for
the integrator team to make appropriate decisions
about independent construction, purchase or
postponement of particular component
functionality.

It is expected that a new CSF will be
issued for each reference implementation in
order to acquire those components, which add
the capabilities required by each one of the
yearly reference implementations over the next
three years. Future implementations will be built
on top of existing systems to the extent possible.
Because of this, compatibility with the current
baseline reference implementation will be an
expected evaluation criterion in future
solicitations.

The CSF is generated by the evaluation
team formed by the Integrator. The evaluation
may include experts from the Quorum research
community from time to time to provide both
critical knowledge and a balanced evaluation.
The evaluation team will act as the focal point
for screening of responses. The CSF is posted on
the QUITE Web Site where researchers will find
an easy web-based automated process for
sending the integration team their CSF along
with requested contact information. It may also
be mailed to vendors and universities who are
known to be working in the target technology
area.

In the first component solicitation cycle
which was completed in October of 1998, the
evaluation team evaluated the submitted
responses based on collaboratively established
criteria (with input from the Quorum research
community). We prioritized the responses
according to weights based on the evaluation
criteria. We expect these criteria to evolve as we
approach the final integrated whole. We feel that
this provides a ranking that favors components
having the best chance of providing the required
integrated capabilities in the project time frame.

Members of the evaluation team then
visited the suppliers of highly ranked
submissions to make a final determination. We
could afford this selection process because many
more components were selected than we have
time or resources to integrate in the first year of
the project. Selected components will be
acquired and incorporated into the Reference
Implementations. The final component selections
will be announced to the Quorum community.

It is important to note that selection and
evaluation is not intended as a judgment of the
merits of any single research project. Instead, it
is intended to meet the specific needs of the
current Quorum integration project, QUITE.
There will be additional evaluation and selection
phases to meet evolving Quorum needs as
determined by the technology transfer targets
and the Quorum architecture.

2.4 Component Selection and Feature
Injection for Integration and Testing

Component Selection. As described earlier, our
process for component selection consisted of
three phases: (i) self-selection, (ii) evaluation
based on claims, and (iii) on-site evaluation of
component development teams. In the first
phase, we requested the researchers to fill out
and submit to us a Component Solicitation Form
(CSF) using a web-based process. Those who did
not submit a CSF could be considered to have
self selected out of our near term integration.

The CSF phase gave us 40 components
to select from. We then formed a six-person
component selection team and came up with a
set of component evaluation criteria that could be
derived from a CSF submission and used to
score each of the 40 submissions. Generally
speaking, we initially evaluated components on
the basis of four attributes:

1. Near term availability,

2. Ease of integration within the planned
technology base,

3. Extent component satisfies specified domain
requirements,

4. Extent to which component is implemented
for general use.

These attributes were evaluated by ascertaining
from the CSF whether 1) the source code exists
and will be delivered in a form that can be
compiled and executed in our QUITE testbed, 2)
the component was developed in an object-
oriented, standards-compliant manner, 3) the
component fits nicely into one of our architecture
packages and therefore fulfills specified
requirements, 4) the component was written
using good software engineering practices so that
it will be robust, scalable, stable, and
maintainable.

We developed a scoring matrix that
contained these criteria and the weights the
selection team assigned to them. The team then
put scores for each component into the matrix
and the weighted sums of the scores were used to
select a smaller list for site visits. During site
visits, we were shown demonstrations, had an
opportunity to ask detailed questions about each
component and learned about the kind of
environment needed to host each component. We
were then able to determine whether the
developers will be available to provide support
for the integration effort

We learned, from an examination of
acquired components, that a fairly complete
preliminary reference implementation could be
assembled for our preliminary demonstration
using a minimum of one component in each of
our six primary architecture layers, shown in
Figure 1. The list of some of the components
selected for integration in our first reference
implementation during the first phase include
TMO [10, 15], AquA [4], EPIQ [5], CEDAR
[16], MSHN [24], DeSiDeRaTa [27], TAO [14],
HPF [26], Ensemble [9], NetSimQ [17],
QUASAR components [25], and Darwin [2]. A
detailed description of each of these research
projects, including other selected components,
can be found at the DARPA-sponsored Quorum
web site [19].

