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Abstract 
This paper presents a novel approach to distributed 

applications design. The proposed approach considers 
both the enterprise viewpoint and the computational 
viewpoint of distributed applications during the design 
process. Two important benefits are thus accomplished: 
(1) the resulting distributed applications will better match 
the enterprise’s needs, and (2) changes in the enterprise 
can easily be translated to changes in the distributed 
application. The approach comes with a formal notation 
that makes it possible to define a precise relation between 
enterprise models and models of the distributed 
applications. 
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1 Introduction 

The ability to timely adapt to new demands and 
conditions is one of an enterprise’s main ways of getting a 
competitive advantage. Effective adaptation is often not 
limited to the enterprise’s business processes, but extends 
to the distributed applications that support the business 
processes. We call the ability of distributed applications to 
change together with the enterprise: the evolvability of the 
applications [11]. 

When developing evolvable applications, we have to 
be aware that we are dealing with two knowledge 
domains: the domain of the business architect, who 
designs enterprises using enterprise concepts, and the 
domain of the application architect, who designs 
applications using application concepts. To be able to 
develop evolvable software, the concepts from the two 
domains have to be directly related [2, 8]. Only then can 
we implement changes in the enterprise design directly in 

the proper place in the applications. In the method that we 
propose here, we use a common design notation as the 
linking pin between the concepts from the two domains. 
This approach is shown in figure 1. The figure shows that 
the design notation can be used to express concepts from 
both domains. In order to relate an enterprise design to an 
application design precisely, we define a precise 
technique to relate models that represent designs from the 
two domains. 
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Figure 1 – Relation between Enterprise and 

Application Designs 

We have used the Reference Model for Open 
Distributed Processing (RM-ODP) [9, 10, 11, 12] as a 
basis for the development of our approach. We did this 
because the RM-ODP is the result of a consensus between 
a large number of companies and academic institutions on 
the concepts that have to be used for the design of open 
distributed systems. Another reason for using the RM-
ODP is that it provides concepts and abstractions that 
allow us to relate distributed applications to enterprise 
designs. 

We developed our approach by investigating the 
relations between the concepts from the RM-ODP 
enterprise and computational viewpoint. These viewpoints 
define concepts for enterprise design and distributed 
application design, respectively. Based on the relation 
between the concepts, we defined a relation between the 



two viewpoints. We used a formal notation [18, 21] to 
define this relation precisely. Using the relations between 
the concepts we also identified structuring techniques, and 
we made sure that the structuring techniques in the 
enterprise viewpoint has counterparts in the 
computational viewpoint. When using the same structure 
in both viewpoints, changes to the enterprise design can 
easily be traced to changes in the computational design. 

The remainder of this paper is organized as follows. 
Section 2 introduces the RM-ODP concepts that we use 
for enterprise and application design. Also, this section 
describes the relations between the concepts for enterprise 
design and the concepts for application design in an 
informal manner. Section 3 identifies the structuring 
techniques that are used in enterprise design, and explains 
how these techniques relate to the structure of distributed 
applications. Section 4 introduces the formal notation and 
explains how the notation can be used to define the 
relation between enterprise and application models. 
Finally, section 5 presents a case study to illustrate the use 
of our approach. 

2 RM-ODP Concepts 

The Reference Model for Open Distributed Processing 
provides a means for defining standards for open 
distributed processing, such as standards for components 
of ODP systems, and standards for modeling ODP 
systems.  

The RM-ODP defines five viewpoints, each of which 
focuses on different aspects of a system design. Each 
viewpoint is associated with a viewpoint language that 
can be used for developing designs from this viewpoint. A 
viewpoint language consists of a number of concepts that 
can be used when defining standards from this viewpoint, 
and rules that define the relations between the concepts. 

In this paper we focus on the enterprise and the 
computational viewpoint. The enterprise viewpoint 
language can be used to specify the enterprise in which 
the ODP system is embedded. The computational 
viewpoint language can be used to specify the logical 
decomposition of the system into interacting objects. 

We use the ODP computational viewpoint to design 
distributed applications in a platform-independent way. 
The distributed applications can subsequently be mapped 
to a specific component technology such as Enterprise 
Java Beans. This approach is similar to the the Model 
Driven Architecture approach [15] and the approach used 
in the EDOC profile for UML [13, 14]. 

2.1 The ODP enterprise viewpoint 

The enterprise viewpoint is defined in [11], and was 
extended by the concepts and rules from [12] later on. The 
enterprise language can be used to specify the system in 
its environment. 

The key concept in the enterprise viewpoint is the 
community1 concept. The definition of a community is: ‘A 
configuration of objects formed to meet an objective’ 
[11]. The objects mentioned in the definition (in the 
enterprise viewpoint also known as enterprise objects) 
represent real entities in a company, an example of which 
could be an employee, or the system that has to be built. 
Communities can be hierarchically structured. We can do 
this by viewing a community as a community enterprise 
object, and making this community enterprise object part 
of another community. 

A community is specified in detail by specifying [11]: 
• the roles fulfilled by the enterprise objects; 
• the steps within the processes in which the enterprise 

objects participate; 
• the policies that apply to the enterprise objects. 

