
Automatic Implementation of Distributed Systems
Formal Specifications

Luiz Henrique Castelo Branco1, Antonio Francisco do Prado1, Wanderley Lopes
de Souza1, and Marcelo Sant'Anna2

(1) Departamento de Computação, Universidade Federal de São Carlos, Av. Washington Luiz
- 235, 04499-610 São Paulo, Brazil

{branco, prado, desouza}@dc.ufscar.br
(2) Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, R.

Marquês de S. Vicente - 225, 22453-900 Rio de Janeiro, Brazil
santanna@inf.puc-rio.br

Abstract. The increasing demand for Distributed Systems(DS's) raised the need
of a quality-assured development process, which could not only address the
issue of requirement compliance, but also could help the construction of tools
able to derive implementations automatically. In order to attend such a need,
some Formal Description Techniques (FDT's) have been proposed. This paper
defends the transformational approach as a good strategy to carry out the
automatic implementation of DS's expressed in FDTs, focusing Mondel as
FDT, and the DRACO-PUC environment as transformational system.

Introduction

Distributed Systems (DSs) are becoming increasingly popular. They have been
used to meet the need of natural distribution of people and information, to allow for
improved and more cost effective performance, to facilitate maintenance and to make
computer systems highly reliable. To achieve all these objectives, DSs have become
very complex and there is no consensus regarding an exact definition of DSs.
According to Bochmann [1] a DS can be classified according to the four types of
distribution. These types of distribution can be combined, increasing the system
complexity, and must be carefully taken into through the different phases of a DS
development.

In the specification phase the system is designed based on the user's requirements.
Frequently many steps are necessary until a final specification of the system can be
reached. In the implementation phase an instance of the system specification is
produced in a high level programming language (e.g., Pascal, C, C++, Java) using
software engineering techniques.

This paper concentrates on the implementation of DS's formal specifications.
Section 2 deals with the subject of Formal Description Techniques and presents the
specification language employed in this work. Section 3 introduces the approach and
the tool used to derive automatic implementations from DS's formal specifications
and the implementation issues, like a communication infra-structure. Finally, some
concluding remarks are made in section 4.

Formal Description Techniques

Distributed Systems may be structured as a set of hierarchical layers [4] where
each layer uses the services provided by the layers below it in order to provide its
service to the next layer up. A service layer can be modeled as a black box. The
service specification describes the external behavior for this black box when it
interacts with the environment (users) through its interfaces (interaction points).

The main goal of the formal specifications is to produce unambiguous system
descriptions. A formal specification can also be useful in other phases of a software
production process. Some desired properties can be verified, (semi-)automatic
implementations can be generated and the formal specification can be used as a
reference for system implementation conformance testing.

A Formal Description Technique (FDT) is needed to produce formal specifications
for distributed systems. FDTs are self-contained specification languages, which
means that the system specification given in an FDT need not to refer to any informal
knowledge about the system. A FDT must also have a mathematical basis that can be
used to demonstrate a specification correctness.

Mondel Language

Mondel is the result of a joint research project involving the Centre de Recherche
Informatique de Montréal (CRIM), the Université de Montréal (UdeM) and Bell
Northern Recherche (BNR). This project focuses on modeling of operational and
management aspects of communication networks, in particular the detection and
recovery of failures. Despite its initial focus, however, its basic principles appear to
be sufficiently generic to apply it to other types of distributed systems [3,2] such as
real time control systems and open distributed processing. Because it is an object-
oriented specification language, it uses terminology that is very similar to terminology
used in the object-oriented paradigm.

Fig. 1. The Mondel structure. An unit spec, as shown in figure, represents the specification
properly said. In Mondel, the entities that communicate are represented as objects whose
interaction points are represented by object interfaces.

unit spec =
 {objects of the system}
behavior
 {behavior of the system}
where
 {procedures of the system}
endunit spec

type Class = object with
 {atributes}
operation
 {interfaces}
behavior
 {behavior }
where
 {procedures}
endtype Class

A Mondel object is defined by the reserved word type, followed by its attributes.
The signature and behavior of the methods offered by the object are indicated by the
interface and behavior clauses, respectively.

