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Abstract 

Modern concurrent and distributed applications are 
becoming increasingly complex; so, in order to provide 
fault tolerance, special structuring mechanisms are 
required to help reduce this complexity. Unfortunately, 
such structuring techniques are mostly introduced as 
design and implementation features, which complicates 
their employment. The approach we are proposing in this 
paper relies on introducing the appropriate software 
structuring together with associated fault tolerance 
measures at the earlier phases of software development 
and on supporting it with special software architectures 
and design patterns. 

0. Introduction 

Modern computer system development is complicated 
by two main factors: their complexity and the need to 
provide their dependability. Complex systems are prone 
to errors of many kinds, and the most reasonable way of 
dealing with them is to accept that any complex system 
has faults and to employ appropriate features for 
tolerating them during run time. In this paper, we focus 
on fault tolerance as one of the chief means for guar-
anteeing system dependability. The most beneficial way 
of achieving fault tolerance in complex systems is to use 
system structuring which has fault tolerance measures 
associated with it. In this case, structuring units serve as 
natural areas of error containment and error recovery. To 
this end, a number of techniques have been proposed to 
help system developers achieve fault tolerance [11]. 
These techniques can be classified into masking, forward 
and backward error recovery features. Our focus is on 
exception handling, which has proved to be the most 
general way of providing both forward and backward 
error recovery.  

Many modern complex systems are concurrent and 
distributed, which requires special structuring techniques 
and special ways of associating exception handling with 
structuring units. Atomicity of such units is vital for 
decreasing system complexity when the system exhibits 
both normal and, in particular, abnormal behavior. 
Recently a concept of Coordinated Atomic (CA) actions 

[24] has been developed to be used for the structured 
design of such systems and for providing fault tolerance 
using various techniques (including, exception handling, 
rollback and design diversity). The CA action concept 
was introduced as a unified general approach to 
structuring complex concurrent activities and supporting 
error recovery between multiple interacting objects in a 
distributed object-oriented system. This paradigm 
provides a conceptual framework for dealing with 
cooperative and competitive concurrency and for 
achieving fault tolerance by extending and integrating two 
complementary concepts - atomic actions [6] and ACID 
(atomicity, consistency, isolation and durability) 
transactions [10]. CA actions have characteristics of both 
of them: atomic actions are used to control cooperative 
concurrency and to implement coordinated error recovery 
whilst transactions are used to maintain consistency of 
shared resources in the presence of failures and 
competitive concurrency. This allows tolerating faults of 
various types, as well multiple concurrent faults occurring 
in the different components involved in the CA action 
execution (using an extended resolution mechanism [22]). 

Unfortunately there are several factors that complicate 
the use of modern structuring and fault tolerance 
techniques. Firstly, programming languages do not 
include features that support them directly. Secondly, 
these techniques are mainly developed for employment at 
the late design and implementation phases. Thirdly, it is 
not often easy to apply them correctly, as the developers 
have to take into account many details. The approach we 
are proposing in this paper relies on introducing the right 
software structuring with the associated fault tolerance 
measures starting from the earlier phases of the software 
development (that is, from architectural design, through 
detailed design to coding) and on supporting this by 
special architectural styles and design patterns. 

The remainder of the paper is organized as follows. 
Section 1 presents a generic software architecture for 
developing dependable object-oriented systems, discusses 
a set of design patterns which refine the architectural 
elements of the proposed software architecture and shows 
the feasibility of our approach by means of a realistic case 
study. Section 2 proposes approaches to applying 
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architectural styles and design patterns to allow system 
designers to address the typical problems in developing 
systems of systems. Finally, Section 3 summarizes the 
contributions of the paper. 

1. Concurrent and Distributed Systems 

1.1. Coordinated Atomic Actions 

A Coordinated Atomic (CA) action is designed as a 
stylised multi-entry unit with action roles which are 
activated by action participants cooperating within the CA 
action. Logically, the action starts when all action roles 
have been activated and finishes when all of them reach 
the action end. The action can be completed either when 
no error has been detected, or after successful recovery, or 
when a failure exception has been propagated to the 
containing action. If an error is detected all action roles 
are involved in recovery. When several exceptions are 
concurrently raised in an action they are resolved using 
either resolution trees [6] or graphs [22], and a resolved 
exception is handled by all action participants. External 
(transactional) objects can be used concurrently by several 
CA actions in such a way that information cannot be 
smuggled among them and that any sequence of 
operations on these objects bracketed by the CA action 
start and completion has the ACID properties with respect 
to other sequences. A CA action execution looks like an 
atomic transaction to the outside world. The state of the 
CA action is represented by a set of local and external 
objects; the CA action (either the action support or the 
application code) deals with these objects to guarantee 
their state restoration (which is vital primarily for 
backward error recovery). Participants can only cooperate 
(interact and coordinate their executions) through local 
objects. 