These concepts and the rules that apply to them are 
explained in the sequel. 

A role is an identifier for behavior [10]. The behavior 
it identifies is specified in terms of actions and constraints 
on when these actions can occur. An action is something 
that happens. Each action in a community is either part of 
a single role, or part of multiple roles. In case it is part of 
multiple roles it defines an interaction between these 
roles. An enterprise object can participate in an action by 
fulfilling the role to which the action is assigned (or, in 
case of an interaction, one of the roles to which this 
interaction is assigned). When an enterprise object is said 
to fulfill a certain role, all actions in this role are 
associated with this enterprise object. An enterprise object 
can fulfill several roles in a community. However, at one 
moment in time, a role can only be fulfilled by one 
enterprise object. Therefore, if we want to define the 
behavior of a role once, and associate it to more than one 
enterprise object, we must define a role type, and define 
multiple instances of this role type, each of which can be 
assigned to a different enterprise object. 

A process is also an identifier for behavior. It is 
defined as: ‘A collection of steps taking place in a pre-
described manner and leading to an objective’ [12], where 
a step is defined as: ‘An abstraction of an action, … that 
may leave unspecified objects that participate in that 
action’ [12]. While both roles and processes are identifiers 
for behavior, there is a difference between these concepts: 
roles focus on the assignment of behavior to enterprise 
objects, while processes focus on the assignment of 
behavior to objectives [1]. Processes can be hierarchically 
structured. This can be done by decomposing a step of a 
process into a more detailed process [12]. A step must be 
assigned to an actor role. An actor role is a role that 
participates in performing an action. In contrast we can 
also have artefact roles that are only referenced in an 
action. By assigning a step to a role, or multiple roles in 

                                                           
1 all concepts are in italics when they are first mentioned. 



case the step is an abstraction of an interaction, we can 
eventually assign it to enterprise objects. 

‘A policy identifies the behavior, or constraints on a 
behavior, that can be changed during the lifetime of the 
ODP system …’ [12]. Typically, a policy is defined in 
terms of a set of rules. Each rule can express either an 
obligation, a permission, a prohibition, or an 
authorization. An obligation is a prescription that a 
particular behavior is required to occur. A permission is a 
prescription that a particular behavior is allowed to occur. 
A prohibition is a prescription that a particular behavior 
must not occur, and an authorization is a prescription that 
a particular behavior must not be prevented. 

It is hard to pinpoint the exact relation between a 
policy and the enterprise behavior that is specified by the 
roles and processes. One view on the relation between 
policies and enterprise behavior is that policies describe 
the desired behavior of an enterprise, while the enterprise 
behavior describes the actual behavior [24]. Another view 
on the relation between policies and enterprise behavior is 
that enterprise behavior describes the behavior an object 
is physically capable of, while policies prescribe a social 
behavior that objects must commit themselves to when 
they join a community [16]. Both views on the relation 
between policies and enterprise behavior describe 
enterprise behavior as the actual behavior of an enterprise, 
and policies as constraints on this behavior. In this paper 
we view policies in this way. 

We will not discuss how policies can be expressed in 
our notation, nor how they can be related to distributed 
applications. We will merely interpret them as constraints 
on behavior. A detailed discussion on policies is outside 
the scope of this paper. 

2.2 The ODP computational viewpoint 

The computational viewpoint is defined in [11]. At the 
computational viewpoint we can specify the logical 
decomposition of a system into objects that interact 
through their interfaces. The logical decomposition splits 
up the system into distributed parts. 

A computational design is given in terms of a 
configuration of (computational) objects. Objects can 
perform actions by themselves, or participate in 
interactions with other objects. Interactions between 
objects happen at interfaces. Computational objects have 
a quality of service contract with their environment. 

An interface can either be a signal interface, an 
operation interface, or a stream interface, depending on 
the type of interactions that can happen at the interface. At 
a signal interface, signals happen, which are defined as 
atomic shared actions that result in one-way 
communication from an initiating object to a responding 
object. At an operation interface operations can happen, 
which can be either announcements, or interrogations. An 
announcement is the conveyance of information from a 

client to a server. An interrogation is a two way 
communication in which a client requests a function from 
a server, to which the server subsequently responds by 
sending the information resulting from the requested 
function call. At a stream interface, flows happen. A flow 
is an abstraction of a sequence of interactions, in which 
information flows from a producer object to a consumer 
object. An interface does not only specify the type of 
interactions that can happen, but also the allowed 
sequences in which the interactions can happen. 
Therefore, an interface completely defines a subset of the 
behavior of the object. 

For two objects to be able to interact on their 
respective interfaces, a binding must be established 
between these interfaces. Bindings can only be 
established between two compatible interfaces. A precise 
definition of compatibility between interfaces is given in 
[11], but we trust on the readers intuitive understanding of 
compatibility. A binding may be represented by a binding 
object. This has the benefit that the binding can support 
interactions between more than two interfaces. Another 
benefit of a binding object is that it can be used to control 
the binding it represents, by providing control interfaces. 

