

A Design-for-Change Approach:
Developing Distributed Applications from Enterprise Models

Remco M. Dijkman, Dick A.C. Quartel,
Luís Ferreira Pires, Marten J. van Sinderen

{dijkman, quartel, pires, sinderen}@cs.utwente.nl

Centre for Telematics and Information Technology,
University of Twente

PO Box 217, 7500 AE,
Enschede, The Netherlands

Abstract
This paper presents a novel approach to distributed

applications design. The proposed approach considers
both the enterprise viewpoint and the computational
viewpoint of distributed applications during the design
process. Two important benefits are thus accomplished:
(1) the resulting distributed applications will better match
the enterprise’s needs, and (2) changes in the enterprise
can easily be translated to changes in the distributed
application. The approach comes with a formal notation
that makes it possible to define a precise relation between
enterprise models and models of the distributed
applications.

Keywords: distributed application, formal modeling,
enterprise model, RM-ODP, evolvability, structuring
technique, ISDL.

1 Introduction

The ability to timely adapt to new demands and
conditions is one of an enterprise’s main ways of getting a
competitive advantage. Effective adaptation is often not
limited to the enterprise’s business processes, but extends
to the distributed applications that support the business
processes. We call the ability of distributed applications to
change together with the enterprise: the evolvability of the
applications [11].

When developing evolvable applications, we have to
be aware that we are dealing with two knowledge
domains: the domain of the business architect, who
designs enterprises using enterprise concepts, and the
domain of the application architect, who designs
applications using application concepts. To be able to
develop evolvable software, the concepts from the two
domains have to be directly related [2, 8]. Only then can
we implement changes in the enterprise design directly in

the proper place in the applications. In the method that we
propose here, we use a common design notation as the
linking pin between the concepts from the two domains.
This approach is shown in figure 1. The figure shows that
the design notation can be used to express concepts from
both domains. In order to relate an enterprise design to an
application design precisely, we define a precise
technique to relate models that represent designs from the
two domains.

Enterprise
concepts

Application
concepts

Enterprise
design

Application
design

notation

application
model

represented by represented by

represented
by

represented
by

used to
construct

used to
construct

used to
construct

related to

enterprise
model

Figure 1 – Relation between Enterprise and

Application Designs

We have used the Reference Model for Open
Distributed Processing (RM-ODP) [9, 10, 11, 12] as a
basis for the development of our approach. We did this
because the RM-ODP is the result of a consensus between
a large number of companies and academic institutions on
the concepts that have to be used for the design of open
distributed systems. Another reason for using the RM-
ODP is that it provides concepts and abstractions that
allow us to relate distributed applications to enterprise
designs.

We developed our approach by investigating the
relations between the concepts from the RM-ODP
enterprise and computational viewpoint. These viewpoints
define concepts for enterprise design and distributed
application design, respectively. Based on the relation
between the concepts, we defined a relation between the

two viewpoints. We used a formal notation [18, 21] to
define this relation precisely. Using the relations between
the concepts we also identified structuring techniques, and
we made sure that the structuring techniques in the
enterprise viewpoint has counterparts in the
computational viewpoint. When using the same structure
in both viewpoints, changes to the enterprise design can
easily be traced to changes in the computational design.

The remainder of this paper is organized as follows.
Section 2 introduces the RM-ODP concepts that we use
for enterprise and application design. Also, this section
describes the relations between the concepts for enterprise
design and the concepts for application design in an
informal manner. Section 3 identifies the structuring
techniques that are used in enterprise design, and explains
how these techniques relate to the structure of distributed
applications. Section 4 introduces the formal notation and
explains how the notation can be used to define the
relation between enterprise and application models.
Finally, section 5 presents a case study to illustrate the use
of our approach.

2 RM-ODP Concepts

The Reference Model for Open Distributed Processing
provides a means for defining standards for open
distributed processing, such as standards for components
of ODP systems, and standards for modeling ODP
systems.

The RM-ODP defines five viewpoints, each of which
focuses on different aspects of a system design. Each
viewpoint is associated with a viewpoint language that
can be used for developing designs from this viewpoint. A
viewpoint language consists of a number of concepts that
can be used when defining standards from this viewpoint,
and rules that define the relations between the concepts.

In this paper we focus on the enterprise and the
computational viewpoint. The enterprise viewpoint
language can be used to specify the enterprise in which
the ODP system is embedded. The computational
viewpoint language can be used to specify the logical
decomposition of the system into interacting objects.

We use the ODP computational viewpoint to design
distributed applications in a platform-independent way.
The distributed applications can subsequently be mapped
to a specific component technology such as Enterprise
Java Beans. This approach is similar to the the Model
Driven Architecture approach [15] and the approach used
in the EDOC profile for UML [13, 14].

2.1 The ODP enterprise viewpoint

The enterprise viewpoint is defined in [11], and was
extended by the concepts and rules from [12] later on. The
enterprise language can be used to specify the system in
its environment.

The key concept in the enterprise viewpoint is the
community1 concept. The definition of a community is: ‘A
configuration of objects formed to meet an objective’
[11]. The objects mentioned in the definition (in the
enterprise viewpoint also known as enterprise objects)
represent real entities in a company, an example of which
could be an employee, or the system that has to be built.
Communities can be hierarchically structured. We can do
this by viewing a community as a community enterprise
object, and making this community enterprise object part
of another community.

A community is specified in detail by specifying [11]:
• the roles fulfilled by the enterprise objects;
• the steps within the processes in which the enterprise

objects participate;
• the policies that apply to the enterprise objects.

These concepts and the rules that apply to them are
explained in the sequel.