The CA action concept allows designers to deal with 
system complexity by encapsulating several state 
transitions and an activity of multiple components into a 
single atomic unit with a clearly defined interface. 
Systems can be designed recursively using action nesting. 
Fault tolerance features are associated with such units. 
When an action is not able to tolerate an error a failure 
exception is propagated to the containing action passing 
the responsibility for recovery to the higher system level 
and leaving the objects involved in the action execution in 
well-defined states, thus facilitating the recovery at the 
higher level. Significant experience has been gained in 
designing and implementing several applications using 
CA actions; in particular, a series of Production Cell case 
studies [25], including one in which faults of various 
production devices have to be tolerated [23] and one with 
real-time constraints [16]. In other experiments a 
distributed Internet Gamma computation [17] and an 
experimental Internet auction system [19] have been 
designed. 

A number CA action schemes have been implemented 
based on Java and Ada, and used in the course of this 
research including ones with synchronous and 
asynchronous entry, intended for distributed and single-
computer settings, relying on decentralised and 
centralised control, and with concurrency control at 
various different levels of sophistication (e.g. relying on 
CORBA [3] transaction service or a simple object 
locking). In some of these schemes nested actions were 
immediately aborted and participants interrupted when an 
exception is raised, in others the support waited until 
those are completed. Actions and participants were 
designed as classes, objects or tasks depending on the 
application requirements and the paradigm used. 

1.2. Architectural Description of Systems 

CA actions (as well as numerous other fault tolerance 
techniques) are mostly introduced as design and 
implementation features., We believe, however, that it is 
important to have special architectural solutions which 
can be applied at the earlier phases of system 
development. Software architecture provides an abstract 
description of a system by focusing on its structure and 
abstracting from implementation details. Usually software 
architecture is decided on during the first design phase, 
when the basic approach to solving a specific problem is 
selected. The system is constrained to conform to this 
software architecture as more details are added. 

In general, the description of software architecture 
consists of the following building blocks [18]: 
components that abstractly characterise units of 
computation and have interfacing points (component 
ports) with other architectural elements; connectors that 
abstractly characterise composition patterns among 
components and have interfacing points (connector roles) 
with other architectural elements (thus, a connector 
prescribes the interaction protocol that takes place among 
the components that are composed through it); and 
configuration that defines the structure of the system by 
composing a collection of component instances through 
bindings via connector instances. A software architecture 
is then defined as a configuration instantiating component 
and connector types. There is a lot of evidence to 
demonstrate that it is beneficial to build software 
architecture upon previous knowledge about related 
systems. This issue is tackled with the help of the notion 
of architectural style, which provides means for 
exploiting commonalities between systems. An 
architectural style defines a set of properties shared by the 
configurations that are members of the style. 

 
1.2.1. The Idealised Fault-Tolerant Component Style. 
This style is a specialisation of the Layer architectural 
style [18] defining a layered system structure in which 
each layer provides services to the layer above and uses 
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the layer below as a client. This style relies on a well-
know concept of an idealised fault-tolerant component 
[11]. If such component cannot satisfy a request for a 
service, it returns an exception. At each system level this 
component either deals with exceptional responses from 
the components below or propagates an exception to the 
higher system level. There are only two forms of 
communication between components in this style: service 
requests and service responses. The components of this 
style are idealised fault-tolerant components that have two 
different ports (request or provide). The connector 
described by this style defines two different kinds of 
components. Client components request services of the 
supplier components (via a request port). The client 
component is responsible for providing means of handling 
normal and abnormal responses from the supplier 
components. Supplier components receive requests for 
services and produce responses (via a provide port). A 
component can serve as a supplier and a client at same 
time. A component can be a supplier to several clients if 
overall component consistency is guaranteed. 

In an ideal situation, the client and the supplier 
components interact producing only normal responses. 
However, considering that it is likely that each system has 
to deal with errors of different types, exceptions may be 
produced as responses to the client requests that cannot be 
satisfied. An idealised fault-tolerant component is divided 
in two parts, the normal part that implements its normal 
activities and the abnormal part that implements the 
measures for tolerating faults that cause exceptional 
responses (Figure 1). 

