
Using UML to Design Distributed Collaborative Workflows: from UML to XPDL

Ping Jiang, Quentin Mair, Julian Newman

Department of Computing, Glasgow Caledonian University, Glasgow G4 0BA, UK

{p.jiang, q.mair, j.newman}@gcal.ac.uk

Abstract

Business process modelling and workflow process

execution are often conducted in diverse environments

and described using diverse process definition languages.

Such systems often underpin distributed collaboration

systems, but there is a current need to allow developers to

use existing and familiar design methodologies and tools

to design these systems. This paper presents the business

model architecture used in the DIECoM 1 project and

examines the problem of how to transfer multiple views

on a business process model in UML to a computer view

for workflow execution. The roles and relationships of

various views described by Use Case Diagrams,

Sequence Diagrams, Statechart Diagrams and Activity

Diagrams are clarified and the missing information is

supplied to facilitate the design of a uniform executable

workflow model. As a result, the process models defined

in the proposed way are consistent with XPDL semantics

and can be readily translated to an XPDL file with the aid

of an XSLT processor.

1. Introduction

One of the basic objectives of the DIECoM project is

to develop a generic business model to support

collaborative Product Configuration Management (PCM)

across heterogeneous tools and virtual organizations. The

generic business model can be thought of as a set of

views into the PCM system being developed from

different perspectives. Unified Modeling Language

(UML) has been chosen to support business process

modelling in the DIECoM project – it is familiar to most

professional software designers. After the generic

business model is defined in UML, significant issues arise

1 DIECoM (Distributed Integrated Environment for Configuration

Management) is an IST project funded under the EC’s Framework V

programme. DIECoM runs from September 2001 to August 2003. The

project members are:- Alenia, Dassault Systemes, EADS-CCR, IBM,

Glasgow Caledonian University, Renault and SIA. See

http://www.diecom.org.

about how the defined business process can be transferred

to the various available commercial workflow

management systems for DIECoM implementation.

Usually, commercial workflow applications can support

distributed integration via a modelling standard.

Unfortunately, several parallel standards exist today, and

these are funded by different consortia or standards

bodies for different application fields:

NIST Process Specification Language (PSL)[1]

DARPA Agent Markup Language for the semantic

web (DAML-S)[2]

OMG UML Extensions for Workflow Process

Definition (RFP)[3]

WfMC Workflow Process Definition (XPDL) for

distribution of workflow[4]

BPMI Business Process Modeling Language

(BPML) for web services[5]

IBM/Microsoft Business Process Execution

Language (BPEL) for web services[6]

Although all of these claim that they are the standard

for process modelling, no single standard has been able to

convince everyone to adopt it. As a result, process model

interchange and reuse in distributed systems has not been

very successful. Currently, these process modelling

standards adopt different approaches. Even the adoption

of standard XML syntax does not standardize process

semantics definitions; different approaches such as block-

based or graph-based[7] representations yield different

XML-based standards. A properly designed XSL

(eXtensible Stylesheet Language) stylesheet for

transforming an XML process model from one standard

to another can be a feasible way to achieve the

heterogeneous system integration. This paper reports a

case study of transforming a process model in UML to

XPDL using an XSL stylesheet.

In the DIECoM project, Rational Rose is selected as a

UML tool for process modelling. The model should then

be transferred to DS/IBM ENOVIA LCA for enactment

purposes. Both Rational Rose and ENOVIA have

considered how to integrate with other tools. Rational

Rose can export its models to XMI format with the help

of a freely available XMI addin. ENOVIA, for its

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03)
1080-1383/03 $17.00 © 2003 IEEE

workflow enactment, can accept business process

templates from any other WfMC compliant workflow

application using XPDL templates. Although the UML

Activity Diagram has been proposed to describe business

processes, its semantics are left largely unspecified for

business process modelling[8]. Therefore, simply

defining a process by using Activity Diagrams in UML

cannot include all the precise information required by

XPDL for workflow execution. Paper [9] extended UML

Activity Diagrams for workflow modelling. It associated

the Activity Diagram elements with the XPDL C-Wf

classes using stereotypes and defining some new

properties to provide information for workflow definition.

Paper [10] pointed out that no single type of UML

diagram captures all of the information needed to describe

a process.

This paper presents an XSLT based model

transformation from business process models in UML to

workflow models in XPDL. Firstly, the organizational

architecture of business process model in the DIECoM

project is introduced. The multiple views of the business

model are then compared with the workflow meta-model

defined in XPDL. An XPDL compliant business process

model composed of UML diagrams is proposed to aid the

model translation. The detailed entities mapping is

defined and the lack of details in UML for workflow

definition is supplied by using stereotypes, events, etc.