A role is an identifier for behavior [10]. The behavior
it identifies is specified in terms of actions and constraints
on when these actions can occur. An action is something
that happens. Each action in a community is either part of
a single role, or part of multiple roles. In case it is part of
multiple roles it defines an interaction between these
roles. An enterprise object can participate in an action by
fulfilling the role to which the action is assigned (or, in
case of an interaction, one of the roles to which this
interaction is assigned). When an enterprise object is said
to fulfill a certain role, all actions in this role are
associated with this enterprise object. An enterprise object
can fulfill several roles in a community. However, at one
moment in time, a role can only be fulfilled by one
enterprise object. Therefore, if we want to define the
behavior of a role once, and associate it to more than one
enterprise object, we must define a role type, and define
multiple instances of this role type, each of which can be
assigned to a different enterprise object.

A process is also an identifier for behavior. It is
defined as: ‘A collection of steps taking place in a pre-
described manner and leading to an objective’ [12], where
a step is defined as: ‘An abstraction of an action, … that
may leave unspecified objects that participate in that
action’ [12]. While both roles and processes are identifiers
for behavior, there is a difference between these concepts:
roles focus on the assignment of behavior to enterprise
objects, while processes focus on the assignment of
behavior to objectives [1]. Processes can be hierarchically
structured. This can be done by decomposing a step of a
process into a more detailed process [12]. A step must be
assigned to an actor role. An actor role is a role that
participates in performing an action. In contrast we can
also have artefact roles that are only referenced in an
action. By assigning a step to a role, or multiple roles in

1 all concepts are in italics when they are first mentioned.

case the step is an abstraction of an interaction, we can
eventually assign it to enterprise objects.

‘A policy identifies the behavior, or constraints on a
behavior, that can be changed during the lifetime of the
ODP system …’ [12]. Typically, a policy is defined in
terms of a set of rules. Each rule can express either an
obligation, a permission, a prohibition, or an
authorization. An obligation is a prescription that a
particular behavior is required to occur. A permission is a
prescription that a particular behavior is allowed to occur.
A prohibition is a prescription that a particular behavior
must not occur, and an authorization is a prescription that
a particular behavior must not be prevented.

It is hard to pinpoint the exact relation between a
policy and the enterprise behavior that is specified by the
roles and processes. One view on the relation between
policies and enterprise behavior is that policies describe
the desired behavior of an enterprise, while the enterprise
behavior describes the actual behavior [24]. Another view
on the relation between policies and enterprise behavior is
that enterprise behavior describes the behavior an object
is physically capable of, while policies prescribe a social
behavior that objects must commit themselves to when
they join a community [16]. Both views on the relation
between policies and enterprise behavior describe
enterprise behavior as the actual behavior of an enterprise,
and policies as constraints on this behavior. In this paper
we view policies in this way.

We will not discuss how policies can be expressed in
our notation, nor how they can be related to distributed
applications. We will merely interpret them as constraints
on behavior. A detailed discussion on policies is outside
the scope of this paper.

2.2 The ODP computational viewpoint

The computational viewpoint is defined in [11]. At the
computational viewpoint we can specify the logical
decomposition of a system into objects that interact
through their interfaces. The logical decomposition splits
up the system into distributed parts.

A computational design is given in terms of a
configuration of (computational) objects. Objects can
perform actions by themselves, or participate in
interactions with other objects. Interactions between
objects happen at interfaces. Computational objects have
a quality of service contract with their environment.

An interface can either be a signal interface, an
operation interface, or a stream interface, depending on
the type of interactions that can happen at the interface. At
a signal interface, signals happen, which are defined as
atomic shared actions that result in one-way
communication from an initiating object to a responding
object. At an operation interface operations can happen,
which can be either announcements, or interrogations. An
announcement is the conveyance of information from a

client to a server. An interrogation is a two way
communication in which a client requests a function from
a server, to which the server subsequently responds by
sending the information resulting from the requested
function call. At a stream interface, flows happen. A flow
is an abstraction of a sequence of interactions, in which
information flows from a producer object to a consumer
object. An interface does not only specify the type of
interactions that can happen, but also the allowed
sequences in which the interactions can happen.
Therefore, an interface completely defines a subset of the
behavior of the object.

For two objects to be able to interact on their
respective interfaces, a binding must be established
between these interfaces. Bindings can only be
established between two compatible interfaces. A precise
definition of compatibility between interfaces is given in
[11], but we trust on the readers intuitive understanding of
compatibility. A binding may be represented by a binding
object. This has the benefit that the binding can support
interactions between more than two interfaces. Another
benefit of a binding object is that it can be used to control
the binding it represents, by providing control interfaces.

 Apart from the run-time establishment of bindings
between interfaces, objects can instantiate other objects at
run-time from object templates. An object template
corresponds to a class definition in object-oriented
programming languages. An object template consists of a
number of interface templates, which can be used to
instantiate the object’s interfaces.

2.3 The relation between the viewpoints

A correspondence statement tells how an element of an
enterprise design relates to different elements of a
computational design. [12] specifies a number of
correspondence statements that are mandatory if you want
to produce a coherent design, and not just two designs
from two viewpoints that are seemingly unrelated. From
these correspondence statements we can derive the
relation between the enterprise and the computational
viewpoint.

The key correspondence statement tells that it is
mandatory to specify, for each enterprise object, the
computational objects by which it is realized. This
correspondence statement does not specify a true
refinement relation [4], in the sense that some objects in
an enterprise design may not appear in the computational
design at all, because they are not automated but rather
related to human behavior [17]. From this correspondence
statement, we derive that each enterprise object can be
realized by multiple computational objects.