The abnormal responses (i.e. exceptions) that can be 
returned by a component are: the interface exceptions that 
are signalled in response to a request which does not 
conform to the component specified interface. For 
instance, a parameter value is not in a specified range. 
The failure exceptions are signalled if the component 
determines that for some reasons it cannot provides its 

specified service. Besides, there are internal exceptions 
that are raised by the component in order to invoke its 
own internal exception handlers. If these exceptions are 
handled successfully (that is, the component is able to 
mask the exception), the component returns to providing 
normal services. However, if the component does not 
succeed in dealing with such exceptions, it should signal a 
failure exception to a higher level of the system. 
 
1.2.2. The Role-based Collaboration Architectural 
Style. In architectural descriptions which use 
collaboration-based designs as a basis, software systems 
are represented as a composition of collaborations. 
Collaboration consists of a group of components together 
with a group of activities that determine how components 
interact. The component role1 is a part of a component 
which prescribes the activity of the component within a 
particular collaboration [20]. In the Role-based 
Collaboration architectural style, a component role 
represent the component port (i.e., the explicit interface of 
this component for a particular collaboration) and 
collaborations, the connectors among these components. 
The notion of collaboration is used here to represent 
collaborative work involving several interacting 
components. However, in order to develop complex 
dependable systems, it is also necessary to capture the 
notion of coordination supporting coordinated error 
recovery between interacting components. Thus, at least 
two different kinds of collaborations are defined by this 
style: 
Simple collaboration incorporates a group of 
components cooperating to perform a task. Connectors of 
this kind are not concerned with the provision of 
dependability. 

                                                      
1 Unfortunately, the term role is used in several areas. We always say 
component role when discussing the collaboration-based design and 
connector role when we address software architecture issues. 
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Figure 1 – The Idealised Fault-Tolerant Component Architectural Style 
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Dependable collaboration describes a collaboration that 
deals with both cooperative and competitive concurrency 
and with faults. It should implement coordinated error 
recovery and maintain the consistency of external 
resources in the presence of failures and concurrency 
among several collaborative activities competing for these 
resources. 
 
1.2.3. A Dependable Software Architecture. In this 
section, we present a software architecture for developing 
dependable software that is based mainly on a 
combination of the two architectural styles: the Idealised 
Fault-Tolerant Component and the Role-based 
Collaboration styles. We assume a layered structure 
where each layer provides services to the layer above and 
is a client of the layer below. In addition, the idealised 
fault-tolerant components at same layer can perform 
collaborative work, each of them playing a specific 
component role in a collaboration. It is very important to 
guarantee the overall component consistency as each 
component can serve several clients and be involved in 
several cooperations at same time. 

There should be some design rules of how to apply 
these styles in a consistent way because even though they 
provide two orthogonal views on system architecture, 
they cannot be applied orthogonally. This is a possible 
sequence of design steps that should be taken by system 
designers: the first step is to identify the idealised fault 
tolerant components and their abnormal responses; the 
second step it to identify the collaborations (derived from 
use-case scenarios in the requirement analysis) and 
component roles; and the last step is to refine the 
abnormal behaviour of each component in order to 
include the handlers for the exceptions which have to be 
handled cooperatively within a collaboration. It is worth 
mentioning that the exceptions which have to be handled 
cooperatively within a collaboration are interface and 
failure exceptions raised by individual idealised fault-
tolerant components. 

1.3. Design Patterns for Exception Handling and 
Dependable Collaboration 

As the size and complexity of systems increase, 
software designers are learned to appreciate the 
importance of exploiting and reusing knowledge in the 
definition of their overall system architecture. Design 
patterns [8] have proved to be very useful in achieving 
this kind of reuse. They have a particular structure and 
format, and describe a problem that occurs over and over 
again in a specific domain and a solution to the problem. 
Design patterns are applied at the later design phases. 
Usually the choice of design patterns is influenced by the 
architectural styles previously chosen. In this section, we 
present a set of design patterns that refine the general 
architectural elements of the proposed dependable 

software architectures, bridging the transition from 
software architecture design to coding. The Handler and 
Exception Handling Strategy patterns [9] provide design 
solutions to implementing idealised fault-tolerant 
components (section 1.2.1). The Reflective Role pattern 
[5] delivers solutions to implementing component roles. 
Pattern Competitive Collaboration [5] provides design 
solutions to implementing the connector that prescribes 
the interaction protocol taking place among the 
components involved in a collaboration (section 1.2.2). 