 Apart from the run-time establishment of bindings 
between interfaces, objects can instantiate other objects at 
run-time from object templates. An object template 
corresponds to a class definition in object-oriented 
programming languages. An object template consists of a 
number of interface templates, which can be used to 
instantiate the object’s interfaces. 

2.3 The relation between the viewpoints 

A correspondence statement tells how an element of an 
enterprise design relates to different elements of a 
computational design. [12] specifies a number of 
correspondence statements that are mandatory if you want 
to produce a coherent design, and not just two designs 
from two viewpoints that are seemingly unrelated. From 
these correspondence statements we can derive the 
relation between the enterprise and the computational 
viewpoint. 

The key correspondence statement tells that it is 
mandatory to specify, for each enterprise object, the 
computational objects by which it is realized. This 
correspondence statement does not specify a true 
refinement relation [4], in the sense that some objects in 
an enterprise design may not appear in the computational 
design at all, because they are not automated but rather 
related to human behavior [17]. From this correspondence 
statement, we derive that each enterprise object can be 
realized by multiple computational objects. 

From the other correspondence statements, we can 
derive that an interaction in the enterprise viewpoint is 
realized in the computational viewpoint by a number of 
interactions that happen on computational interfaces that 



have a binding between them. Furthermore, if an 
enterprise object is constrained by a policy, then the 
computational objects that realizes this enterprise object 
must address this policy. 

3 Structuring Techniques 

In this section we explain how distributed applications 
can be structured based on an enterprise design. Our goal 
is to define the structures in such a way that we are able to 
propagate changes in the enterprise design easily to 
changes in a computational design. 

This section starts by explaining the structuring 
mechanisms that can be used in the enterprise viewpoint. 
It then explains how the system can be delimited in the 
enterprise viewpoint. Finally, it explains how the structure 
of a design from the computational viewpoint relates to 
the structure of a design from the enterprise viewpoint. 

3.1 Structuring the enterprise viewpoint 

We distinguish two approaches to structure enterprise 
behavior: the role-base and the process-based approach 
[1, 12]. The role-based approach abstracts from the 
concepts for process design, which are process and step, 
and structures the enterprise behavior into roles. The role-
based approach focuses on who-does-what in the 
enterprise [1]. The process-based approach initially 
abstracts from the role concept, and structures the 
enterprise behavior into processes. The process-based 
approach focuses on the actions that must be taken in 
order to reach a certain goal in the enterprise [1]. While 
the process-based approach initially abstracts from the 
roles that are involved in a process, we assign a process’ 
steps to roles before we can assign a process to enterprise 
objects. Therefore, the process-based approach can not 
completely abstract from roles. 

process 1

process 2

process 3

role 1 role 2 role 3

action

constraint between actions

 
Figure 2 – Relation between Roles and Processes 

Although the process-based and role-based approach 
have a different focus, they are both identifiers for 
behavior. Hence we consider the role-based and process-
based approach as orthogonal, in the sense that each 
behavior that is defined as a process can also be defined 
as a collection of roles, and vice versa. The relation 

between the role-based, and the process-based approach is 
graphically represented in figure 2. This figure shows 
actions as dots, and constraints between actions as dotted 
lines. The actions that are performed in the enterprise, and 
the constraints on these actions are horizontally identified 
by processes, and vertically identified by roles. If we 
ignore the structuring of the actions and constraints into 
roles and processes, we get the monolithic enterprise 
behavior [28, 29]. 

The way in which constraints between actions in 
different processes and constraints between actions in 
different roles can be enforced, varies. Constraints 
between actions in different processes can be enforced 
directly. However, constraints between actions in 
different roles can only be enforced if the objects that 
perform these roles can communicate in some way.  

We use interactions to express the communication 
between objects in different roles. In this case the 
interaction is the intermediary for a constraint that ranges 
over different roles. In practice an interaction may be 
implemented, for example, by sending a memo or a file 
over the internal mail. In contrast to using interactions to 
decompose a constraint that ranges over different roles, 
we use an exit-entry combination to represent a constraint 
that ranges over different processes. 

In case of a constraint between actions that are both in 
different processes and in different roles, we should use  
an interaction. 

The interactions between roles, and the constraints 
between processes are shown in figure 3. 
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Figure 3 – Communication between Roles and 

Processes 

3.2 Delimiting the system behavior 

After defining an enterprise’s behavior, we must 
decide which part of the behavior to automate. We call 
this the delimitation of system behavior. When delimiting 
the system behavior, we may decide that a role will partly 
be fulfilled by the system and partly by an employee. 
Since, at one point in time, a single role can only be 
assigned to a single enterprise object, the role then has to 
be split up. 

When we split up a role, it is possible that one or more 
of its (inter)actions must also be split up, because this 



(inter)action will partly be performed by the system and 
partly by an employee. 

When delimiting the system behavior, we must make 
sure that the enterprise behavior after the delimitation 
conforms to the enterprise behavior before the 
delimitation, otherwise the processes in the enterprise 
would be performed incorrectly after the implementation 
of the system. Therefore, only certain operations (or 
refinements) on (inter)actions are allowed to delimit the 
system. The allowed refinements are shown in figure 4 
and 5. 
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Figure 4 – Allowed Action Refinements 

Figure 4 shows the acceptable refinements for splitting 
up an action. The leftmost refinement represents the case 
in which an action is supported by the system, in which 
case it is performed as an interaction between the user of 
the system and the system itself. An example of an action 
that is supported by the system is the entry of data into the 
system. 