From the other correspondence statements, we can
derive that an interaction in the enterprise viewpoint is
realized in the computational viewpoint by a number of
interactions that happen on computational interfaces that

have a binding between them. Furthermore, if an
enterprise object is constrained by a policy, then the
computational objects that realizes this enterprise object
must address this policy.

3 Structuring Techniques

In this section we explain how distributed applications
can be structured based on an enterprise design. Our goal
is to define the structures in such a way that we are able to
propagate changes in the enterprise design easily to
changes in a computational design.

This section starts by explaining the structuring
mechanisms that can be used in the enterprise viewpoint.
It then explains how the system can be delimited in the
enterprise viewpoint. Finally, it explains how the structure
of a design from the computational viewpoint relates to
the structure of a design from the enterprise viewpoint.

3.1 Structuring the enterprise viewpoint

We distinguish two approaches to structure enterprise
behavior: the role-base and the process-based approach
[1, 12]. The role-based approach abstracts from the
concepts for process design, which are process and step,
and structures the enterprise behavior into roles. The role-
based approach focuses on who-does-what in the
enterprise [1]. The process-based approach initially
abstracts from the role concept, and structures the
enterprise behavior into processes. The process-based
approach focuses on the actions that must be taken in
order to reach a certain goal in the enterprise [1]. While
the process-based approach initially abstracts from the
roles that are involved in a process, we assign a process’
steps to roles before we can assign a process to enterprise
objects. Therefore, the process-based approach can not
completely abstract from roles.

process 1

process 2

process 3

role 1 role 2 role 3

action

constraint between actions

Figure 2 – Relation between Roles and Processes

Although the process-based and role-based approach
have a different focus, they are both identifiers for
behavior. Hence we consider the role-based and process-
based approach as orthogonal, in the sense that each
behavior that is defined as a process can also be defined
as a collection of roles, and vice versa. The relation

between the role-based, and the process-based approach is
graphically represented in figure 2. This figure shows
actions as dots, and constraints between actions as dotted
lines. The actions that are performed in the enterprise, and
the constraints on these actions are horizontally identified
by processes, and vertically identified by roles. If we
ignore the structuring of the actions and constraints into
roles and processes, we get the monolithic enterprise
behavior [28, 29].

The way in which constraints between actions in
different processes and constraints between actions in
different roles can be enforced, varies. Constraints
between actions in different processes can be enforced
directly. However, constraints between actions in
different roles can only be enforced if the objects that
perform these roles can communicate in some way.

We use interactions to express the communication
between objects in different roles. In this case the
interaction is the intermediary for a constraint that ranges
over different roles. In practice an interaction may be
implemented, for example, by sending a memo or a file
over the internal mail. In contrast to using interactions to
decompose a constraint that ranges over different roles,
we use an exit-entry combination to represent a constraint
that ranges over different processes.

In case of a constraint between actions that are both in
different processes and in different roles, we should use
an interaction.

The interactions between roles, and the constraints
between processes are shown in figure 3.

process 1

process 2

process 3

role 1 role 2 role 3

action

constraint between actions

entry/exit

interaction

Figure 3 – Communication between Roles and

Processes

3.2 Delimiting the system behavior

After defining an enterprise’s behavior, we must
decide which part of the behavior to automate. We call
this the delimitation of system behavior. When delimiting
the system behavior, we may decide that a role will partly
be fulfilled by the system and partly by an employee.
Since, at one point in time, a single role can only be
assigned to a single enterprise object, the role then has to
be split up.

When we split up a role, it is possible that one or more
of its (inter)actions must also be split up, because this

(inter)action will partly be performed by the system and
partly by an employee.

When delimiting the system behavior, we must make
sure that the enterprise behavior after the delimitation
conforms to the enterprise behavior before the
delimitation, otherwise the processes in the enterprise
would be performed incorrectly after the implementation
of the system. Therefore, only certain operations (or
refinements) on (inter)actions are allowed to delimit the
system. The allowed refinements are shown in figure 4
and 5.

a

role

manual role

a a

automated role manual roleautomated role

a

automated role

a

Figure 4 – Allowed Action Refinements

Figure 4 shows the acceptable refinements for splitting
up an action. The leftmost refinement represents the case
in which an action is supported by the system, in which
case it is performed as an interaction between the user of
the system and the system itself. An example of an action
that is supported by the system is the entry of data into the
system.

When an action is fully automated, additional
interactions between the system and its user may be
necessary. An interaction may, for example, be necessary
to express the notification by the user that an action has to
be performed. The middle refinement from figure 4
represents this situation. The rightmost refinement
represents the situation in which no additional interactions
with the user are necessary for the system to perform the
action.

manual role

a a

automated role

b b

role role

b b

automated role manual rolemanual role

bb

!

automated role

a a

automated role

X

Figure 5 – Allowed Interaction Refinements

Figure 5 shows the acceptable refinements for splitting
up an interaction. The top-left refinement represents the
situation in which an interaction is replaced by an
interaction between two roles of the system (e.g., different
system parts). The bottom-left refinement represents the
situation in which the interaction is replaced by an

interaction between the system and a user. The bottom-
right refinement represents the situation in which an
interaction is fully implemented by one system part, and
therefore removed. The top-right refinement represents
the situation in which an interaction between two users is
automated (e.g., by an e-mail system). In this situation,
we must enforce the constraint that either all interactions
by which an interaction is refined happen, or neither of
them happens. In figure 5 this constraint is represented by
an exclamation mark. The reason for this constraint is that
an interaction is atomic, meaning that an interaction
happens either at all roles, or not at all. This implies that
atomicity must hold for a refinement of an interaction,
otherwise a refinement would not be correct.