These patterns follow the overall structure defined by 
the computational reflection concept and, as a result allow 
a clear separation of concerns between the application 
functionality and dependable quality requirements. 
Computational reflection [12] is defined as the ability of 
observing and manipulating the computational behaviour 
of a system through a process called reification. This 
technique allows a system to maintain information about 
itself (meta-information) and use this information to 
change its own behaviour. It defines a meta-level 
architecture which is composed of at least two levels: a 
base level and a meta level. The base level encompasses 
components responsible for implementing the 
functionality of the application, whereas the meta level 
encompasses components dealing with the processing of 
self-representation and management of the application. 
The latter includes management activities for sequential 
and concurrent exception handling, coordinated error 
recovery and component roles. A meta-object protocol 
establishes an interface among base-level and meta-level 
components. We have defined a set of components [5,9] 
and a meta-object protocol called Guaraná [14] to support 
the implementation of these patterns in Java. 
 
1.3.1. The Exception Handling Patterns. Ideally, local 
and cooperative exceptions should be defined uniformly 
and the effort spent on composing the resolution trees or 
graphs should be minimised. Local exceptions are 
handled internally by local handlers attached to the 
component that raises them, while cooperative exceptions 
are handled by all collaboration participants. The 
Exception pattern [9] allows application designers to deal 
with exceptions and their (concurrent) compositions in a 
uniform way. Software architecture should be able to 
address the complexity that comes from the following 
concerns: designers should define the exceptions handlers 
in a way that separates them from the system normal 
activity; exception handlers for local and cooperative 
exceptions should be defined in a uniform manner; 
components responsible for the deviation of the normal 
control flow and for the handler search should perform 
their management activities in a non-intrusive way. 

The Handler and Exception Handling Strategy 
patterns [9] provide design solutions to implementing 
idealised fault-tolerant components. These patterns allow 
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designers to define exception classes implementing 
handlers for both local and cooperative exceptions. The 
methods of exception classes are the handlers for the 
exceptions raised during the execution of normal class 
methods. Normal classes implement the system normal 
activities. Metaobjects are responsible for transparent 
intercepting method results, changing the normal control 
flow to the exceptional one if exceptions are raised, 
searching the handler that should be executed and 
invoking it (with passing available meta-information 
useful for handling). 
 
1.3.2. The Reflective Role Pattern. This pattern [5] 
provides design solution to implementing component 
roles. There is a separation between components and the 
role hierarchies that they may play. The pattern 
transparently adapts the component to different 
collaborations by attaching the role objects, each of which 
represents a role it is to play in each collaboration. 
Metaobjects manage these role sets dynamically. When 
component roles are represented as individual objects, 
different contexts are kept separate and system 
configuration is simplified. Maintaining constraints 
between component roles and preserving the overall 
component consistency become difficult since a 
component can play several roles which are mutually 
dependent. An approach based on lock/release component 
attributes is used by the pattern to preserve such 
consistency. 
 
1.3.3. The Competitive Collaboration Pattern. This 
pattern [5] offers a design solution to applying and 
implementing the CA action concept, i.e. collaborations 
that implement coordinated error recovery and maintain 
consistency of external resources in the presence of 
failures and concurrency among several collaborative 
activities competing for these resources. 

This pattern separates objects into two well-defined 
levels. The base level designers work with classes 
intended for creating collaborations and for defining 
nested collaborative activities (to allow better structuring 
of normal and error handling activities of the enclosing 
collaboration). The meta level implements a management 
mechanism based on reification of method invocations. 
This pattern introduces five classes: Collaboration, 
Participant, MetaCollaboration, 
MetaParticipant and MetaAtomic (Figure 3). 

Designers extend the Collaboration and 
Participant classes by adding application-specific 
information. Instances of Collaboration have 
references to the collaboration participants, exceptions, 
the enclosing collaboration, nested collaborations and 
shared (local) objects used for inter-participant 
communication. Internal exceptions are the exceptions 
that should be handled within a collaboration by all 

collaboration participants, while failure exceptions are 
signalled to the enclosing collaboration. Instances of the 
Participant subclasses represent the collaboration 
participants; they hold references to the collaboration, to 
the component role (section 1.2.2) and to its method to be 
executed during the collaboration. 