In Mondel, states are represented by procedures. The current state is represented by
the name of the procedure, and the next state is represented by the name of another
procedure, or the same in case it continues in the same state.

The following section justifies the transformational approach as a language
independent means to generate DS's implementations from their formal specifications.
At the same time, the transformational environment DRACO-PUC is introduced,
showing how it was successfully used in the implementation of DS's specified in the
Mondel FDT.

Implementation Approaches

Along the last decade, several FDT's have been proposed, yelding a plethora of
language dependent tools. At the same time, research has been done in the software
engineering area to overcome the burden of having to develop a new compiler as a
new FDT or implementation language arises. In this sense, the transformational
approach comes as a natural choice, as it represents the state-of-the-art in compiler
technology.

The DRACO-PUC environment, presented in the following sub-section, is a meta-
compiler comprised of a domain network containing the domains Mondel, Estelle,
C++ and Java, among others. In this environment, the language descriptions are kept
apart from the semantic and transformation rules. This modularity saves effort when
defining a new edge in the domain network.

This work produced Java implementations of DS's written in Mondel. Reusing the
Mondel and Java domains, it is now possible to describe transformations between
these high-level domains with a great economy in effort and time.

The DRACO-PUC Environment

The DRACO-PUC environment uses the ideas of the DRACO paradigm [6],
which states that it is possible to develop software based on the reuse of high level
abstractions. It is a domain-oriented transformational system where system or
software descriptions, in high level specification or programming languages, may be
automatically transformed into executable code. The following parts define a domain
for DRACO:
• a language: a syntax must be well defined in order to make it possible to write

programs and to build a parser.;
• a prettyprinter : this is an unparser responsible for mapping the internal Draco

representation into concrete syntax representations of the domain language, that
is, exhibits the application DAST in the domain language; and

• the transformation libraries : The handling of the DAST is carried out by
formally defined steps called transformations. Each transformation rule has a Left

hand side (Lhs) describing the recognition pattern, and a Right hand side (Rhs)
describing the rewriting pattern. The normal execution order of the
transformation rules can be changed by tasks executed in association with the
check-points available in the Draco machine. The main transformation control
points are: Pre-Match (executed every time a Lhs rule is tested on the input
description), Post-Match (executed just after the Lhs rule matches some piece of
the input description), Pre-Apply (executed immediately before the Rhs rule is
applied, replacing the selected piece of the input description) and Post-Apply
(executed just after the input space selected on the Lhs is replaced by the pattern
declared in the Rhs).

Fig. 2. Internal aspects of the DRACO Transforms. Figure shows one of the transformations
that is used to transform an Mondel type declaration into its corresponding Java class. The left
side is related to the Mondel domain, while the right one is related to the Java domain.

The Lhs of the GetTypeDef Transform contains the pattern to be recognized
according to the type_definition Mondel grammar rule. The word ID is a meta
variable of type_id type, conj is a pattern variable of type type_conjunction. This
Transform does not have an Rhs. Instead, it does some data manipulation in its Post-
Match control point and calls the T_Class_Constructor Template.

The Rhs in T_Class_Constructor contains the pattern to be written in the Java
domain. The word ID is a meta variable of Identifier type and conj is a meta variable
of interface_name type.

It should be noted, by Figure 3, that the transformations are generic. The meta
variables are placeholders that hold grammatical patterns independently of the
specification. Therefore, the Mondel operational semantics implemented in the
transformations are reused across implementations.

The principal steps taken to use the Draco Domains in the automatic
implementation of distributed systems specifications (Mondel) into executable
languages (Java), using the Draco machine are presented in the next section.