A constraint can only be automated, if it constrains
actions that are in the same automated role, or interactions
that have a contribution in the same automated role.
Otherwise, the constraint must be enforced manually.

Finally, after the system behavior has been delimited,
we assign the roles to enterprise objects. Enterprise
objects may be employees, but also distributed
applications, and most importantly, the system under
development.

In principle the choice on how the system is going to
support the enterprise is arbitrary, i.e., the choice on
which actions and constraints to automate is arbitrary.
However, usually the choice on how the system is going
to support the enterprise follows a well-defined pattern.
As an example we consider a special form of supporting
the enterprise, which is called workflow automation.
Other forms of supporting the enterprise are, for example,
the support of the enterprise by an information system, a
CSCW system, etc.

Workflow automation is defined as ‘the automation of
a business process, in whole or in part, during which
documents, information, or tasks are passed from one
participant to another for action, according to a set of
procedural rules’ [30]. In this type of process automation,
not the actions that are performed in the enterprise are
automated, but the constraints that impose the order in
which the actions are performed. Also, the interactions
between the roles that are involved in the process are
automated, because they represent the transfer of
information from one role to another. Consider, for
example, the automation of process 1 from figure 3,
which is represented by figure 6.

workflow role

role 1 role 2 role 3

action

constraint between actions

entry/exit

interaction

Figure 6 – Workflow Automation of a Process

In figure 6, we can see that the order in which the work
is performed (represented by the constraints between the
actions) is now the responsibility of the workflow role.

We can also see that the manual actions from figure 3, are
replaced by interactions with the system. The part of the
interactions from figure 6 that is assigned to roles 1, 2 and
3 represents the actual work that has to be performed in
the enterprise (the original actions that were assigned to
the roles in figure 3). The part of the interactions that is
assigned to the workflow role represents the notification
by the workflow system that the action can be performed,
and the reception of the notification by the system that the
user is done performing the action. Finally, we can see
from the figure that the interactions between the roles in
figure 3 are removed, because the communication
between the roles is now enforced by the system.

3.3 Structuring the computational viewpoint

The computational viewpoint considers the
decomposition of enterprise objects into computational
objects. Only the enterprise object that represents the
system under development is decomposed. The
decomposition does not necessarily have to match the
decomposition of enterprise objects into roles. However,
we argue that it is recommended to make the first logical
decomposition of the enterprise object into computational
objects meet the decomposition of the enterprise object
into roles (and, indirectly via roles, processes). Such a
decomposition makes it easier to trace changes in the
enterprise viewpoint to changes in the system.

Consider, for example, figure 6, and assume that the
workflow role and role three are automated by the system.
Hence, these roles are assigned to the enterprise object
that represents the system. In this case we argue that it is
preferable to decompose this enterprise object into two
computational objects that correspond to the roles that are
automated.

It is possible to make the first decomposition of the
system already at the enterprise level, by defining the
system as a community object, and identifying sub-
systems by enterprise objects that are part of this
community object [6, 25]. However, one should be careful
when using this approach, because the aim of the
enterprise viewpoint is to express the relation between the
system and its environment, and not the logical
decomposition of the system. We only allow a
decomposition into sub-systems in the enterprise design
when these sub-systems are associated with clear
objectives in the enterprise [25].

4 Formal Support to Relate Models

To facilitate precise and unambiguous reasoning about
the relationship between an enterprise and corresponding
computational model, we use the formal modeling
technique ISDL (Interaction System Design Language).
For this purpose, we define a mapping from the concepts
of the RM-ODP enterprise and computational viewpoints

onto ISDL. The use of a single language for the two
viewpoints makes it easier to compare models that
represent designs from both viewpoints. In particular, it
allows us to define rules for refinement and for assessing
the conformance between models at different abstraction
levels.

In this paper we discuss ISDL in an informal manner.
We refer to [21] for the formal semantics of ISDL.

4.1 ISDL

ISDL is a generic modeling language that has been
developed for the modeling of various types of distributed
systems, such as business processes, telematics
applications and communication networks [5, 19, 23]. It is
based on minimizing the limitations of existing formal
methods [27]. An ISDL model of some system consists of
two models: an entity model and a behavior model.

The entity model represents which system parts are
considered, and how they are interconnected. Two
concepts are used in an entity model: entity and
interaction point. An entity represents a system (part) that
performs some function or behavior, like, for example, a
software component or business department. An
interaction point represents some mechanism through
which an entity can interact with other entities, like, for
example, an electronic mail client.

workflow engine

workflow service
provider

authentication
service provider

process
database

i. external ii. internal
Figure 7 – An Example Entity Model

From an external perspective, a system is modeled by a
single entity, having one or more interaction points.
Figure 7.i, for example, models a workflow engine that
interacts with its user via three interaction points. These
interaction points could, for example, represent a
workflow client, an interface for administering user
information and business process modeling tool. An entity
is graphically expressed by a rectangle with cut-off
corners. An interaction point is graphically expressed by
an ellipsis that overlaps with the entities that share (i.e.,
communicate via) the interaction point.

From an internal perspective, a system is modeled as a
composition of functional parts. For example, these parts
may represent sub-components or business units within
some department. The internal perspective of the
workflow engine is shown in figure 7.ii. This figure
shows that the workflow engine is split up into three
parts: a generic service provider that notifies users of the
tasks that have to be performed, an authentication service
provider, and a database for storing the business
processes.

The behavior model represents the behavior, or
functionality, of each entity in the corresponding entity
model. Three concepts are used: action, interaction and
causality relation. An action represents some unit of
activity performed by a single entity. Consider, for
example, the action of the workflow service provider that
models the calculation of the next task to perform. An
interaction represents a common activity performed by
two (or more) entities. An interaction contribution
represents the participation of an individual entity in the
common activity. Consider, as an example, the interaction
between the workflow service and its user that notifies the
user of the next task to perform.