In our approach, instances of the Collaboration 
subclasses correspond to the connectors, component roles 
represent the component interfacing points (component 
ports) and instances of the Participant subclasses 
correspond to the connector roles of the Role-based 
Collaboration architectural style. External (transactional) 
resources are simple objects which are associated with 
instances of the MetaAtomic class: this is how their 
transactional semantics are guaranteed. Instances of the 
MetaCollaboration and MetaParticipant 
classes are responsible for synchronising the participants, 
for resolving concurrent exceptions and for invoking the 
handler of the resolved exception. 

1.4. Real Time Issues 

We believe that the architectural styles and design 
patterns described above are applicable in the context of 
the development of real time systems because they allow 
us to introduce exception handling starting from the 
earlier phases of system development. Using application 
specific exception handling is the only way of dealing 
with recovery in a timely fashion avoiding abortion or 
retry that are not suitable for real time systems. 

Besides, our patterns follow the overall structure 
defined by the computational reflection concept and could 
be extended to follow the RTR model [7]. According to 
this model, timing and synchronisation constraints, 
exceptions and real-time scheduling algorithms can be 
developed at the meta level simplifying the development 
of real time systems. 

CA actions have proven to be able to address the real 
time issues very effectively as they allow system 
designers to deal with real time exceptions [16]. In 
addition, they offer a flexible choice of the locking 
techniques used (full scale transactional vs. application 
specific) and of the way to present component 
concurrency (competitive vs. cooperative).  

Although the design of real time systems is an 
established topic of research, to the best of our 
knowledge, architectural styles and design patterns 
supporting the whole life cycle have not been defined yet 
and further research is required. 

1.5. Case Study: the Train Station Application 

This section describes the Station Case Study and 
shows how the architectural styles and design patterns 
have been used in developing this system. More 
information about the case study and details of the 
implementation can be found in [4]. This case study 
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focuses on developing a subsystem of a railway control 
system, which deals with train control and coordination in 
the vicinity of a station. Trains transport passengers from 
a source to a destination station. Stations usually have 
several platforms on which trains can stop (with an 
obvious restriction that no more than one train can stop on 
each platform at a time). We assume that trains can 
execute some join cooperative activity when they stop at 
the some station together; for example, passengers can 
change trains during this stop to make their journey faster.  
Basic requirements. A correct control system must 
satisfy certain requirements. System Safety means that 
collisions of trains at stations are prevented and sufficient 
distance between trains is maintained. Control Fairness 
guarantees that trains get access to stations fairly. 
Liveness is the property of the whole railway control 
system, which in our case mains that our station control 
systems should provide enough information for a high-
level component that performs global scheduling that 
guarantees that the overall system is live and that the 
passengers eventually reach their destinations. The 
development of such component is not the purpose of the 
case study. We assume that the control system to be 
developed follows the schedule given by such component. 
We assume as well that trains at stations take all 
passengers who have to be in these trains and that all 
passengers who have to change within an action always 
do this. 
Actuators. Trains are controlled using the following 
commands: set the direction of a railway switch, start/stop 
a train, decrease/increase the speed of a train and reverse 
the direction of the train movement. 
Sensors. Railway tracks have sensors that report useful 
information to the control system. These sensors are the 
only means for determining the position of the trains. It is 
important that the integrity of the information provided by 
these sensors is verified, because it is used for both 
keeping track of the locality of each train and preventing 
disasters from occurring. 

Our system should employ features for detecting errors 
caused by faults (for example, if a train cannot be 
stopped) and for tolerating them to restore normal 
computation. These are some additional failure 
assumptions: (i) the system clock is fault-free and does 
not fail; (ii) values of sensors and clocks are always 
transmitted correctly without any loss or error; (iii) all 
sensor failures are indicated by sensor values; and (iv) 
only one failure can happen on each track or on the train 
using this track during the interval of interest. 
Time-related failures. The control system provides 
normal service if the following timing constraint is met: a 
train neither arrives at the station after tEntry nor leaves it 
before tExit. If a train fails to arrive before tEntry, then the 
other trains continue their activities but some corrective 
actions must be taken, for example, some passengers can 

be left waiting for the late train. When the late train 
arrives at a station, some of its passengers may have lost 
their connections; hence passenger rescheduling must be 
done. 
Actuator failures. This covers two failures, because it 
relates to the situation where a train or switch fails. The 
fault may be permanent or intermittent, and re-trying the 
operation may solve the problem. More interesting is the 
potentially disastrous situation of a train failing to stop – 
the equivalent of a brake failure. In this case, of course, 
the failing train will not respect its route. The only 
recovery is to direct the train to a safe part of the railway, 
while at the same time that all other trains be stopped if 
there is any danger of the collision. 
Sensor failures. The failures modes of sensors are either 
that they trigger when they should not (recognised by 
unexpected triggering of the sensor), or do not trigger 
when they should (recognised by a different but 
predictable sensor being triggered). 
 