Transform GetTypeDef
Lhs:
{{dast mondel.type_definition
 type [[type_id ID]] =
 [[type_conjunction conj]] with
 [[opt_attribute_decl attrib_decl]]
 [[opt_private_attributes priv_attrib]]
 [[opt_operation_signatures sig]]
 [[opt_behavior_definition behavior]]
 endtype [[type_id ID]] }}
Post-Match: {{ dast txt.decls }}

 TEMPLATE T_Class_Constructor
 Rhs: {{dast java.compilation_unit
 import java.lang.*; import java.util.*;
 import java.rmi.*;
 public class [[Identifier ID]] extends

UnicastRemoteObject
 implements

[[interface_name conj]] {
 [[field_declaration* states]]
 [[constructor_declaration constru]]
 [[field_declaration* behavior]]
 } }}

Setting up the Implementation Environment

Using the strategy proposed by Prado [9], it is possible to rebuild software by
direct porting of the source code to languages of other domains. According to the
Draco machine, a domain consists of three parts, i.e. a parser, a prettyprinter, and one
or more transformers.

Fig. 3. Model of Automatic Transformation from Mondel to Java. The figure presents the
principal steps taken to use the Mondel and Java Domains in the automatic implementation of
the Mondel specifications into Java, using the Draco machine.

In Analyze Specification, the Draco Machine using the Mondel parser analyzes
the Mondel specification. The output of this activity is the code in the internal
representation; the DAST Mondel guided by the concrete Mondel syntax thus
obtaining the syntactically correct Mondel specification.

F
or

m
al

 d
es

cr
ip

tio
n

of
 D

S
s

in
 M

on
de

l

DSs Requirements

P
ar

se
r

M
on

de
l

Analyze
Specif ication

Transforming
from Mondel

into Java

UnParser
of Java

DAST

P
re

tty
pr

in
te

r
of

Ja
va

 D
om

ai
n

D
S

s
in

 e
xe

cu
ta

bl
e

la
ng

ua
ge

 J
av

a
au

to
m

at
ic

al
ly

 g
en

er
at

ed

Monde l DAST Java DAST

Monde l

Parser
Prettyprinter
Transformation
Libraries

Java

Parser
Prettyprinter

Transformat ion
Librar ies

DRACO-PUC
Machine

DRACO-PUC
Domains

Windows 98 Linux Red Hat 6.0 UNIX(r) S y stem V
Release 4.0

DSs running in multi-
platform

In Transforming from Mondel into Java, the syntactically correct Mondel
specification is automatically transformed by the Draco machine, which uses the
mondelTojava.tfm inter-domain transformer. This activity generate a Java DAST
guided by the concrete Java syntax what is the entry to the Unparser of Java DAST
which makes textual again - this activity is guided by the Java PrettyPrinter.

The Java programs generated automatically are based on Java/RMI structure. The
RMI enables the programmer to create distributed Java-to-Java applications, in which
the methods of remote Java objects can be invoked from other Java virtual machines,
possibly on different hosts.

Fig. 4. Part of source-code in Java obtained automatically for the Telephone System. The
source-code obtained include the library java.rmi.* to support the objects distributition from
Distributed System and it's running in multiplatform.

The major solutions for distributed applications (e.g. CORBA [7] and PVM [10])
rely on a run-time mechanism to supply services such as message passing between
remote objects, process creation and remote procedure calls (or remote method
invocations). The solutions adopted in this work also consider some kind of run-time
support through of the Remote Method Invocation (RMI) Java library .

The methods of an RMI object can send messages to other objects in a remote Java
Virtual Machine (JVM), usually using the net, as if it was calling a local object. In
that sense, RMI is very similar to CORBA. And like CORBA, RMI allows the clients
interact with remote objects by public interfaces. The clients do not interact directly
with the classes that implement the interfaces.

Conclusions

FDTs are becoming increasingly important in the development of distributed
systems. They are not restricted to the specification phase since they are also used as a
reference for the production process phases of these systems. The use of supporting
tools is very important to reap the full benefit from an FDT when developing different
kinds of distributed systems.

One of the results of this work was the definition of a strategy for the automatic
implementation of Mondel specifications using the DRACO-PUC tool. The
importance of this strategy lies in the use of a transformation system that allows for
the implementation of Mondel to other different Java languages. It is possible, for
instance, to define a library of transformations that transform Mondel specifications
into Pascal or any language whose domain is defined in the DRACO-PUC tool.