Information, time and location attributes can be added
to an (inter)action, in order to model the result established
in some activity, the time moment at which this result is
available, and the location where the result is available,
respectively. An (inter)action occurrence represents the
successful completion of an activity. An (inter)action is
atomic in the sense that if an (inter)action occurs, the
same result is establish and made available at the same
time moment and at the same location for all entities
involved in the activity. Otherwise, no result is
established and no entity can refer to any intermediate
results of the activity.

An action is graphically expressed as a circle (or
ellipsis). An interaction contribution is graphically
expressed as a segmented circle (or ellipsis), which
reflects that multiple entities contribute to the interaction.
The information (ι), time (τ) and location (λ) attributes
are represented within a text-box attached to the
(inter)action2. Constraints can be defined on the possible
outcomes of the values of ι, τ and λ (expressed after the
symbol ‘|’). In case of an interaction, each interaction
contribution defines the constraints of the corresponding
entity, such that the values of ι, τ and λ must satisfy the
constraints of all involved entities, otherwise the
interaction can not happen. In case multiple values are
possible for some attribute, a non-deterministic choice
between these values is assumed.

A causality relation is associated with each
(inter)action, modeling the conditions for this (inter)action
to happen. Three basic conditions for the occurrence of
some action a are identified:
• b → a; action b must happen before action a;
• ¬b → a; action b must not happen before, nor

simultaneously with action a;
• √ → a; action a is always enabled.

The and- (∧) and or-operator (∨) can be used to model
more complex causality conditions. For example, b ∨ ¬c
→ a represents that action a can happen after action b has

2 In this paper we assume that (abstract) data types are used

to represent attribute values, types and constraints, but we
refrain from defining this representation.

happened or as long as action c has not happened yet.
Furthermore, a probability attribute can be added to each
sufficient condition to model the probability the
(inter)action happens when this condition is satisfied.

The causality relation concept allows the modeling of
many different relationships between actions. It is often
more convenient to express these relationships directly,
instead of as a composition of causality relations of the
individual actions. Figure 8. depicts the graphical
expressions of some common relationships between two
or three actions. The ∧- and ∨-operator are graphically
expressed by the symbols ■ and □, respectively. The √
condition is expressed by an arrow with no action
attached to its shaft.

a b a

b

c

a

b

c

a b

a b a b a b

a enables b

independence

choice interleaving a disables b

a or b before c a and b before c

Figure 8 – Common Action Relations

ISDL supports two orthogonal techniques to structure a
behavior in terms of a composition of smaller and simpler
sub-behaviors: causality-oriented and constraint-oriented
structuring.

Causality-oriented structuring is based on the
decomposition of a causality relation by means of a
syntactical construct, which allows one to define an action
and its causality condition in distinct sub-behaviors. This
syntactical construct makes use of:
• entry points, which are points in a behavior from

which actions of that behavior can be enabled by
conditions involving actions of other behaviors;

• exit points, which represent causality conditions in a
behavior that can be used to enable actions of other
behaviors.

logon
i: <nm: Name, pw: Password>
 | IsValid(nm, pw)

user

authentication service

workflow service

logon
i: <nm: Name, pw: Password>

request task
i: Task

finnish task
i: Task

Figure 9 – An Example of Behavior Structuring

Constraint-oriented structuring is based on the
decomposition of an action into an interaction, which
allows one to define a behavior as a composition of

interacting sub-behaviors. This technique can be used to
decompose complex conditions and constraints on the
execution of an action into simpler sub-conditions and
sub-constraints that are assigned to interaction
contributions defined in separate sub-behaviors.
Furthermore, constraint-oriented structuring is needed to
structure a behavior in sub-behaviors that can be assigned
to different entities, since entities can only communicate
via interactions.

Figure 9 shows an example in which both behavior
structuring techniques are used.

A tool environment [26] exists for a dialect of ISDL,
called AMBER [5]. The Friends project [7] has adapted
and extended this tool environment to support the
modeling of software components and their composition
into telematics applications.

4.2 Modeling the Enterprise viewpoint in ISDL

In order to represent enterprise models consistently
using ISDL, we define how the enterprise concepts
explained in section 2.1 are represented in terms of ISDL
concepts.

Communities and enterprise objects are represented as
entities. Typically, a community is modeled as a
composition of entities, since it is defined as a
configuration of objects and can be hierarchically
structured. However, from an external perspective (i.e.,
when abstracting from the internal functioning), a
community can be represented as a single entity.

A role is represented by a behavior definition. Actions
and interactions are represented directly in ISDL. The
causality relation concept is used to represent constraints
on the occurrence of (inter)actions. In order to represent
that an enterprise object fulfills a certain role, the
corresponding behavior definition is assigned to the entity
that models the enterprise object in ISDL.

A process is also represented by a behavior definition.
A process step can be represented as a single action, or
alternatively as a behavior consisting of multiple actions
in case one wants to decompose a step into a process. The
relationships between roles and processes has been
explained in section 3.1. These relationships can be
represented directly using the constraint-oriented and
causality-oriented structuring techniques.

We interpret a policy as a constraint on existing
behavior (see section 4.2). A constraint can be modeled as
a constraint on the attributes of an (inter)action, or as an
additional action relation. We do not discuss the
incorporation of policies into behavior models here. This
topic will be addressed in a forthcoming paper.

4.3 Modeling the Computational viewpoint in
ISDL

Analogous to the previous section, we define how the
Computational concepts explained in section 2.2 are
represented in terms of ISDL concepts.