1.5.1. Architectural Design. The aim of this section is 
show the feasibility of applying the software architecture 
elements in the architectural design of this case study. The 
two styles introduced in section 1.2 have been applied in 
combination. We assume a layered structure (section 
1.2.1) of the control system and that trains execute some 
join cooperative activity (section 1.2.2) when they stop at 
some station together. 

 
Our design separates the safety and functionality 

requirements between a set of collaborations that occur 
during system execution and a set of train controllers that 
determine the train routes and hence the order in which 
the collaborations are executed. We assume that the safety 
requirement is guaranteed by the underlying layer (in our 
experiments this is done by the trainset layer) on the top 
of which we build the train controllers and the 
cooperative activity among trains (see Figure 2).  

We also assume that each passenger has a ticket that 
describes her/his journey. If failures affect this journey, 
the scheduling component can be used to recalculate it. 

Connector
Dependable Collaboration

Component

TrainTrain

Component

Exchanger Component Role
Railway Control Layer

Station Control Layer

Trainset Layer

Collaboration between Train Components  
Figure 2 - Station Case Study: Architectural Design 
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This component is part of the railway control layer and is 
used for providing the liveness property but we do not 
develop it as we have said before. Station platforms are 
modelled as external resources (objects) and have waiting 
rooms for passengers. The collaboration should 
implement coordinated error recovery and maintain the 
consistency of these external resources in the presence of 
failures and concurrency among different collaborative 
activities competing for these resources. 
 
1.5.2. Detailed Design. The aim of this section is to show 
how the patterns presented in section 1.3 can be applied 
for providing detailed design solutions to problems 
arising in developing this case study. 

The Competitive Collaboration pattern is used to 
design the collaborations discussed above. The 
ExchangePassengers class extends 
Collaboration, so that its instances represent the 
collaboration that coordinates the execution of an activity 
corresponding to cooperation of two (or more) trains 
calling at a particular station at the same time. The 
TrainSensor and TrainActuator classes extend 
the Participant class; instances of these classes 
represent the collaboration participants (i.e. connector 
roles). Component roles are activated by these 
participants. Instances of TrainActuator affect the 
execution of the Train instances (playing the component 
role Exchanger) by sending commands to stop at stations 
and leave stations after the cooperative activity has been 
finished. Instances of TrainSensor are associated with 
instances of the Sensor class that check if trains fail to 
respond to a request. Figure 3 shows the design of the 
cooperative activity between train1 and train2 calling at 
stationA (train1 stops at platform P1 and train2 stops at 
platform P2). Platforms P1 and P2 are modelled as objects 

associated with instances of MetaAtomic to guarantee 
their transactional semantics.  

In addition, we use the Handler, the Exception 
Handling Strategy and the Reflective Role patterns to 
design the train component (Figure 4). The use of the 
Handler and Exception Handling Strategy patterns 
allows us to separate the normal and abnormal activity of 
this component and make it transparent for each other. 
These exceptional classes implement the handlers for 
local and cooperating exceptions. Besides, the Reflective 
Role pattern allows us to represent the hierarchy of roles 
that this component can play in different collaborations. 

Due to space limitation, the meta-level configuration 
associated with this component is not shown in Figure 4. 

And finally, we have used the Exception pattern to 
define local and action-level (including concurrent) 
exceptions in a uniform way (Figure 5). 

Implementation issues. The first version of the 
control system has been implemented in Java using a 
trainset Java API available at University of Newcastle and 
a meta-object protocol called Guaraná [14]. We believe 
that the results of this experimental research are 
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promising. CA actions offer a very powerful framework 
for designing complex systems in a structured way; they 
facilitate developing systems which meet high 
dependability requirements; the resulting systems have a 
clear structure which makes reasoning about the system 
(including reasoning about dependability properties) 
simpler. Two architectural styles proposed back the 
architectural development of the system, clearly facilitate 
it and make it more disciplined. Design patterns bridge 
the transition from describing the system architecture to 
implementing the system making these steps easier.  