The resulting business process model saved using

Rational Rose into XMI format can then be transferred to

XPDL for workflow execution by means of stylesheet

description.

2. UML generic business model

A business process is a logical structure of people,

technology, and practices that are organized into work

activities designed to transform information, materials,

and energy into specified end result(s). Therefore, a

business process model is an abstraction of a real or

conceptual complex system. The model should be

designed to display significant features and characteristics

of a PCM system, which the DIECoM project wishes to

study, predict, modify, and control, i.e. an integration of

Product Data Management (PDM), Software

Configuration Management (SCM), and Electrical Data

Management (EDM).

The DIECoM business model is organized in a 3-level

hierarchical structure, i.e. organization, coordination and

execution. An overall business model structure can be

described by Figure 1. On the organizational level, UML

Package diagrams are used to model organization mode

and domains. At this level the model declares what

organization units and groups are involved in a virtual

enterprise for their common objectives and individual

responsibility. As the mission of the DIECoM project is

to develop an integration environment for cross-

organizational product management, the configuration

management domains include PCM, SCM, EDM and

PDM, which basically defines a set of business objectives

and constraints. The involved actors and tools are also

described by a Main Actors Use Case Diagram and a Tool

Hierarchy Class Diagram. A business process which

interacts with the DIECoM Meta-data model to

accomplish part or whole domain objectives under given

constraints can then be defined. The next two levels,

coordination and execution, refine the business process

and attempt to turn general business requirements into an

executable computer specification. Business processes are

represented by use cases and use case instances on the

coordination level and the execution level, respectively.

The use cases at the coordination level are definitions of

business processes in terms of goals, responsibilities,

preconditions and postconditions, which are modelled by

Organizational Model

Actor

Organizational Unit
1..*1..*

0..*0..*

Tool

0..*0..*

Domain

1..*1..*

0..*0..*

Business Process

1..*1..*

Meta-data model

Figure 1. DIECoM business model

Coordination and

Execution levels

Organizational level

Sequence DiagramStatechart Diagram
<<conform>>

Activity

Activity Diagram

1..*1..*

1..*1..*

Use Case Diagram

<<refine>> <<instance>>

Actor Tool

Meta-data model

Business Process

1..*1..*

Figure 2. DIECoM coordination and execution
levels definition for business processes

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03)
1080-1383/03 $17.00 © 2003 IEEE

Use Case Diagrams in UML to represent static

relationships between use cases, actors and relevant tools.

The use case instances of business processes are concrete

sequences of events defining the dynamic behaviour of a

business process. This is described by Sequence

Diagrams, Statechart Diagrams and Activity Diagrams at

the third level, i.e. execution level that is the core for

automated business process, i.e. workflow. The 3

different kinds of diagrams at this level are not orthogonal

in defining the dynamic performance of the business

model. All 3 diagrams are related to each other and aim to

describe the business from different viewpoints and in

different detail. The Sequence Diagrams describe only

typical scenarios and cannot represent all allowable

sequences of use case instances. The allowable order of

use case instances belonging to a Use Case Diagram can

be specified by a Statechart Diagram and further detailed

by Activity Diagrams. These are called the life cycle of

the use case package[11]. In summary, the DIECoM

business process model can be illustrated in Figure 2.

Statechart Diagram
Root

State 2

State 1

State 3

Activity Diagram Activity Diagram Activity Diagram

 Figure 3. Statechart and Activity Diagram

3. Process definition in accordance with

XPDL format

Figure 2 clearly illustrates the relationship between

different diagrams for representing business processes. In

the model, the Statechart Diagram and Activity Diagram

define the allowable order of use case instances belonging

to a specific use case package. They define a precise

representation of the use case package behaviour (the

lifecycle of the use case package). In contrary, the

Sequence Diagram describes only typical scenarios. It

should conform to the generic workflow definition

represented by the Statechart and Activity Diagrams. In

other words, the designed Statechart and Activity

Diagrams should be designed to cover all possible

scenarios represented by the Sequence Diagrams. The

reason for defining specific sequences in a business

model is that a generic and overall definition of the

business process is usually more difficult than a specific

scenario definition. Specific scenarios described by

Sequence Diagrams can act as inputs or templates for

generic workflow definition.

In the DIECoM project, a Statechart Diagram owned

by a Use Case Diagram collects all discrete stages of a

workflow lifecycle. The Activity Diagram owned by each

state defines the dynamic performance of each state and

may drive one state change to another state. Therefore, a

Statechart Diagram defines the state space of a use case

and Activity Diagrams refine states for execution. Figure

3 shows the relationship between Statechart Diagram and

Activity Diagram in the DIECoM scope.