A computational object is represented by an entity
having one or more interaction points. An interaction
point that is shared between two entities, represents a
binding between these entities. A binding object can itself
be represented as an entity. An interface is represented by
a behavior definition, which defines possible interactions
between some computational object and its environment.
One may define a distinct interaction point for each
interface in the entity, or alternatively assign multiple
interfaces to the same interaction point.

Signals, operations and streams can be represented in
ISDL as interactions and their causality relations. Figure
10, for example, illustrates the modeling of an
interrogation, followed by an announcement.

announce
i: Value

interrogate
i: Parameters

announce
i: Value | i = f(i(interrogate))

interrogate
i: Parameters

Figure 10 – Interrogation and Announcement

4.4 Behavior refinement

The enterprise model is more abstract in the sense that
it prescribes what should be implemented by a supporting
system, whereas the computational model is more
concrete in the sense that it prescribes how the system
should be implemented.

A technique called behavior refinement [18, 20, 21]
has been developed for ISDL to enforce the correct
replacement of an abstract behavior by a more concrete
behavior. Since this technique applies to arbitrary ISDL
behaviors, it can also be applied for the refinement of
enterprise models into computational models. We focus
on behavior, since it comprises most of the complexity of
a design.

In general, an abstract behavior can be replaced by
many alternative concrete behaviors. Depending on the
choice of a concrete behavior, different concrete actions
and their causality relations are added to the abstract
behavior. Since this choice is determined by specific
design objectives, behavior refinement can not be
automated in its totality.

When abstracting from certain concrete actions and
their causality relations, the abstraction of this concrete
behavior is completely determined by the remaining
concrete actions and their causality relations. In these
circumstances, the abstraction of a concrete behavior is

unique. Rules have been defined to calculate this
abstraction [18, 21]. These rules can, in principle, be
automated.

The uniqueness of an abstraction allows one to assess
the conformance between an abstract behavior and a
concrete behavior, by comparing the abstraction of the
concrete behavior with the original abstract behavior.
Therefore, the following design activities are
distinguished in an instance of behavior refinement (see
figure 11):
1. delimitation of the abstract behavior: we only consider

the refinement of behaviors that are influenced by a
finite number of abstract actions. For example, in case
of recursive behaviors one should identify the finite
behavior parts that are (infinitely) repeated;

2. refinement of the abstract behavior into a concrete
behavior: in this activity we determine how the
abstract behavior is implemented by the concrete
behavior;

3. determination of the abstraction of the concrete
behavior: a method to perform this activity is
presented in [18, 21];

4. comparison of the abstraction of the concrete behavior
with the original abstract behavior: both behaviors
should comply to a certain correctness relation, e.g., an
equivalence relation. If this is not the case, the concrete
behavior is not considered a correct implementation of
the abstract behavior. In this case the designer must
return to design activity 2.

1. delimit behavior

2. refine behavior

3. determine abstraction

4. compare behavior

Figure 11 – Refinement Steps

Although one cannot automate the refinement of a

behavior in general, one can define specific and
frequently used refinements. This facilitates and shortens
the design process, since in principle the conformance of
such refinements has to be checked only once.

An example of a frequently used refinement is the
delimitation of the system behavior to a workflow
management system, discussed in section 3.2.

5 Case Study

In this section we illustrate our approach by means of a
simplified case study.

After introducing the case study informally, we show
how it can be modeled from the enterprise and the
computational viewpoint. We also show how the models

from the different viewpoints relate for this particular case
study, by considering both their structure and their formal
relation.

5.1 Informal description

A leading Dutch bank uses the AMBER dialect [5] of
the modeling technique we introduced in section 4 to
model its business processes. At this bank, we
investigated the business processes of the mortgage
department.

One of the policies of the bank is that it obliges itself
to send an answer to a mortgage application of a client
within two weeks. This answer is either an acceptance or
a rejection. Furthermore, the mortgage sales process
ensures that before the bank accepts or rejects the
mortgage application, it asks for additional papers to
assure the financial status of the client. Examples of these
papers are a pay slip or a credit status of the client’s bank
account. After the bank has accepted the mortgage
application, it pays out the mortgage, and starts collecting
the monthly payment of the mortgage and interest.

The actions that are performed by the mortgage
department can be split up into two processes: the sales
processes that has selling mortgages as its goal, and the
payment process that has collecting the client’s payment
for the mortgage as its goal.

Internally, the mortgage department can be split up
into two units, a sales unit, and an administrative unit. The
sales unit sells mortgages, while the administrative unit
performs the administrative actions on the mortgages after
it has been sold, such as the monthly collection of the
client’s payments. The sales unit is split up into a front-
office that has contact with the clients, and a back-office
that performs the internal actions at the bank.
fill application
i: Client x Appl

request papers
i: Client x Papers

receive papers
i: Client x Papers

accept
i: Client

reject
i: Client

pay out mortgage
i: Client x Amount

check credit
i: Client x Appl x Papers

calculate mortgage details
i: Client x Appl x FinInfo

collect payment
i:Client x Amount

Figure 12 – Monolithic Enterprise Behavior

5.2 A model from different viewpoints

We first consider the monolithic enterprise behavior of
the mortgage department. Figure 12 shows this behavior.
The monolithic enterprise behavior only models the
actions that take place in the department, without
considering the decomposition of the actions into roles or
processes. The actions with a double outline, like ‘collect
payment’, can be performed more than once. We only
consider one mortgage, therefore the entire behavior is
carried out only once. If we want to consider more than

one mortgage, the entire behavior must be instantiated
more often.