When an action is fully automated, additional 
interactions between the system and its user may be 
necessary. An interaction may, for example, be necessary 
to express the notification by the user that an action has to 
be performed. The middle refinement from figure 4 
represents this situation. The rightmost refinement 
represents the situation in which no additional interactions 
with the user are necessary for the system to perform the 
action. 
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Figure 5 – Allowed Interaction Refinements 

Figure 5 shows the acceptable refinements for splitting 
up an interaction. The top-left refinement represents the 
situation in which an interaction is replaced by an 
interaction between two roles of the system (e.g., different 
system parts). The bottom-left refinement represents the 
situation in which the interaction is replaced by an 

interaction between the system and a user. The bottom-
right refinement represents the situation in which an 
interaction is fully implemented by one system part, and 
therefore removed. The top-right refinement represents 
the situation in which an interaction between two users is 
automated (e.g., by an e-mail system). In this situation, 
we must enforce the constraint that either all interactions 
by which an interaction is refined happen, or neither of 
them happens. In figure 5 this constraint is represented by 
an exclamation mark. The reason for this constraint is that 
an interaction is atomic, meaning that an interaction 
happens either at all roles, or not at all. This implies that 
atomicity must hold for a refinement of an interaction, 
otherwise a refinement would not be correct. 

A constraint can only be automated, if it constrains 
actions that are in the same automated role, or interactions 
that have a contribution in the same automated role. 
Otherwise, the constraint must be enforced manually. 

Finally, after the system behavior has been delimited, 
we assign the roles to enterprise objects. Enterprise 
objects may be employees, but also distributed 
applications, and most importantly, the system under 
development. 

In principle the choice on how the system is going to 
support the enterprise is arbitrary, i.e., the choice on 
which actions and constraints to automate is arbitrary. 
However, usually the choice on how the system is going 
to support the enterprise follows a well-defined pattern. 
As an example we consider a special form of supporting 
the enterprise, which is called workflow automation. 
Other forms of supporting the enterprise are, for example, 
the support of the enterprise by an information system, a 
CSCW system, etc. 

Workflow automation is defined as ‘the automation of 
a business process, in whole or in part, during which 
documents, information, or tasks are passed from one 
participant to another for action, according to a set of 
procedural rules’ [30]. In this type of process automation, 
not the actions that are performed in the enterprise are 
automated, but the constraints that impose the order in 
which the actions are performed. Also, the interactions 
between the roles that are involved in the process are 
automated, because they represent the transfer of 
information from one role to another. Consider, for 
example, the automation of process 1 from figure 3, 
which is represented by figure 6. 
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action
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Figure 6 – Workflow Automation of a Process 

In figure 6, we can see that the order in which the work 
is performed (represented by the constraints between the 
actions) is now the responsibility of the workflow role. 



We can also see that the manual actions from figure 3, are 
replaced by interactions with the system. The part of the 
interactions from figure 6 that is assigned to roles 1, 2 and 
3 represents the actual work that has to be performed in 
the enterprise (the original actions that were assigned to 
the roles in figure 3). The part of the interactions that is 
assigned to the workflow role represents the notification 
by the workflow system that the action can be performed, 
and the reception of the notification by the system that the 
user is done performing the action. Finally, we can see 
from the figure that the interactions between the roles in 
figure 3 are removed, because the communication 
between the roles is now enforced by the system. 

3.3 Structuring the computational viewpoint 

The computational viewpoint considers the 
decomposition of enterprise objects into computational 
objects. Only the enterprise object that represents the 
system under development is decomposed. The 
decomposition does not necessarily have to match the 
decomposition of enterprise objects into roles. However, 
we argue that it is recommended to make the first logical 
decomposition of the enterprise object into computational 
objects meet the decomposition of the enterprise object 
into roles (and, indirectly via roles, processes). Such a 
decomposition makes it easier to trace changes in the 
enterprise viewpoint to changes in the system. 

Consider, for example, figure 6, and assume that the 
workflow role and role three are automated by the system. 
Hence, these roles are assigned to the enterprise object 
that represents the system. In this case we argue that it is 
preferable to decompose this enterprise object into two 
computational objects that correspond to the roles that are 
automated. 

It is possible to make the first decomposition of the 
system already at the enterprise level, by defining the 
system as a community object, and identifying sub-
systems by enterprise objects that are part of this 
community object [6, 25]. However, one should be careful 
when using this approach, because the aim of the 
enterprise viewpoint is to express the relation between the 
system and its environment, and not the logical 
decomposition of the system. We only allow a 
decomposition into sub-systems in the enterprise design 
when these sub-systems are associated with clear 
objectives in the enterprise [25]. 