XPDL is a workflow process definition language

defined by the Workflow Management Coalition

(WfMC), which is used in ENOVIA for workflow

definition exchange. This requires that the DIECoM

business model defined in UML can be built based on

conformance to the XPDL template and exported to the

XPDL format. There are several entities for the definition

of workflow process. Within the entities, Workflow

Process Activity and Transition Information are internal

entities that are used to define the internal relationship of

a workflow. Some other entities, Workflow Participant

Specification, Workflow Application Declaration,

Workflow Relevant Data are in a scope wider than a

single process. A number of processes may refer to these

common entities. In XPDL, a package is introduced to

provide a container to hold a number of common entities:

Workflow Participant Specification, Workflow

Application Declaration, Workflow Relevant Data. The

template of the process definition in XPDL looks like

Figure 4. Comparing Figure 4 with Figure 2, we can make

the following concept mapping between the DIECoM

business process model and XPDL workflow definition:

PackageWorkflow Relevant Data

0..*0..*

Workflow Participant

0..*0..*

Workflow Application

0..*0..*

Workflow Process Activity

Workflow Process

0..*0..*

0..*0..*

Transition

0..*0..*

Figure 4. XPDL workflow process model

Table 1. Relationship between DIECoM model
and XPDL process model

DIECoM model XPDL Concept

Use Case Diagram Package

Statechart Diagram Workflow processes

Activity Diagram Workflow process

Instance of DIECoM meta-data

model

Workflow relevant data

Instance of DIECoM actor Workflow participant

Instance of DIECoM tool Workflow application

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03)
1080-1383/03 $17.00 © 2003 IEEE

In addition to the above concept mapping, XPDL

requires the definition of the other workflow related

information for the purpose of process automation. This

includes Workflow Process Activity, Transition

Information, Workflow Participant Specification,

Workflow Application Declaration, Workflow Relevant

Data, etc., and will be defined in the next section.

4. DIECoM workflow entities specification

After representing a workflow process by composite

states and further by Activity Diagrams, the process meta-

model needs to be refined with more information. In

XPDL, the meta-model requires to define Workflow

Process Activity, Transition Information, Workflow

Participant Declaration, Workflow Application

Declaration and Workflow Relevant Data as shown in

Figure 4. Unfortunately, the DIECoM workflow

processes definition in UML cannot provide the precise

semantic information required by XPDL. Therefore, we

need to define stereotypes and assign some attributes with

precise meanings so that workflow process model

required by XPDL grammar can be equivalently defined

by an Activity Diagram in UML without missing details

and omitting meaning. The mapping between Activity

Diagram elements and XPDL workflow entities can be

defined in Table 2

Table 2. Activity Diagram elements mapping to
XPDL

Activity Diagram elements in

UML

XPDL entities

Activity Workflow process activity

Transition Transition information

Swimlane Workflow participant

Activity with “Tool” stereotype Workflow application declaration

On Entry “IN” action and On

Exit “Out” action

Workflow relevant data

The details of XPDL entities defined in Activity

Diagram are proposed below:

4.1. Workflow process activity
A process definition consists of one or more activities.

An activity is a work unit in the process and defines

details for workflow execution. Different implementation

types of an activity have different attributes as shown in

Figure 5.

Therefore, we define the following stereotypes to

distinguish activities with different implementation types:

<<Route>>

ENOVIA requires a dummy activity for the

implementation of split or join transitions. The Route

activity is a “dummy” activity with attribute “Route” for

this purpose. It permits the expression of “cascading”

transition conditions. A route activity has neither a

performer nor an application and its execution has no

effect on workflow relevant data or application data.

There are Join Route and Split Route as the routing types.

Depending on transitions, the “Transition Restriction”

attribute of a route should be assigned with a type of

either AND or XOR.

<<No>>

“No” means that it is a manual activity performed by

human actors. As a result, the activity attribute “Finish

Mode” is set to manual mode that requires explicit user

interaction to cause activity finish. As a participant of no

implementation activity, the performer should be always

of the HUMAN type.