Figure 12 models that after a mortgage application has
been received, the creditworthiness of the client is
checked. After this, either the mortgage details are
calculated directly, or additional papers are requested and
received from the client first. After the mortgage details
are calculated, the application is either rejected or
accepted. Once the mortgage is accepted it is paid out.
After it has been paid out, the monthly action of collecting
the mortgage payment is enabled. Figure 12 shows the
information that is used in each action. The information
attributes refer to elements of the static schema that can
be defined in the ODP information viewpoint, which we
do not take into account in this paper. Optionally, the
relation between the information in each action may be
shown. We can, for example, express that the amount that
is paid out in the action ‘pay out mortgage’ is the same as
the amount that is calculated and written down on the
application form in the action ‘calculate mortgage
details’. The policy of the company to reply to an
application within two weeks can be expressed as a
constraint on the time attributes of the ‘fill application’,
and the ‘accept’ and ‘reject’ actions.

fill application

request papers

receive papers

reject

accept

check credit

pay out

collect
payment

front office back office administration

sales process

payment process

calculate details

Figure 13 – Decomposed Enterprise Behavior

Figure 13 refines figure 12 by introducing roles, and
replacing a relation that reaches over multiple roles by
two relations that are connected by an interaction that
represents the interchange of information between these
roles. Consider, for example, the enabling relation
between the action ‘fill application’ and the action ‘check
credit’ from figure 12. In figure 13, this relation is
replaced by an enabling relation from action ‘fill
application’ to an interaction, and an enabling relation
between this interaction and the ‘check credit’ action. The
interaction that is introduced represents the transfer of the
application form and the client information from the front
office to the back office.

Figure 14 shows the enterprise model that results from
identifying the system boundaries. To come to this model,
we decided to automate both the sales, and the payment
process with a workflow management system. Also we
decided to automate the payment actions that are
performed by the administration. The dotted line delimits
the roles that are fulfilled by the enterprise object that
represents the system.

Figure 14 shows that all actions that are performed by
the roles that were assigned to ‘employee objects’ have
become actions that are supported by the system. Also,
the interactions that existed between the ‘employee roles’
from figure 13 have been removed, because the system
now takes care of the transfer of information. The order in
which the actions can occur is mostly controlled by the
process roles. Only some minor ordering control is
enforced by the front office role. The front office can, for
example, make the decision whether a mortgage is
accepted or rejected.

fill application

request papers

receive papers

reject

accept

check credit

calculate details

pay out

collect
payment

front office back office

administration

sales process

payment process

Figure 14 – Enterprise Behavior with System
Boundaries

The decomposition shown in figure 14, can also be
used as a first level logical decomposition of the system in
the computational viewpoint. Subsequently we can
decompose the system further. A possible logical
decomposition of the system is shown in figure 15. For
this decomposition we decided to build the system using a
workflow service, and an administration object that can
perform the payment actions. The workflow service
makes use of an authentication service, and of a service
that stores the business processes that the workflow
system supports.

The behavior of the sales process from figure 14 is
implemented in figure 15 by the joint behavior of the
generic workflow service provider object, the
authentication service provider object, and the sales

process object. Whether or not the enterprise behavior is
correctly implemented by these objects still has to be
proven using the technique from section 4.4. However, to
be able to construct this proof, we first have to define the
generic behavior of the workflow service object, the
authentication service object, and the container that
contains the sales process object. The definition of these
behaviors is not given in this paper because of space
limitations.

front office back office administration

workflow service provider

authentication
service providersales process payment process

Figure 15 – Logical Decomposition at the

Computational Level

The behavior that is specific to the enterprise’s sales
process, is implemented by the sales process
computational object. Therefore, changes to the sales
process in the enterprise, can easily be traced to changes
in the sales process object in the computational model.

The behavior of both administration roles from figure
14 is implemented in figure 15 by the administration
object. Therefore, if we change the behavior of either one
of the enterprise roles, this traces to changes in the
administration object. We may consider the
decomposition of the administration object into a generic
payment object, and two objects that reflect the specific
behavior of the two enterprise roles. This makes a change
in either one of the roles even easier to trace to
computational objects.

6 Conclusions and Future Work

This paper proposes an approach for developing
distributed applications based on an enterprise design. We
define the approach according to the rules of the RM-
ODP. Our approach is based on a modeling technique that
allows us to precisely define the relation between the
enterprise and the system that supports it. Further, the
approach proposes structuring techniques for enterprise
designs, and system designs such that the system design
reflects the structure of the enterprise design. Thereby the
relation between a part of the enterprise and a part of the
system is clearly defined.

The benefit of our approach is that the relation between
the enterprise and the distributed applications that support
it, is defined precisely and intuitively clear, because of the
formal modeling technique and the structuring techniques.
This promotes the evolvability of the system, because
changes in the enterprise can easily be propagated to the
distributed applications. We have shown this briefly in a
case study.

Our approach mainly focuses on the behavioral aspect
of system design. We can also specify the relation to the
information that is used in the enterprise, but
complementary notations have to be used to define a
complete model of this information.

The work in this paper is strongly related to the work
on the relation between viewpoints from [3, 4, 25].

Much work still has to be done on the approach
presented here. This work will be performed along three
tracks. First, notational extensions will be defined to
model actions for the creation and deletion of objects and
bindings between objects. Second, notational extensions
will be defined to model specific classes of behavior
models, such as workflow descriptions. These extensions
are expected to be comparable to UML profiles. Third, as
explained in section 4.4, frequently used refinements will
be defined. An example of such a frequently used
refinement is the refinement from section 3.2 to transform
a business process model into a business process model
that is automated with a workflow engine.