 In the first implementation, which will
include some of these components, we are
seeking to test interoperability and to incorporate
several QoS features including soft real-time.
The components were selected according to the
criteria discussed earlier in this paper. In our
initial demo application, we are focusing on

demonstration of component capabilities in the
areas of group communication and replica
management, resource management, and
distributed objects, maximizing the QoS
capabilities that can be demonstrated in an
integrated system that gains QoS characteristics
in an incremental fashion, optimizing the inter-
play of an architectural vision and available
software component building blocks.

In general, guaranteed QoS solutions
for a distributed, dynamically evolving system
with process migration and replication should be
required to provide metrics on variations given
feasibility conditions imposed by an analysis of
system requirements and available resources. As
system integrators for DARPA we have been
asked not only to rely on our requirements
commissioners and their system engineers to
have performed some feasibility studies but also
to assist them. However, our major concern is to
provide an engineering approach such that once
requirements are met with the best system
specifications, we can guarantee minimum
violation of these requirements within a
dynamical system that may be subject to fault
and recovery.

Feature Injection. In integrating
components, it is always easiest to select one
computing model and build a whole system
according to that computing model. However, in
an integration effort, reference implementation
of a system architecture must demonstrate the
possibility of interoperability among computing
paradigms used by components which are best
suited to provide a particular service within a
layer or a particular QoS feature across layers.
QoS features have been injected into layers
within our distributed demonstration and test
application. Each QoS feature, real-time ones, as
well as non-time dependent ones such as fault-
tolerance, are examined within that particular
architectural layer where the feature is
implemented, while at the same time the
interoperability of components are put to a hard
acceptance test. Figures 4 and 5 show the layers
within our distributed demo application and
motivate the idea of feature injection into these
layers for test and integration purposes.

2.5 Demonstration Application as Focus
for Rapid Prototyping

One of the criteria of success in most integration
projects is the demonstration of capabilities
obtained. In our rapid prototyping approach [3],
we have selected possible demonstration

applications and use cases to drive our efforts in
architecture definition.

The group of reference applications
need to include multiple mechanisms involved in
application models (e.g. path/DAG-based
distributed computing, streaming, etc.),
application/object distribution transparencies
(e.g. in access, location, failure, migration,
relocation, replication, persistence and
transaction) and communication technologies
(e.g. asynchronous or synchronous message
passing, remote procedure calls, object
invocation, etc.). While building towards such
broad objectives, constructing gradually
evolving demonstration application early-on has
several advantages and benefits:

1. improving familiarity with research as well
as COTS technologies and components,

2. iterative definition of the layered
architecture in the light of that familiarity,
and

3. incremental development of real-time and
QoS features within various layers of the
application.

As one concrete example, the application layers
in our Command and Control (C2) reference
application model, used to implement our initial
system demonstration scenario, consist of:

1. A layer for a simulated world with the
greatest possible stringency on real-time
requirements. Currently, this is implemented
using TMO [10, 15] components from a
TMO test application called CAMIN, with
some simple modifications that enable them
to run on a single Pentium II, 400 MHz
machine.

2. A layer of smart sensors and sensing
engines that detect messages from the

simulated world and parcel them into events
to be dispatched to the next layer up.
Currently, TAO is used as the ORB in this
event-based communication. TAO’s QoS-
aware event channel is being employed to
provide differentiated treatment of high-
value as opposed to subsidiary, low-value
events. TMO object can be used here to
provide timed dispatch of sensing data. In a
C2 application timeliness requirements
usually become “softer” above this layer,
meaning that guarantees are required and
given on less strict range of variations.

3. A layer of representation objects
representing the objects in the simulated
world. The representation objects, which
also interpreted raw events from the
senor/event engines, are instantiated using
object factories (the CORBA Lifecycle
Service, to be more precise). They are
timed-out if no new messages are sent for
their updates. Since regular house-keeping is
necessary for these objects much can be
gained from the incorporation of the TMO
model for object execution. Object factories

View/Control

Representation

Sensors/Actuators

Simulated World

F2

F3,F4

F5,F6

F1

Figure 4. Feature Injection into Distributed,
Application Layers

View/Control: Java GUI provides views of
representation objects and compares

tracking of object representations with
tracks of synthetic world objects as

executed in the TMO execution engine.