4 Formal Support to Relate Models 

To facilitate precise and unambiguous reasoning about 
the relationship between an enterprise and corresponding 
computational model, we use the formal modeling 
technique ISDL (Interaction System Design Language). 
For this purpose, we define a mapping from the concepts 
of the RM-ODP enterprise and computational viewpoints 

onto ISDL. The use of a single language for the two 
viewpoints makes it easier to compare models that 
represent designs from both viewpoints. In particular, it 
allows us to define rules for refinement and for assessing 
the conformance between models at different abstraction 
levels. 

In this paper we discuss ISDL in an informal manner. 
We refer to [21] for the formal semantics of ISDL. 

4.1 ISDL 

ISDL is a generic modeling language that has been 
developed for the modeling of various types of distributed 
systems, such as business processes, telematics 
applications and communication networks [5, 19, 23]. It is 
based on minimizing the limitations of existing formal 
methods [27]. An ISDL model of some system consists of 
two models: an entity model and a behavior model. 

The entity model represents which system parts are 
considered, and how they are interconnected. Two 
concepts are used in an entity model: entity and 
interaction point. An entity represents a system (part) that 
performs some function or behavior, like, for example, a 
software component or business department. An 
interaction point represents some mechanism through 
which an entity can interact with other entities, like, for 
example, an electronic mail client. 

workflow engine

workflow service
provider

authentication
service provider

process
database

i. external ii. internal  
Figure 7 – An Example Entity Model 

From an external perspective, a system is modeled by a 
single entity, having one or more interaction points. 
Figure 7.i, for example, models a workflow engine that 
interacts with its user via three interaction points. These 
interaction points could, for example, represent a 
workflow client, an interface for administering user 
information and business process modeling tool. An entity 
is graphically expressed by a rectangle with cut-off 
corners. An interaction point is graphically expressed by 
an ellipsis that overlaps with the entities that share (i.e., 
communicate via) the interaction point. 

From an internal perspective, a system is modeled as a 
composition of functional parts. For example, these parts 
may represent sub-components or business units within 
some department. The internal perspective of the 
workflow engine is shown in figure 7.ii. This figure 
shows that the workflow engine is split up into three 
parts: a generic service provider that notifies users of the 
tasks that have to be performed, an authentication service 
provider, and a database for storing the business 
processes. 



The behavior model represents the behavior, or 
functionality, of each entity in the corresponding entity 
model. Three concepts are used: action, interaction and 
causality relation. An action represents some unit of 
activity performed by a single entity. Consider, for 
example, the action of the workflow service provider that 
models the calculation of the next task to perform.  An 
interaction represents a common activity performed by 
two (or more) entities. An interaction contribution 
represents the participation of an individual entity in the 
common activity. Consider, as an example, the interaction 
between the workflow service and its user that notifies the 
user of the next task to perform.  

Information, time and location attributes can be added 
to an (inter)action, in order to model the result established 
in some activity, the time moment at which this result is 
available, and the location where the result is available, 
respectively. An (inter)action occurrence represents the 
successful completion of an activity. An (inter)action is 
atomic in the sense that if an (inter)action occurs, the 
same result is establish and made available at the same 
time moment and at the same location for all entities 
involved in the activity. Otherwise, no result is 
established and no entity can refer to any intermediate 
results of the activity. 

An action is graphically expressed as a circle (or 
ellipsis). An interaction contribution is graphically 
expressed as a segmented circle (or ellipsis), which 
reflects that multiple entities contribute to the interaction. 
The information (ι), time (τ) and location (λ) attributes 
are represented within a text-box attached to the 
(inter)action2. Constraints can be defined on the possible 
outcomes of the values of ι, τ and λ (expressed after the 
symbol ‘|’). In case of an interaction, each interaction 
contribution defines the constraints of the corresponding 
entity, such that the values of ι, τ and λ must satisfy the 
constraints of all involved entities, otherwise the 
interaction can not happen. In case multiple values are 
possible for some attribute, a non-deterministic choice 
between these values is assumed. 

A causality relation is associated with each 
(inter)action, modeling the conditions for this (inter)action 
to happen. Three basic conditions for the occurrence of 
some action a are identified: 
• b → a; action b must happen before action a; 
• ¬b → a; action b must not happen before, nor 

simultaneously with action a; 
• √ → a; action a is always enabled. 

The and- (∧) and or-operator (∨) can be used to model 
more complex causality conditions. For example, b ∨ ¬c 
→ a represents that action a can happen after action b has 

                                                           
2 In this paper we assume that (abstract) data types are used 

to represent attribute values, types and constraints, but we 
refrain from defining this representation. 

happened or as long as action c has not happened yet. 
Furthermore, a probability attribute can be added to each 
sufficient condition to model the probability the 
(inter)action happens when this condition is satisfied. 

The causality relation concept allows the modeling of 
many different relationships between actions. It is often 
more convenient to express these relationships directly, 
instead of as a composition of causality relations of the 
individual actions. Figure 8. depicts the graphical 
expressions of some common relationships between two 
or three actions. The ∧- and ∨-operator are graphically 
expressed by the symbols ■ and □, respectively. The √ 
condition is expressed by an arrow with no action 
attached to its shaft. 

a b a

b

c

a

b

c

a b

a b a b a b

a enables b

independence

choice interleaving a disables b

a or b before c a and b before c

 
Figure 8 – Common Action Relations 

ISDL supports two orthogonal techniques to structure a 
behavior in terms of a composition of smaller and simpler 
sub-behaviors: causality-oriented and constraint-oriented 
structuring. 