2. Systems of Systems 

2.1. Characteristics of Systems of Systems 

Development of systems consisting of existing systems 
is a new emerging area of research [13]. Designers of 
such complex systems face new challenging problems, 
which are distinctly different from the problems addressed 
by developers of component-based or object-oriented 
systems. The main focus of our research is on developing 
fault tolerance architectures and techniques for such 
systems. Systems of systems (SoSs) are complex systems 
built out of ready made existing (and, often, running) 
component systems, which are quite autonomous and 
should continue to provide their individual services even 
if the whole SoS is not able to do this (when, for example, 
it or its component fails). It is usually not possible to 
develop a total control of such SoSs. After incorporation 
of such component systems into a SoS these systems 
should be able to act as individual systems and as parts of 
a bigger system (or, even, several of them). There is 
clearly a need in a special support for adaptivity and 
reconfiguration (including degradation) in such complex 
systems. This is a heterogeneous system as the component 
systems meet different standards, exhibit different time 
and fault behaviour, are developed with different fault 
assumptions in mind. Such complex systems report 
exceptions in different ways and should be able to handle 
complex situations when several component systems 
manifest abnormal behaviour. It is usually not possible to 
apply here traditional fault tolerance features which rely 
on abort (because, for example, some activities are long-

lived), so the importance of applying adequate exception 
handling models (that is, forward error recovery) is very 
high and demanding in this problem domain. 

All these characteristics require developing new fault 
tolerance techniques which are more flexible than the 
conventional ones, relying on less restrictive concurrency 
control and looser synchronisation. Besides, these 
techniques should allow for handling exceptions at the 
level of SoSs as the main recovery features which can be 
used for programming both cooperative exception 
handling involving several component systems and 
disciplined compensation activities. It is very important 
that such fault tolerance techniques should be always 
associated with structuring techniques used for 
developing (mainly composing) the SoS. These 
techniques are vitally important in the context of SoSs as 
they allow us to guarantee the consistency of individual 
component system states and to contain erroneous 
information in order to facilitate the recovery of the 
system as a whole. 

2.2. CA Actions for Systems of Systems 

Our analysis shows that CA actions serve as a solid 
basis for developing structuring and fault tolerance 
techniques suitable for SoSs [15]. They allow system 
developers to design, structure and provide fault tolerance 
of complex concurrent systems in which components 
cooperate and compete. They also provide support for 
exception handling, which is vital for components that are 
not capable of rolling back as well as for protecting long-
lived activities using compensation activity which is 
structured as action handlers attached to CA actions. 
Moreover, CA actions are structuring units which always 
contain erroneous information; this makes system 
recovery simpler, faster and cheaper without any needs 
for tracing dependencies (the approach which many 
workflow systems use). 

CA actions incorporate a rich concept of multiple 
outcomes to allow for informing the containing context 
about different types of abnormal behaviour which an 
action can exhibit, as well as, for delivering partial results 
and for introducing system degradation at the level of 
actions (to allows system designers to take into account 
component system autonomy). This supports developing 
complex systems in which structuring units provide a set 
of well-defined outcomes associated with a rigorously 
defined set of post-conditions in which the action and the 
participating components are left. 

The concept of CA action offers a full support for 
maintaining system consistency and achieving fault 
tolerance using design diversity, backward and forward 
error recovery as they allow tolerating environmental 
faults, software design faults and crashes of nodes with 
transactional objects. CA actions are built on a very rich 
concept of atomicity and allow for a general way of 
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achieving fault tolerance. In addition, CA actions 
incorporate support for resolving concurrent exceptions 
which are likely to happen in complex systems of 
systems. 

2.3. Architectural Design of Systems of Systems 

By the very nature of SoSs, these systems are 
developed by integrating existing component systems. 
Such systems are always very intricate and heterogeneous 
(due to the complexity of the component systems and of 
the new services to be delivered), and their integration has 
to be based on a well-structured system architecture. 

We believe that the dependable architectural design 
described in section 1.2 can be used to provide an abstract 
description of SoSs. First of all, the notion of 
collaborations (section 1.2.2) makes it possible to 
explicitly represent complex interaction among existing 
component systems, which in turn improves readability 
and maintainability and, consequently, helps integrate 
component systems. Component roles provide an explicit 
interface for the new functionalities to be delivered by 
each component system in the context of a SoS. Secondly, 
the abstraction of idealised fault-tolerant components 
(section 1.2.1) is recursive; that is, each idealised fault-
tolerant component can be an (autonomous) system itself. 
The main issue is that the exception handling interface 
should be materialised (that is, explicitly represented at 
the architectural level) as well, to make it possible for 
each component system to implement its own exception 
handlers and recovery policies. 