Representation: Object factories create
objects, monitors check time-outs, resource

managers (DeSiDeRaTa) manage load
balancing, replica management systems

(AQuA) provide fault tolerance.

Sensors: Smart engines consume messages
from the layer below and generate events.

Simulated World: TMO execution engine
provides hard real-time capabilities on NT

for simulating a synthetic world.

Figure 5. An Example of Reference Applications

TAO Event Channels

TAO Event Channels

Socket-based Network I/O

are distributed and take account of objects
they have created. A data structure is used to
persist the state of objects, whether they are
created, ready to be destroyed, or tagged to
continue receiving events. Currently, we are
using our own simple implementation of
object factories. In the future, we will use a
full-scale, standard CORBA Life Cycle
service.

4. A layer of view/control objects that are used
in the GUI application to view the
representation objects. Events are published
from the representation objects, and the
view objects subscribe to these events. As of
this writing, we have not implemented the
control and actuation objects. These will
wait for an implementation of harder real-
time requirements that are due to come in
the second and third year of QUITE.

The demo application will consist not only of the
C2 viewer, but will also contain a distribuetd
system viewing and QoS control capabilities.
Currently, we have specified means for viewing
the status of a network of processor nodes.
Finally, at this stage, each layer of the demo
application will have a different set of QoS and
real-time capabilities as discussed in the feature
injection subsection above.

In summary, the synthetic/simulated
world layer will have relatively hard real-time
capabilities gained by the use of TMO. The
layer-to-layer communication will have some
level of QoS due to the differentiated treatment
of events gained by use of TAO’s CORBA event
service. The representation layer will have fault-
tolerant capabilities where the removal of one of
the representation replicas will leave others
behind to take over in a consistent manner.
Except for the last characteristic (fault-tolerance
in the representation layer), we have been
successful in integrating the other features, i.e.,
the hard-real-time feature of TMO and the QoS-
aware event channel from TAO. However, we
have not yet added fault-tolerance to the
representation layer. An important concern in
any integration effort involving QoS is the
demonstration of the interoperability of
component software that can provide various
types of QoS.

3. Issues

Although we have focused on matters of process,
we will include some technical issues in this
section. We have had to face some major

problems in this early phase of our integration
effort.

The first problem arises from the
diversity of QoS specification languages and a
lack of agreement on a universal specification
language that will meet all researchers and
technologists needs. Our experience with
existing languages show that a language such as
XML can be ideal for specification of real-time
requirements for a hierarchical, distributed (i.e.
multi-node, multi-system), heterogeneous (in
hardware, operating systems and network gear)
application subdivided into computationally
distinct tasks. Resource management at all levels
and in all components need to use a component-
independent language for QoS specification, one
that allows for easy creation of sub-dialects
without the need for large variations in
semantics, a need for meta-translators, new
reference volumes and users guides and varying
compiler technologies. XML provides such a
solution.

The second problem, for a dynamically
evolving system, is proper deployment of
monitoring needed in order to reapportion
resources to migrating objects and processes.
However, the proper tradeoffs between
monitoring and using resources can prove hard
to achieve. High priority processes can defeat the
purposes of high resolution, low priority
monitoring. High priority, low resolution
monitoring can defeat the purpose of optimal
resource allocation.

Actual research and technology
components come on multiple platforms. While
we have achieved a great deal of integration
using Windows NT-based systems, much
relevant components have been developed on
Linux. We are dealing with the problems by
deploying a heterogeneous environment. The
ultimate goal for the project has become the
provision of a heterogeneous platform for
distributed, QoS computing.