Causality-oriented structuring is based on the 
decomposition of a causality relation by means of a 
syntactical construct, which allows one to define an action 
and its causality condition in distinct sub-behaviors. This 
syntactical construct makes use of: 
• entry points, which are points in a behavior from 

which actions of that behavior can be enabled by 
conditions involving actions of other behaviors; 

• exit points, which represent causality conditions in a 
behavior that can be used to enable actions of other 
behaviors. 

logon
i: <nm: Name, pw: Password>
   | IsValid(nm, pw)

user

authentication service

workflow service

logon
i: <nm: Name, pw: Password>

request task
i: Task

finnish task
i: Task

 
Figure 9 – An Example of Behavior Structuring 

Constraint-oriented structuring is based on the 
decomposition of an action into an interaction, which 
allows one to define a behavior as a composition of 



interacting sub-behaviors. This technique can be used to 
decompose complex conditions and constraints on the 
execution of an action into simpler sub-conditions and 
sub-constraints that are assigned to interaction 
contributions defined in separate sub-behaviors. 
Furthermore, constraint-oriented structuring is needed to 
structure a behavior in sub-behaviors that can be assigned 
to different entities, since entities can only communicate 
via interactions. 

Figure 9 shows an example in which both behavior 
structuring techniques are used. 

A tool environment [26] exists for a dialect of ISDL, 
called AMBER [5]. The Friends project [7] has adapted 
and extended this tool environment to support the 
modeling of software components and their composition 
into telematics applications. 

4.2 Modeling the Enterprise viewpoint in ISDL 

In order to represent enterprise models consistently 
using ISDL, we define how the enterprise concepts 
explained in section 2.1 are represented in terms of ISDL 
concepts.  

Communities and enterprise objects are represented as 
entities. Typically, a community is modeled as a 
composition of entities, since it is defined as a 
configuration of objects and can be hierarchically 
structured. However, from an external perspective (i.e., 
when abstracting from the internal functioning), a 
community can be represented as a single entity.  

A role is represented by a behavior definition. Actions 
and interactions are represented directly in ISDL. The 
causality relation concept is used to represent constraints 
on the occurrence of (inter)actions. In order to represent 
that an enterprise object fulfills a certain role, the 
corresponding behavior definition is assigned to the entity 
that models the enterprise object in ISDL. 

A process is also represented by a behavior definition. 
A process step can be represented as a single action, or 
alternatively as a behavior consisting of multiple actions 
in case one wants to decompose a step into a process. The 
relationships between roles and processes has been 
explained in section 3.1. These relationships can be 
represented directly using the constraint-oriented and 
causality-oriented structuring techniques.  

We interpret a policy as a constraint on existing 
behavior (see section 4.2). A constraint can be modeled as 
a constraint on the attributes of an (inter)action, or as an 
additional action relation. We do not discuss the 
incorporation of policies into behavior models here. This 
topic will be addressed in a forthcoming paper. 

4.3 Modeling the Computational viewpoint in 
ISDL 

Analogous to the previous section, we define how the 
Computational concepts explained in section 2.2 are 
represented in terms of ISDL concepts. 

A computational object is represented by an entity 
having one or more interaction points. An interaction 
point that is shared between two entities, represents a 
binding between these entities. A binding object can itself 
be represented as an entity. An interface is represented by 
a behavior definition, which defines possible interactions 
between some computational object and its environment. 
One may define a distinct interaction point for each 
interface in the entity, or alternatively assign multiple 
interfaces to the same interaction point. 

Signals, operations and streams can be represented in 
ISDL as interactions and their causality relations. Figure 
10, for example, illustrates the modeling of an 
interrogation, followed by an announcement. 

announce
i: Value

interrogate
i: Parameters

announce
i: Value | i = f(i(interrogate))

interrogate
i: Parameters

 
Figure 10 – Interrogation and Announcement 

4.4 Behavior refinement 

The enterprise model is more abstract in the sense that 
it prescribes what should be implemented by a supporting 
system, whereas the computational model is more 
concrete in the sense that it prescribes how the system 
should be implemented. 

A technique called behavior refinement [18, 20, 21] 
has been developed for ISDL to enforce the correct 
replacement of an abstract behavior by a more concrete 
behavior. Since this technique applies to arbitrary ISDL 
behaviors, it can also be applied for the refinement of 
enterprise models into computational models. We focus 
on behavior, since it comprises most of the complexity of 
a design. 

In general, an abstract behavior can be replaced by 
many alternative concrete behaviors. Depending on the 
choice of a concrete behavior, different concrete actions 
and their causality relations are added to the abstract 
behavior. Since this choice is determined by specific 
design objectives, behavior refinement can not be 
automated in its totality. 