2.4. Design Patterns for System of Systems 

Our preliminary analysis shows that the patterns 
described in section 1.3 are applicable in the context of 
SoSs because they allow us to introduce new interfaces 
for exception handling and collaboration (we need those 
because SoSs deliver new services) while addressing the 
following characteristics of SoSs (discussed in section 
2.1): (i) disciplined compensation activities (cooperative 
exception handling involving several component 
systems); (ii) component autonomy: component roles can 
be used to specify the new services in the context of SoSs 
so that components can keep providing their usual 
individual services if different contexts are kept separate 
and the overall component consistency is preserved. Note 
that this approach makes it possible for the SoS designers 
to introduce new services even when there is a number of 
the running system components. However, these patterns 
do not address other characteristics of SoSs, such as 
autonomous recovery of component system in case of 
failures. Thus, further development of design patterns 
which are able to deal with specific characteristics of 
SoSs is required. 

During the architectural and detailed design phase, the 
logical SoS components with explicit interfaces for 
collaboration, exception handling, error recovery and so 
on are specified. Afterwards the existing component 
systems have to be adapted to match the logical SoS 
components. Developing systems by component system 
integration can be complicated by the following factors: 
introducing new or extended functional and non-
functional requirements (e.g. adding functionality, 
improving dependability), using components in a different 
(wider or narrower) context and heterogeneity of 
components. It is very unlikely that component systems 
will exactly match each other, so techniques for adopting 
component systems will be used. Component wrapping is 
an example of such techniques (a useful discussion on 
different adaptation techniques can be found in [21]) that 
can be used for both adaptation and reconfiguration of 
existing component systems. We believe that is it 
important to be able to apply some form of computational 
reflection for implementing component system wrapping 
because it promotes a transparent and non-intrusive 
adaptation while allowing us to design meta-level 
components which address the complexity caused by the 
characteristics of SoSs. 

2.5. Discussion and Future Work 

Implementation of a system of systems is to be 
supported by features providing component system 
wrapping and CA actions. In our opinion, this 
implementation should be oriented on modern 
component-based technologies (such as CORBA [3], 
DCOM [1] and EJB [2]) which can serve as unifying 
platforms for such heterogeneous systems. First of all, 
because they have useful supports for developing 
wrappers (e.g. by call intercepting, by incorporating each 
component into a container, etc.). Secondly, because all 
these technologies provide transactional services which 
can serve as a sound basis for developing CA action 
schemes [23,24,25]. And thirdly, because features are 
being developed to make it possible for CORBA, EJB and 
DCOM components to call each other or to incorporate a 
foreign component into a system. 

Application of the architectural styles and design 
patterns to develop realistic case studies is an important 
area of our future work. Our analysis shows the case 
study reported in section 1.4 can be extended by 
introducing autonomous component systems which are 
controlled separately but are still connected by the 
railway: plants producing parts, plants with assembly 
lines, airports, stores, cities, etc. which effectively are 
glued together by a railway system and which interface it 
via station interfaces. The challenge for future research is 
to develop a control system supporting complex 
functionalities of such systems of systems. 
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Other areas of our future work are as follows: further 
development of the architectural styles and design 
patterns which are able to deal with specific 
characteristics of SoSs; implementation of the CA action 
schemes within existing component-based technologies; 
development of structural techniques for wrapping; 
implementation of re-usable wrappers providing 
functionalities necessary for wrapping component 
systems to allow their integration into SoSs.  

3.  Conclusions 

This paper makes the following contributions:  
• it presents a generic software architecture for 

introducing atomicity, exception handling, and 
coordinated error recovery into dependable object-
oriented systems at the earlier phases of system 
development;  

• it discusses a set of design patterns which refine the 
architectural elements of the proposed software 
architecture and provide a clear and transparent 
separation of concerns between the application 
functionality and the functionality related to providing 
system dependability;  

• it shows the feasibility of the approach proposed by 
means of a realistic case study;  

• it proposes approaches to applying these ideas in the 
context of developing complex systems of systems 
which require extensions and adjustments of the 
Coordinated Atomic action concept as well as of the 
architectural styles, design patterns and the 
implementation support to allow designers to address 
the typical problems of such system development. 
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