44

UML & SDL

By Hassan Gomaa,
Department of Information and Software Engineering,
George Mason University.

Designing Real-Time and
Embedded Systems with the
COMET/UML method

Most object-oriented analysis and design methods only address the design of sequential systems or
omit the important design issues that need to be addressed when designing real-time and distributed
applications [Bacon97, Douglas99, Selic94]. It is essential to blend object-oriented concepts with the
concepts of concurrent processing [MageeKramer99] in order to successfully design these applications.
This paper describes some of the key aspects of the COMET method for designing real-time and
embedded systems [Gomaa00], which integrates object-oriented and concurrent processing concepts
and uses the UML notation [Booch98, Rumbaugh99]. Examples are given from an Elevator Control

System [Gomaa00].

THE COMET METHOD

OMET is a UML based Concurrent Object
c Modeling and Architectural Design Method

for the development of concurrent applica-
tions, in particular distributed and real-time applica-
tions [Gomaa00l. The COMET Object-Oriented
Software Life Cycle is highly iterative.

In the Requirements Modeling phase, a use case
model is developed in which the functional require-
ments of the system are defined in terms of actors and
use cases. In the Analysis Modeling phase, static and
dynamic models of the system are developed. The sta-
tic model defines the structural relationships among
problem domain classes. Object structuring criteria are
used to determine the objects to be considered for the
analysis model. A dynamic model is then developed in
which the use cases from the requirements model are
refined to show the objects that participate in each use
case and how they interact with each other. In the
dynamic model, state dependent objects are defined
using statecharts.

In the Design Modeling phase, an Architectural Design
Model is developed. Subsystem structuring criteria are
provided to design the overall software architecture.
For distributed applications, a component based
development approach is taken, in which each sub-

«inclide» 1

| dincludes

! neludes . Sneluder |

®s

Elevator
User

Figure 1. Use case model with abstract use cases.

system is designed as a distributed self-contained
component. The emphasis is on the division of
responsibility between clients and servers, including
issues conceming the centralization vs. distribution of
data and control, and the design of message commu-
nication interfaces, including synchronous, asynchro-
nous, brokered, and group communication. Each con-
current subsystem is then designed, in terms of active
objects (tasks) and passive objects. Task communica-
tion and synchronization interfaces are defined. The
performance of real-time designs is estimated using
an approach based on rate monotonic analysis
[SEI93].

REQUIREMENTS MODELING WITH
UML

In the Requirements Model, the system is considered
as a black box. The Use Case Model (Fig. 1) is devel-
oped in which the functional requirements of the sys-
tem are defined in terms of use cases and actors. An
actor is very often a human user. In realtime and
embedded systems, an actor can also be an external
I/O device or a timer. External I/O devices and timer
actors are particularly prevalent in real-time embedded
systems, where the system interacts with the external
environment through sensors and actuators.

ANALYSIS MODELING WITH UML

Siatic Modeling

For realtime and embedded systems, it is particularly
important to understand the interface between the sys-
tem and the external environment, which referred to as
the system context. In UML, the system context may be
depicted using either a static model or a collaboration
model [Douglass99]. A system context class diagram
provides a more detailed view of the system boundary
for a real-time system than a use case diagram.

Using the UML notation for the static model, the sys-
tem context is depicted showing the system as an
aggregate class with the stereotype "system”, and the
external environment is depicted as external classes to

Copyright 2001 by Dedicated Systems Magazine - 2001 Q1 (hitp://www.dedicated-systems.com)



« ex;emfal g «extemé?l outpat «external input device»
evicey device»
Elevator Elevator ArrivalSensor
Button N Lamp 1.%
‘ 1.
4
Inputs To Outputs To Inputs To
1 1 1
Outputs To Qutputs To
«external output 1% < 1 ity 1 » 1% «external output
device» — Elevator - device»
Motor ControlSystem
Door
1 1
1
Outputs To Outputs To Inputs To
1.% 1.* 1.*
«external output «external output (o devi S
. : evice»
device» device» Floor
FloorLamp DirectionLamp Button

Figure 2. Elevator Control System context class diagram.