<<Tool>>

An activity with a stereotype of <<Tool>> means that

the activity is implemented by one or more application

programs. The activity definition in XPDL needs to

provide extra information including application name,

application type and invocation parameter to the

workflow management system as shown in Figure 5. In

UML, we define the information using the Action

Specification for a given activity as shown in Table 3:

Table 3. Attributes for <<Tool>> activity

 An activity example is shown below:

XPDL attributes Mapping attributes in UML

Actual Parameters (Activity Diagram)->Action-> Do. Send

Event. Send arguments

Id (Activity Diagram)->Action->Do. Send

Event. Name

Type

(APPLICATION|

PROCEDURE)

(Activity Diagram)->Action->Do. Send

Event. Send target

PO Approval

<<Tool>>

do/ ^APPLICATION.Name(Arg)

ActuralParameters

Subflow

Id
Execution

No

Loop

Condition
Kind

ActualParameters

Tool

Id
Type

Implementation

Activity

Join

Type

Split

Type

Route

Figure 5. Implementation types of an activity

<<Subflow>>

An activity with the <<Subflow>> stereotype is

refined as a subflow invocation. The DIECoM composite

states in the Statechart Diagram can be <<Subflow>>

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03)
1080-1383/03 $17.00 © 2003 IEEE

4.2. Workflow transition activities with their associated Activity Diagram as a

body of the subflow. As shown in Figure 5, the subflow

associated attributes are Subflow Id, Execution manner

and Actual Parameters. We define the following mapping

relationship between UML and XPDL using Action

Specification in the Activity Diagram.

Workflow execution is based on connected activities.

The transition information defines the connections and

conditions that enable or disable the transition. There are

3 types of transition. A “NOLOOP” type transition

represents the regular thread of a workflow and the

“FROMLOOP” or “TOLOOP” transitions only connect

with a <<Loop>> activity to indicate entry or exit of a

loop body as shown in Figure 6. In addition to the

transition types, a transition definition should provide

information about the connected source and target. It is

defined by “From” and “To” attributes of a transition in

XPDL. The following table summarizes the defined

mapping between UML and XPDL

Table 4. Attributes for <<Subflow>> activity

 An example of the subflow activity is shown below:

XPDL attributes Mapping attributes in UML

Actual Parameters (Activity Diagram)->Action-> Do. Send

Event. Send arguments

Id (Activity Diagram)->Action->Do. Send

Event. Name

Execution

(ASYNCHR|SYNCHR)

(Activity Diagram)->Action->Do. Send

Event. Send target

Table 6. Attributes for workflow transition
definition

PO Approval

<<Subflow>>

do/ ^SYNCHR.Name(Arg)

<<Loop>>

The activity is refined by a loop body that is defined

by the loop body’s sub diagram. The loop transition

condition is examined in loop activity instead of the

transition definition. The condition can be executed in

two different ways: “WHILE….DO…” and “

REPEAT…UNTIL”, which are defined by “loop kind”

attribute of a loop activity.

*In XPDL, the condition is only available for the

<<NOLOOP>> transition. For loop body connections, as

indicated in the <<Loop>> activity, the transition

condition is controlled by loop activity instead of a

<<FROMLOOP>> or <<TOLOOP>> guard condition.

XPDL

attributes

Mapping attributes in UML

Condition (Activity Diagram)->Transition-> Guard

Condition*

From (Activity Diagram)->Transition-> Source

To (Activity Diagram)->Transition->Target

Id Generated by XSLT as (Source-Target)

Loop Generated by XSLT automatically

Table 5. Attributes for <<Loop>>

An example of the Loop activity in UML is shown

below:

XPDL attributes Mapping attributes in UML

Loop Body Id (Activity Diagram)->Action-> On Event.

Arguments

Condition (Activity Diagram)->Action-> On Event.

Condition

Kind

(WHILE|REPEAT_UN

TIL)

(Activity Diagram)->Action->On Event.

Event

 4.3. Workflow participant

Workflow participant defines the actors or applications

that can act as performers of various activities. There are

6 types of workflow participants: resource set, resource,

organizational unit, role, human and system. Mapping

between UML concept and XPDL workflow participant

expression can be defined as shown in Table 7 below.

The participant Id should be an instance of any actors

or tools defined in the DIECoM Main Actors Use Case

Diagram or the DIECoM Tools Class Diagram.

Table 7. Attributes for workflow participant
definition

 Remark: In the XSL stylesheet developed for the

DIECoM project, all participants are assigned with

“ROLE” type. The advantage is that we can simply

declare a performer at build time, then, at runtime, when

instantiating the template into an actual process, the

XPDL

attributes

Mapping attributes in UML

Id (Activity Diagram)->Swimlane-> name

Participant Type (Activity Diagram)->Swimlane->Class

(RESOURCE_SET|RESOURCE|ORGANIZATIO

NAL_UNIT|ROLE | HUMAN |SYSTEM)

Figure 6. Loop implementation

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03)
1080-1383/03 $17.00 © 2003 IEEE