When abstracting from certain concrete actions and 
their causality relations, the abstraction of this concrete 
behavior is completely determined by the remaining 
concrete actions and their causality relations. In these 
circumstances, the abstraction of a concrete behavior is 



unique. Rules have been defined to calculate this 
abstraction [18, 21]. These rules can, in principle, be 
automated. 

The uniqueness of an abstraction allows one to assess 
the conformance between an abstract behavior and a 
concrete behavior, by comparing the abstraction of the 
concrete behavior with the original abstract behavior. 
Therefore, the following design activities are 
distinguished in an instance of behavior refinement (see 
figure 11): 
1. delimitation of the abstract behavior: we only consider 

the refinement of behaviors that are influenced by a 
finite number of abstract actions. For example, in case 
of recursive behaviors one should identify the finite 
behavior parts that are (infinitely) repeated; 

2. refinement of the abstract behavior into a concrete 
behavior: in this activity we determine how the 
abstract behavior is implemented by the concrete 
behavior; 

3. determination of the abstraction of the concrete 
behavior: a method to perform this activity is 
presented in [18, 21]; 

4. comparison of the abstraction of the concrete behavior 
with the original abstract behavior: both behaviors 
should comply to a certain correctness relation, e.g., an 
equivalence relation. If this is not the case, the concrete 
behavior is not considered a correct implementation of 
the abstract behavior. In this case the designer must 
return to design activity 2. 

1. delimit behavior

2. refine behavior

3. determine abstraction

4. compare behavior

 
Figure 11 – Refinement Steps 

 
Although one cannot automate the refinement of a 

behavior in general, one can define specific and 
frequently used refinements. This facilitates and shortens 
the design process, since in principle the conformance of 
such refinements has to be checked only once. 

An example of a frequently used refinement is the 
delimitation of the system behavior to a workflow 
management system, discussed in section 3.2. 

5 Case Study 

In this section we illustrate our approach by means of a 
simplified case study. 

After introducing the case study informally, we show 
how it can be modeled from the enterprise and the 
computational viewpoint. We also show how the models 

from the different viewpoints relate for this particular case 
study, by considering both their structure and their formal 
relation.  

5.1 Informal description 

A leading Dutch bank uses the AMBER dialect [5] of 
the modeling technique we introduced in section 4 to 
model its business processes. At this bank, we 
investigated the business processes of the mortgage 
department. 

One of the policies of the bank is that it obliges itself 
to send an answer to a mortgage application of a client 
within two weeks. This answer is either an acceptance or 
a rejection. Furthermore, the mortgage sales process 
ensures that before the bank accepts or rejects the 
mortgage application, it asks for additional papers to 
assure the financial status of the client. Examples of these 
papers are a pay slip or a credit status of the client’s bank 
account. After the bank has accepted the mortgage 
application, it pays out the mortgage, and starts collecting 
the monthly payment of the mortgage and interest. 

The actions that are performed by the mortgage 
department can be split up into two processes: the sales 
processes that has selling mortgages as its goal, and the 
payment process that has collecting the client’s payment 
for the mortgage as its goal. 

Internally, the mortgage department can be split up 
into two units, a sales unit, and an administrative unit. The 
sales unit sells mortgages, while the administrative unit 
performs the administrative actions on the mortgages after 
it has been sold, such as the monthly collection of the 
client’s payments. The sales unit is split up into a front-
office that has contact with the clients, and a back-office 
that performs the internal actions at the bank. 
fill application
i: Client x Appl

request papers
i: Client x Papers

receive papers
i: Client x Papers

accept
i: Client

reject
i: Client

pay out mortgage
i: Client x Amount

check credit
i: Client x Appl x Papers

calculate mortgage details
i: Client x Appl x FinInfo

collect payment
i:Client x Amount

 
Figure 12 – Monolithic Enterprise Behavior 

5.2 A model from different viewpoints 

We first consider the monolithic enterprise behavior of 
the mortgage department. Figure 12 shows this behavior. 
The monolithic enterprise behavior only models the 
actions that take place in the department, without 
considering the decomposition of the actions into roles or 
processes. The actions with a double outline, like ‘collect 
payment’, can be performed more than once. We only 
consider one mortgage, therefore the entire behavior is 
carried out only once. If we want to consider more than 



one mortgage, the entire behavior must be instantiated 
more often. 

Figure 12 models that after a mortgage application has 
been received, the creditworthiness of the client is 
checked. After this, either the mortgage details are 
calculated directly, or additional papers are requested and 
received from the client first. After the mortgage details 
are calculated, the application is either rejected or 
accepted. Once the mortgage is accepted it is paid out. 
After it has been paid out, the monthly action of collecting 
the mortgage payment is enabled. Figure 12 shows the 
information that is used in each action. The information 
attributes refer to elements of the static schema that can 
be defined in the ODP information viewpoint, which we 
do not take into account in this paper. Optionally, the 
relation between the information in each action may be 
shown. We can, for example, express that the amount that 
is paid out in the action ‘pay out mortgage’ is the same as 
the amount that is calculated and written down on the 
application form in the action ‘calculate mortgage 
details’. The policy of the company to reply to an 
application within two weeks can be expressed as a 
constraint on the time attributes of the ‘fill application’, 
and the ‘accept’ and ‘reject’ actions. 