Our interaction with the research and
technology community and our own experience
in building distributed computing environments
have shown that applications with distinct
computational tasks can be organized as directed
acyclic graphs. The nodes represent the tasks and
the arches the data paths. The abstraction can be
a powerful model that covers many application
domains, including multi-media and C2.
Working application models/paradigms are
critical for productivity in software engineering.
Limiting the application models to DAG-based
applications can provide a lowest possible

denominator for component integration and
standardization.

Finally, we have found out that
requirements are often hard to gather and many
are kept secret for national security reasons. In
such circumstances, system complexity should
be kept at a minimum, application models should
be standardized, component integration
modularized and integration approach made
versatile and robust to respond to changing
requirements.

4. Guarantees in a Dynamical System

We end this report with a short discussion of
how one might profitably define guarantees
within a highly dynamical system suffering
continuous faults, recovery, process/object
migration, network failures and congestion,
plugable, mobile devices, intermittent,
unpredictable requests for services. Guarantees
for “best possible services” can always be
achieved (and defined) by an over-provisioning
of computational and communication resources.

In Dynamical systems composed of
DAG-based applications running on distributed
resources under duress of the sort described in
the previous paragraphs, guarantees are required
on variations about an expected mean, on
variations in response time to recover from
failures, etc. We will consider the first of these as
an example.

The task of the system designer is to
minimize sources of such variation by judicious
deployment of engineering solutions.

For the purposes of illustration consider
a hypothetical system where all functions are
continuous in time to the extent needed. Let us
focus on the overall delay on a chain, ∆o, in a
DAG-based system ∆o = Σ ∆i, where ∆i is the
delay caused in the performance of the i-th task
and the communication delays caused as the data
is moved from the i-th task to the next task along
the chain. The overal delay ∆ o is equal to Σ ∆ i,
the sum of individual delays. In a dynamical
system where the members of the chain, the
composition of the chain itself and the physical
distribution of the chain can vary with time, the
individual delay can be modeled (in rudimentary
terms) as follows: ∆i = ∆i (D(c(t)),t), where D is
the physical distribution of the chain, and t is the
time. This time-dependent evolution of the delay
represents the dynamics in our simple dynamical
system. The variation in delay at the i-th stage
can be obtained by taking the time derivative of

the equation above to get ∂ t ∆i + ∂ D ∆i. ∂ c D. ∂ t c.
To reduce variation (about a mean) of the
overall, one must reduce the variation of each
task involved in the chain. But to achieve this,
one must select tasks such that as they are
performed by an object on a node, the
performance will not vary highly with time, that
the variation of physical distribution of objects
with changes within the chain (due to failure or
splitting to replica objects performing the same
task) should be kept low, so should the
dependence of the delay of a particular task on
the changes in the physical distribution of that
particular task, and finally faults and recoveries
should be minimized. Those are pretty simple
ideas. Their implementation has been puzzling
technologists, researchers and system-integrators
alike for some time, indicating that simple ideas
can sometimes be prohibitively difficult to
conceive and implement.

5. Conclusion

QUITE is a QoS and real-time system
integration project. In this project, we have been
able to identify a list of potential research
components for integration within a single
layered functional architecture as well as a
separate, layered application object architecture.
We have learned that while the research
components are not equally mature, they have
usually been very well designed for
interoperability. We have been able, in our
preliminary effort to integrate Quorum research
components, to build a multi-layer C2
application, where layer-to-layer
communications among all but 2 layers is
through a QoS-aware CORBA event channel.

We have shown that it is effective to
implement an integrated system that involves
heterogeneous research components by using a
software engineering practice that involves:

• a careful component solicitation process,
• a distributed layered demo application,
• a feature injection scheme and
• an architecture specification methodology.

Acknowledgement

We would like to acknowledge the collaboration
and assistance of Amir Bahmanyari, Jim
Davidson, Slava Galperin, David Lounsbury, Art
Robinson and Slava Vaynman in the

architecture, component solicitation and system
integration work discussed here. We would also
like to thank Alan Sandlin (SPAWAR) and Gary
Koob (DARPA) who have supported our work.