which the system has to interface. External classes are
categorized using stereotypes. An external class can
be an ’extemnal input device’, an “external output
device’, an "external I/0O device”, an "external user’, an
"external system’, or an "external timer”. For a real-time
system, it is desirable to identify low level external
classes that correspond to the physical I/0 devices to
which the system has to interface. These external
classes are depicted with the stereotype "external 1/0O
device”. Standard association names are used on sys-
tem context class diagrams (Fig. 2) as follows:

No Request

Elevator Idle

entry/update idle status

UML & SDL

- “external input device” inputs to "system”

- “system” outputs to "external output device’
- ’external user” interacts with "system”

- “external system” interfaces to "system”

- external timer’ awakens "system’

Dynamic Modeling

For concurrent, distributed, and real-time applications,
dynamic modeling is of particular importance. UML
does not emphasize consistency checking between
multiple views of the various models. During dynamic
modeling, it is important to understand how the finite
state machine model, depicted using a statechart that
is executed by a state dependent control object,
relates to the interaction model, which depicts the
interaction of this object with other objects.

State Dependent Dynamic Analysis addresses the
interaction among objects that participate in state
dependent use cases. A state dependent use case
has a state dependent control object, which executes
a statechart, providing the overall control and sequenc-
ing of the use case. The interaction among the objects
that participate in the use case is depicted on a col-
laboration diagram or sequence diagram.

The statechart (Fig. 3) needs to be considered in con-
junction with the collaboration diagram. In particular, it
is necessary to consider the messages that are
received and sent by the control object, which exe-
cutes the statechart. An input event into the control
object on the collaboration diagram must be consis-

Preparing to Move Down

Preparing to Move Up

Door Closing To
Move Up

Door Closing To
Move Down

Entry/ Close Door, Off b Request
Up Floor Lamp

Door [dosed!
Off Up Difection Lamp, Up

Elevator Starting Up

Elevator Started

Up Request

/ Moving To Floor N\

Entry/ Departed

Approaching Reauested Floorf Stop, On Direction Lamp

Down Request

Entry/ Close Door, Off
Down Floor Lamp

Door|Closed
Down , Off Doy Direction Lamp

Elevator Starting Down,

Elevator Started

Approaching

| Floorl Check

This Floor Down Request

Copyright 2001 by Dedicated Systems Magazine - 2001 Q1 (hHp://www.dedicated-systems.com)

Elevator Stopping

Elevatof Stopped/
Open Door, [Off Elevator Lamp,
Artived,

Elevator Door Opening

Opened Start Timer

Elevator At Floor

After (Timeout) / Chagy Next Destin ation

Checking Next

l Destination J

Figure 3. Hierarchical statechart for Elevator Control.

45



46

UML & SDL

tent with the same event depicted on the statechart.

The output event (which causes an action, enable or

disable activity) on the statechart must be consistent
with the output event shown on the collaboration dia-
gram.

When the state dependent dynamic analysis has been
completed for the main sequence of the use case, the
alternative sequences described in the use case need
to be considered. For example, alternative branches
are needed for error handling.

DESIGN MODELING

Software Architecture

In order to transition from analysis to design, it is nec-
essary to synthesize an initial software design from the
analysis carried out so far. In the analysis model, a col-
laboration diagram is developed for each use case.
The consolidated collaboration diagram is a synthesis
of all the collaboration diagrams developed to support
the use cases. The consolidation performed at this
stage is analogous to the robustness analysis per-
formed in other methods [Jacobson92, Rosenbergd9].
These other methods use the static model for robust-
ness analysis, whereas COMET emphasizes the
dynamic model, as this addresses the message com-

munication interfaces, which is crucial in the design of

real-time and distributed applications.

The consolidated collaboration diagram depicts the
objects and messages from all the use case based
collaboration diagrams. Objects and message interac-
tions that appear on more than one collaboration dia-
gram are only shown once. In the consolidated col-
laboration diagram, it is necessary to show the mes-
sages that are sent as a result of executing the alter-
native sequences in addition to the main sequence
through each use case. The consolidated collabora-
tion diagram is thus intended to be a complete

description of all message communication. The con-
solidated collaboration diagram can get very large for
a large system, and it may not be practical to show all
the objects on one diagram. One approach to han-
dling the scaleup problem is to develop consolidated
collaboration diagrams for each subsystem, and devel-
op a higher-level subsystem collaboration diagram to
show the dynamic interactions between subsystems,
which depicts the overall software architecture (Fig. 4).