fill application

request papers

receive papers

reject

accept

check credit

pay out

collect
payment

front office back office administration

sales process

payment process

calculate details

 
Figure 13 – Decomposed Enterprise Behavior 

Figure 13 refines figure 12 by introducing roles, and 
replacing a relation that reaches over multiple roles by 
two relations that are connected by an interaction that 
represents the interchange of information between these 
roles. Consider, for example, the enabling relation 
between the action ‘fill application’ and the action ‘check 
credit’ from figure 12. In figure 13, this relation is 
replaced by an enabling relation from action ‘fill 
application’ to an interaction, and an enabling relation 
between this interaction and the ‘check credit’ action. The 
interaction that is introduced represents the transfer of the 
application form and the client information from the front 
office to the back office. 

Figure 14 shows the enterprise model that results from 
identifying the system boundaries. To come to this model, 
we decided to automate both the sales, and the payment 
process with a workflow management system. Also we 
decided to automate the payment actions that are 
performed by the administration. The dotted line delimits 
the roles that are fulfilled by the enterprise object that 
represents the system. 

Figure 14 shows that all actions that are performed by 
the roles that were assigned to ‘employee objects’ have 
become actions that are supported by the system. Also, 
the interactions that existed between the ‘employee roles’ 
from figure 13 have been removed, because the system 
now takes care of the transfer of information. The order in 
which the actions can occur is mostly controlled by the 
process roles. Only some minor ordering control is 
enforced by the front office role. The front office can, for 
example, make the decision whether a mortgage is 
accepted or rejected. 

fill application

request papers

receive papers

reject

accept

check credit

calculate details

pay out

collect
payment

front office back office

administration

sales process

payment process
 

Figure 14 – Enterprise Behavior with System 
Boundaries 

The decomposition shown in figure 14, can also be 
used as a first level logical decomposition of the system in 
the computational viewpoint. Subsequently we can 
decompose the system further. A possible logical 
decomposition of the system is shown in figure 15. For 
this decomposition we decided to build the system using a 
workflow service, and an administration object that can 
perform the payment actions. The workflow service 
makes use of an authentication service, and of a service 
that stores the business processes that the workflow 
system supports. 

The behavior of the sales process from figure 14 is 
implemented in figure 15 by the joint behavior of the 
generic workflow service provider object, the 
authentication service provider object, and the sales 



process object. Whether or not the enterprise behavior is 
correctly implemented by these objects still has to be 
proven using the technique from section 4.4. However, to 
be able to construct this proof, we first have to define the 
generic behavior of the workflow service object, the 
authentication service object, and the container that 
contains the sales process object. The definition of these 
behaviors is not given in this paper because of space 
limitations. 

front office back office administration

workflow service provider

authentication
service providersales process payment process

 
Figure 15 – Logical Decomposition at the 

Computational Level 

The behavior that is specific to the enterprise’s sales 
process, is implemented by the sales process 
computational object. Therefore, changes to the sales 
process in the enterprise, can easily be traced to changes 
in the sales process object in the computational model. 

The behavior of both administration roles from figure 
14 is implemented in figure 15 by the administration 
object. Therefore, if we change the behavior of either one 
of the enterprise roles, this traces to changes in the 
administration object. We may consider the 
decomposition of the administration object into a generic 
payment object, and two objects that reflect the specific 
behavior of the two enterprise roles. This makes a change 
in either one of the roles even easier to trace to 
computational objects. 

6 Conclusions and Future Work 

This paper proposes an approach for developing 
distributed applications based on an enterprise design. We 
define the approach according to the rules of the RM-
ODP. Our approach is based on a modeling technique that 
allows us to precisely define the relation between the 
enterprise and the system that supports it. Further, the 
approach proposes structuring techniques for enterprise 
designs, and system designs such that the system design 
reflects the structure of the enterprise design. Thereby the 
relation between a part of the enterprise and a part of the 
system is clearly defined. 

The benefit of our approach is that the relation between 
the enterprise and the distributed applications that support 
it, is defined precisely and intuitively clear, because of the 
formal modeling technique and the structuring techniques. 
This promotes the evolvability of the system, because  
changes in the enterprise can easily be propagated to the 
distributed applications. We have shown this briefly in a 
case study. 

Our approach mainly focuses on the behavioral aspect 
of system design. We can also specify the relation to the 
information that is used in the enterprise, but 
complementary notations have to be used to define a 
complete model of this information. 

The work in this paper is strongly related to the work 
on the relation between viewpoints from [3, 4, 25]. 

Much work still has to be done on the approach 
presented here. This work will be performed along three 
tracks. First, notational extensions will be defined to 
model actions for the creation and deletion of objects and 
bindings between objects. Second, notational extensions 
will be defined to model specific classes of behavior 
models, such as workflow descriptions. These extensions 
are expected to be comparable to UML profiles. Third, as 
explained in section 4.4, frequently used refinements will 
be defined. An example of such a frequently used 
refinement is the refinement from section 3.2 to transform 
a business process model into a business process model 
that is automated with a workflow engine. 
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