References

[1] J. Aagedal, Z. Milošević. ODP Enterprise Language: UML
Perspective, in C. Atkinson (ed.): proceedings of EDOC
1999, IEEE Press, pp. 60-71, 1999.

[2] L. Andrade, J. Fiadeiro. Coordination Technologies for
Managing Information System Evolution, in K. Dittrich, A.
Geppert, M. Norrie (eds.): Proc. CaiSE 2001, LNCS 2068,
Springer Verlag, Berlin, pp. 374-387, 2001.

[3] H. Bowman, E. Boiten, J. Derrick, M. Steen. Viewpoint
Consistency in ODP, a General Interpretation, in E. Najm,
J.-B. Stefani (eds.): Proceedings of Formal Methods for
Open Object-Based Distributed Systems, Chapman and
Hall, pp. 189-204, 1996.

[4] H. Bowman, J. Derrick, M. Steen. Some Results on Cross
Viewpoint Consistency Checking, in K. Raymond, L.
Armstrong (eds.): proceedings of IFIP TC6 International
Conference on Open Distributed Processing, Chapman and
Hall, pp. 399-412, 1995.

[5] H. Eertink, W. Janssen, P. Oude Luttighuis, W. Teeuw, C.
Vissers. A business process design language, in:
Proceedings of the World Congress on Formal Methods,
1999.

[6] European Organisation for the Safety of Air Navigation,
ECHO Final Report, 1.0 edition, 1997.

[7] Friends Project. http://www.telin.nl/Middleware/FRIENDS
/ENindex.htm.

[8] P. Herzum, O. Sims. Business Component Factory – A
Comprehensive Overview of Component-Based
Development for the Enterprise, Wiley, New-York, 2000.

[9] ITU-T / ISO. Open Distributed Processing Reference
Model. Part 1 – Overview, ITU-T X.901 | ISO/IEC 10746-
1, 1995.

[10] ITU-T / ISO. Open Distributed Processing Reference
Model. Part 2 – Foundations, ITU-T X.902 | ISO/IEC
10746-2, 1994.

[11] ITU-T / ISO. Open Distributed Processing Reference
Model. Part 3 – Architecture, ITU-T X.903 | ISO/IEC
10746-3, 1995.

[12] ITU-T / ISO. Information Technology - Open Distributed
Processing Reference Model – Enterprise Language, ITU-
T X.911 | ISO/IEC 15414.

[13] OMG. UML Profile for Enterprise Distributed Object
Computing Specification, ptc/02-02-05, February 2002.

[14] OMG. A UML Profile for Enterprise Distributed Object
Computing – Part II Supporting Annexes, ad/01-08-20,
August 2001.

[15] OMG. Model Driven Architecture, ormsc/02-07-01, July
2001.

[16] P. Linington, Z. Milošević, K. Raymond. Policies in
Communities: Extending the Enterprise Viewpoint, in
proceedings of EDOC 1998, pp. 11-21, 1998.

[17] J. Putman. Architecting with RM-ODP, Prentice Hall,
Upper Saddle River, 2001.

[18] D. Quartel, L. Ferreira Pires, M. van Sinderen. On
Architectural Support for Behavior Refinement in
Distributed Systems Design, accepted in: Journal of
Integrated Design and Process Science.

[19] D. Quartel, M. van Sinderen, L. Ferreira Pires. A model-
based approach to service creation, in: Proceedings of the
7th IEEE Workshop on Future Trends of Distributed
Computing Systems, IEEE Press, pp. 102-110, 1999.

[20] D. Quartel, L. Ferreira Pires, H. Franken, C. Vissers. An
engineering approach towards action refinement, in:
Proceedings of the 5th IEEE Workshop on Future Trends of
Distributed Computing Systems, IEEE Press, pp. 266-273,
1995.

[21] D. Quartel. Action Relations- Basic Design Concepts for
Behaviour Modelling and Refinement, Ph.D. Thesis,
University of Twente, Enschede, 1994.

[22] D. Rowe, J. Leaney, D.Lowe. Defining systems
evolvability – a taxonomy of change, in: Proceeding of the
IEEE Conference on Computer Based Systems, IEEE Press,
pp. 45-52, 1998.

[23] M. van Sinderen, L. Ferreira Pires, C. Vissers, J.-P. Katoen.
A design model for open distributed processing systems.
Computer Networks and ISDN Systems, 27, pp. 1263-1285,
1995.

[24] M. Steen, J. Derrick. ODP Enterprise Viewpoint
Specification, Computer Standards and Interfaces, vol. 22,
pp. 165-189, 2000.

[25] C. Taylor, E. Boiten, J. Derrick. Interpreting ODP
Viewpoint Specification: Observations from a Case Study,
in B. Jakobs, A. Rensink (eds.): Proceeding of Formal
Methods for Open Object-Based Distributed Systems,
Kluwer, pp. 61-76, 2002.

[26] Testbed Project. http://www.telin.nl/testbed.

[27] C. Vissers, M. van Sinderen, L. Ferreira Pires. What Makes
Industries Believe in Formal Methods, in A. Danthine, G.
Leduc, P. Wolper (eds.): Proceedings of the 13th
International Symposium on Protocol Specification, Testing
and Verification, Elsevier, pp. 3-26, 1993.

[28] C. Vissers, G. Scollo, M. van Sinderen, E. Brinksma.
Specification Styles in Distributed Systems Design and
Verification, Theoretical Computer Science, vol. 89,
Elsevier, pp. 179-206, 1991.

[29] M. de Weger. Structuring of Business Processes, Ph.D.
Thesis, University of Twente, Enschede, 1998.

[30] WfMC. Terminology & Glossary, WFMC-TC-1011, 1999.