5. Conclusions workflow will be allowed to create a context for the

process. There are two types of contexts: Private contexts

and Public contexts in the ENOVIA LCA. This paper focused on a problem which has arisen

from the fact that different XML model formats are

accepted by Rational Rose and ENOVIA in DIECoM

project, where XMI can be generated by Rational Rose’s

XMI addin and the WfMC reference model (specifically

XPDL) can be accepted by ENOVIA’s workflow

management tool. In order to integrate UML and WfMC

technologies for business processes, the translating

method and the mapping relationship were proposed in

this paper. Firstly, we established an XPDL compliant

process meta model using UML, and then generated the

corresponding XMI model for interchange. Consequently,

the exported workflow model in XMI format is consistent

with XPDL. An XSL stylesheet has been developed to

transfer UML process model to XPDL for the ENOVIA

LCA workflow environment running. One of the

fundamental premises of virtual enterprises is that they

must leverage existing methodologies and integrate

existing toolsets to have viable uptake. The use of UML

is now universal in systems design; we have shown that it

is possible to use the industry standard UML tool to

design collaborative workflows by extending the

semantics of UML. We anticipate that this approach can

be extended to generate different representations for

different standards e.g. DAML-S.

4.4. Workflow application

Workflow application declaration is a list of

applications or tools required and invoked by the

workflow process. Only the Id of the application should

be defined. In a Workflow Package, we collect all

activities with a <<Tool>> implementation type and take

the application or procedure name as associated workflow

application declarations within the package scope.

4.5. Workflow relevant data

In a process model, two flows exist simultaneously.

These are workflow and dataflow. Both flows interact

with each other. Workflow may access, reference and

manage the data to form dataflow, and, at the same time,

dataflow may change the route that a workflow performs.

Workflow relevant data defines all data objects, which are

required and processed by the workflow process. In order

to represent workflow related dataflow clearly, we use

On_Entry action and On_Exit action to represent the “IN”

and “OUT” data of a workflow, respectively. The data

type is constrained to Basic Type and Declared Type. The

Basic Type includes string, float, integer, reference and

datetime. The declared type can be any defined DIECoM

class in meta-data model. Therefore the mapping of UML

definitions to XPDL definitions can be described as in

Table 8.

6. References

[1] PSL, http://ats.nist.gov/psl/.

[2] DAML Services, http://www.daml.org/services/.

[3] UML Extensions for Workflow Process Definition,

ftp://ftp.omg.org/pub/docs/bom/00-12-11.pdf.
Table 8. Attributes for workflow relevant data

Based on the workflow relevant data, the parameters

passed along between processes and subflows can be

defined in the Formal Parameters declaration. The scope

of the formal parameters is for all workflow processes

and subflows in the Workflow processes definition. In the

DIECoM process model structure defined in Sec.3, any

process or subflow was represented by a composite state

in the Statechart; therefore the Formal Parameters

declaration should be given for all composite states in a

Statechart Diagram using the On_Entry and On_Exit

event attributes as defined in Table 8.

XPDL

attributes

Mapping attributes in UML

Id IN data:

(Activity Diagram)->Action-

>On_Entry.Sendevent.name

OUT data:

(Activity Diagram)->Action->On_Exit.Sendevent.name

DataType (Activity Diagram)->Action-

>On_Exit(|Entry).Sendevent.Sendaugment=

(DIECoMDATA|STRING|FLOAT|INTEGER|REFERE

NCE|DATETIME)

[4] Workflow process definition interface - XML process

definition language - Document Number WFMC-TC-1025,

http://www.wfmc.org/standards/docs/TC-

1025_10_xpdl_102502.pdf.

[5] Business Process Execution Language for Web Services

version 1.1, http://www-

106.ibm.com/developerworks/webservices/library/ws-bpel/.

[6] BPML working draft, http://www.bpmi.org/.

[7] R. Shapiro, “A Comparison of XPDL, BPML and

BPEL4WS”, http://xml.coverpages.org/ni2002-06-26-

b.html.

[8] J. Lubell, “XML representation of process descriptions”,

http://ats.nist.gov/psl/xml/process-descriptions.html.

[9] G.Bruno, M.Torchiano, R.Agarwal, “UML Enterprise

Instance Models”, Proc. of Int. Conf. on Information

Technology (CIT2002), Bhubaneswar, India, 2002.

[10] R. Bastos, D. Dubugras, A. Ruiz, “Extending UML

Activity Diagram for Workflow Modeling in Production

Systems”, 35th Annual Hawaii International Conference on

System Sciences (HICSS'02)-Volume 9, 2002.

[11] P. Hruby, “Structuring Specification of Business Systems

with UML”,OOPSLA'98 Business Object Workshop, 1998.

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03)
1080-1383/03 $17.00 © 2003 IEEE