References

1. Alhir, S. S., UML in a Nutshell, O’Reilly &
Associates, 1998.

2. Chandra, P., Fisher, A., Kosak, C., Ng, T.,
Steenkiste, P., Takahashi, E., and Zhang, H.
“Darwin: Customizable Resource Management
for Value-Added Network Services” Sixth IEEE
International Conference on Network Protocols
(ICNP'98), Austin, October 1998

3. Connell J. and Shafer L., Object-Oriented Rapid
Prototyping, Yourdon Press Computing Series,
1994.

4. M. Cukier, J. Ren, C. Sabnis, D. Henke, J.
Pistole, W. H. Sanders, D. E. Bakken, M. E.
Berman, D. A. Karr, and R. E. Schantz, “AQuA:
An Adaptive Architecture That Provides
Dependable Distributed Objects” Proceedings of
the 17th IEEE Symposium on Reliable
Distributed Systems (SRDS’98), West Lafayette,
Indiana, USA, October 20-23, 1998.

5. Z. Deng, J. W.-S. Liu, L. Zhang, M. Seri, and A.
Frei. An open environment for real-time
applications. (To appear in Real-Time Systems
Journal, 1998.)

6. Douglass, B. P. Real-Time UML: Developing
Efficient Objects for Embedded Systems,
Addison-Wesley, 1998.

7. Eriksson, H. and Penker, M., UML Toolkit, John
Wiley & Sons, 1997.

8. Harmon, P. and Watson, M., Understanding
UML, Morgan Kaufman Publishers, 1997.

9. Hayden, M., The Ensemble System, Cornell
University Technical Report, TR98-1662,
January 1998.

10. Kim, K.H. (Kane), "Object Structures for Real-
Time Systems and Simulators" IEEE Computer,
August 1997, pp.62-70.

11. Open Software Foundation, Introduction to OSF
DCE : revision 1.0, Prentice Hall, 1992.

12. Real-time Analysis and Design Working Group,
Object Management Group Conference,
November 9-13, Burlingame, California, USA.

13. Sabnism, B. S., Proteus: A Software
Infrastructure Providing Dependability for
CORBA Applications, (98SAB01.pdf, 220 KB)
Master's Thesis, University of Illinois, 1998.

14. Schmidt, D., Levine, D., and Mungee, S., “The
Design of the TAO Real-Time Object Request
Broker” Computer Communications, Special
Issue on Building Quality of Service into
Distributed Systems, Elsevier Science, Volume
21, No. 4, April, 1998.

15. E. Shokri, P. Crane, K. Kim, “An Implementation
Model for Time-Triggered Message-Triggered
Object Support Mechanisms in CORBA-

Compliant COTS Platform” Proceedings for the
First International Symposium on Object-
Oriented Real-Time Distributed Computing
(ISORC’98), Kyoto, Japan, April, 1998.

16. Sivakumar, S., Sinha, P., and Bharghavan, V.
"Core Extraction Distributed Ad Hoc Routing
(CEDAR) Specification", Internet draft. (draft-
ietf-manet-cedar-spec-00.txt)

17. Tyan, H., Wang, B., Ye, Y. and Hou, C.,
“NetSimQ: a Java-integrated network simulation
tool for QoS control in point-to-point high speed
networks,” presented in the Work-in-Progress
session of IEEE Real-Time Technology and
Applications Symposium, Denver, CO, June
1998.

18. Woodcock, J. and Davies, J., Using Z:
Specification, Refinement, and Proof, Prentice
Hall International Series in Computer Science,
1996.

19. http://www.darpa.mil/ito/research/quorum/index.
htm

20. http://www.crhc.uiuc.edu/PERFORM/AQuA.htm
l

21. http://quite.teknowledge.com/architecture/topvie
w.html

22. http://www.omg.org/techprocess/meetings/sched
ule/Fault_Tolerance_RFP.htm

23. http://www.omg.org/homepages/realtime/
24. http://www.mshn.org/
25. http://www.cse.ogi.edu/DISC/projects/quasar/
26. http://www.timely.crhc.uiuc.edu/HPF/
27. http://desidrta.uta.edu/~project/
28. http://www.cs.uoregon.edu/research/qos/