Architectural Design of Distributed
Real-Time Systems

Distributed real-time systems execute on geographi-
cally distributed nodes supported by a local or wide
area network. With COMET, a distributed real-time sys-
tem is structured into distributed subsystems, where a
subsystem is designed as a configurable component
and corresponds to a logical node. A subsystem com-
ponent is defined as a collection of concurrent tasks
executing on one logical node. As component sub-
systems potentially reside on different nodes, all com-
munication between component subsystems must be
restricted to message communication. Tasks in differ-
ent subsystems may communicate with each other
using several different types of message communica-
tion (Fig. 4) including asynchronous communication,
synchronous communication, client/server communi-
cation, group communication, brokered communica-
tion, and negotiated communication.

Task Structuring

During the task (active object) structuring phase, each
subsystem is structured into concurrent tasks and the
task interfaces are defined. Task structuring criteria are
provided to assist in mapping an object-oriented
analysis model of the system to a concurrent tasking
architecture (Fig. 5). Following the approach used for
object structuring, stereotypes are used to depict the

«external input
device»
:Elevator
Button

elevator®
Button
Request

«external output «external input
device» device»
Blleiton :ArrivalSensor
Lamp
/]\ elevator i
Lamp SensorInput
Output
door

elevatorCommitment (elevator#,

Command "
> «external output
device» "
<—
door :Door

Response

scheduler
Request (elevator#,
floor#, direction)

arrived (elewior#,x
floor#, direction),
departed (elevatorf, N
floors, direction)

floor#, direction)

—_
service
Request (floor#,
direction)

motor «system»
—
" Command | :ElevatorControlSystem
«external output -
device»
:Motor H motor
Response
offFloorLamp
(floor#, direction)
onDirectionLamp (elevator#,
floor#, direction),
offDirectionLamp (ele\miorﬁ/
floor floor#, direction)
«external input }?utton
device» equest
—
:Floor
Button il
/ floor directionLamp
Lamp Output
Output
«external output «external output
device» device»
:FloorLamp :DirectionL.amp

Figure 4. Example of distributed Elevator Control System.

Copyright 2001 by Dedicated Systems Magazine - 2001 Q1 (hitp://www.dedicated-systems.com)



AD NATIONAL
INSTRUMENTS



48

UML & SDL

«passive output

motorCommand (out

devicey motorResponse)
FlevatorLam > «passive output
:LlevatorLamp .
device»
clevatorLamp :Motor
«subsystem» offFloorLamp Output
:FloorSubsystem (floort#, direction)
«control subsystem» onDirectionLamp
:ElevatorSubsystem (ele\;toj_, floor, doorCommand (out
irection) «cont.rol doorResponse)
clustering» > «Passive Output

offDirectionLamp

:Elevator
Controller

Device»

(elevator#, floor#,
direction) :
arrival approaching
Floor

Sensor «asynchronous (levator#
«asynchronous Input input device floor #), /
input device» — interface» —>
:ArrivalS ensor :ArrivalSensors

Interface

:Door

checkNextDestination (it

i elevator#, out direction), \

checkThisFloor (in elevator#, in
floor#, out floorStatus, out
direction),
arrived (elevators, floor#, direction),
departed (elevator#, floor#, direction)) .
arrived (elevator#, floor#,

«asynchronous up (elevator#), «data abstraction» direction)
input device» down (elevator#) :LocalElevator
:ElevatorButton Status&Plan I/ departed (.elev.ator#, floor#.
direction)

elevator

elevator
Request

Button
Request

floor#,
direction)

«coordinator»

«asynchronous input

updatePlan (elevators,
floor#, direction, out
(clevator#, dieStatus)

schedulerRequest
(elevator#, floor#,

«subsystemy

device interface» N :Elevator
:Elevator Manager

dE' ection)