The use of the DRACO-PUC tool in software development is important because it
allows for automatic generation of the code based on high level specifications.
Maintenance of the DRACO-PUC generated systems is easier, even in Distributed
Systems with different protocols, architectures, operational systems and databases,
because the designer can perform the task of maintenance at the level of Mondel
language specifications.

Although some Mondel development environments already exist that permit semi-
automatic generation of the code based on specifications, our contribution consists of
the use of an up-to-date technology [8] that can be broadened and improved upon to
make the entire automation process feasible for different hardware and software
platforms.

Some significant results have already been obtained using the strategy presented
herein. The Draco environment has proved its effectiveness in enabling automatic
transformation of object-oriented models of Mondel specifications into Java, as
shown in the Telephone System case (300 source code lines in Mondel specification
and 600 source code lines in Java generated automatically). Other case study, the
specification of the ODP Trader Function [5] (1500 source code lines in Mondel
specification and 3000 source code lines in Java generated automatically), was
submitted to the library of transformations of the mondelTojava transformer. A large
library of transformations has already been built that currently allows for the
automatic transformation of a large part of the Mondel specifications into Java.
Further research work is underway to enlarge this library with the aim of
implementing all Mondel specifications.

Future research work includes the following: enlargement of the transformation
library to allow for implementation of more complex systems, creation of other
libraries for implementation in new languages and operational systems, and the use of
other architectures, such as CORBA[7] and DCE [8] to support distributed
computation. Another research work, very important, to validate all process of
transformations using the DRACO-PUC environment is related to the studies that
guaranteed the semantic maintained of the Formal Specification, in the language of
the implementation, when applied the transformations.

Others programs transformations systems were compared with DRACO-PUC. The
PetDingo tool that transform Estelle specifications to C++ language produce 90% of
the process transformation automatization. In DRACO-PUC the rate of the
automatization to C++ language and other languages was 100% without anyone
manual interference.

Fig. 5. Part of the Draco Domain Network. In figure some possible transformations are shown.
The full lines represent transformation libraries under development or already built. The dashed
lines represent transformation libraries to be built.

References

1. BOCHMANN, G. V.: Concepts for Distributed Systems Design. Springer-Verlag, 1983.
2. BOCHMANN, G. v., Poirier, S., Mondain-Monval, P.: Object-Oriented Design for

Distributed Systems: The OSI Directory Example, Université de Montréal, 1991.
3. BOCHMANN, G. v., Barbeau, M., Erradi, M., Lecomte, L, Mondain-Monval, P., Willians:

An Object-Oriented Specification Language, Université de Montréal, 1990.
4. ISO IS 7498: Information processing systems - Open Systems Interconnection - Basic

Reference Model, 1984.
5. ITU-T Draft Rec X.904, ISO/IEC DIS2 13235: ODP Trading Function - Part 1 -

Specification, Document approved for standardization, Jan 1997.
6. NEIGHBORS, J.: Software Construction Using Components, Tese de Doutorado, University

of California at Irvine (EUA), Set/1980.
7. Object Management Group and X/Open: The Common Object Request Broker: Architecture

and Specification, Document Number 91.12.1, 1992.
8. Open Software Foundation: DCE Application Development Guide, Cambridge, MA (EUA),

1992.
9. PRADO, A.F.: Estratégia de Re-Engenharia de Software Orientada a Domínios, Tese de

Doutorado, Pontifícia Universidade Católica, Rio de Janeiro, Ago/1992.
10. SOUZA, P.S.Lopes de: O Impacto do Protocolo TCP/IP na Computação Paralela

Distribuída no Ambiente Windows95, Proceedings of the 15th Brazilian Symposium on
Computer Networks, São Carlos(SP), 19-22/05/1997, pp.118-134.

Estelle

Lotos

Mondel
Java

C++

Delphi

Cobol

Clipper