ButtonsInterface

(elevator#, floor#, direction)

:Scheduler

elevatorCommifrment 7

Figure 5. Task Architecture of Elevator Subsystem and Task Interfaces.

different kinds of tasks. Stereotypes are also used to
depict the different kinds of devices the tasks interface
to. During task structuring, if an object in the analysis
model is determined to be active, then it is categorized
further to show its task characteristics. For example, an
active "I/O device interface” object is considered a task
and categorized as one of the following: an "asyn-
chronous /O device interface” task, a "periodic /O
device interface” task, a "passive 1/0 device interface”
task, or a "resource monitor” task. Similarly an "external
input device” is classified, depending on its character-
istics, into an "asynchronous input device” or "passive
input device”.

Detailed Software Design

In this step, the internals of composite tasks that con-
taining nested objects are designed, detailed task syn-
chronization issues are addressed, connector classes
are designed that encapsulate the details of inter-task
communication, and each task's internal event
sequencing logic is defined.

If a passive class is accessed by more than one task,
then the class's operations must synchronize the
access to the data it encapsulates. Synchronization is
achieved using the mutual exclusion or multiple read-
ers and writers algorithms [Bacon97].

Connector classes encapsulate the details of inter-task
communication, such as loosely and tightly coupled
message communication. Some concurrent program-
ming languages such as Ada and Java provide
mechanisms for intertask communication and syn-
chronization. Neither of these languages supports
loosely coupled message communication. In order to
provide this capability, it is necessary to design a
Message Queue connector class, which encapsulates
a message queue and provides operations to access
the queue. A connector is designed using a monitor,
which combines the concepts of information hiding
and task synchronization [Bacon97, MageeKramer99.

These monitors are used in a single processor or mul-
tiprocessor system with shared memory. Connectors
may be designed to handle loosely coupled message
communication, tightly coupled message communica-
tion without reply, and tightly coupled message com-
munication with reply.

PERFORMANCE ANALYSIS OF REAL-
TIME DESIGNS

Performance analysis of software designs is particular-
ly important for real-time systems. The consequences
of a real-time system failing to meet a deadline can be
catastrophic.

The quantitative analysis of a real-time system design
allows the early detection of potential performance
problems. The analysis is for the software design con-
ceptually executing on a given hardware configuration
with a given external workload applied to it Early
detection of potential performance problems allows
alternative software designs and hardware configura-
tions to be investigated.

In COMET, performance analysis of software designs
is achieved by applying real-time scheduling theory.
Real-time scheduling is an approach that is particular-
ly appropriate for hard real time systems that have
deadlines that must be met [SEI93]. With this
approach, the real time design is analyzed to deter-
mine whether it can meet its deadlines.

A second approach for analyzing the performance of a
design is to use event sequence analysis and to inte-
grate this with the real-time scheduling theory. Event
sequence analysis considers scenarios of task (active
object) collaborations and annotates them with the
timing parameters for each of the active objects par-
ticipating in each collaboration (Fig. 6), in addition to
system overhead for inter-object communication and
context switching. The equivalent period for the active
objects in the collaboration is the minimum inter-arrival

Copyright 2001 by Dedicated Systems Magazine - 2001 Q1 (hitp://www.dedicated-systems.com)



l Time Artival Elevator

(msec) Sensor Button
Interface Interface

UML & SDL

:Floor Button R R
Interface Elevator iElevator Scheduler
Cantroller Manaser

0 — — —

2 A2: approaching|Flaor

3

E2: Elejator Request

18 —
20 —

W
«

46 —

50 —

F2: feryice Request

Fit: scheduler Reqtrest]

6

D
A\Y

Figure 6. Non-Distributed Elevator Control System, time annotated sequence diagram.

time of the external event that initiates the collabora-
tion.

CONCLUSIONS

When designing realtime and embedded systems, it
is essential to blend object-oriented concepts with the
concepts of concurrent processing. This paper has
described some of the key aspects of the COMET
method for designing realtime and embedded sys-
tems, which integrates object-oriented and concurrent
processing concepts and uses the UML notation

Hassan Gomaa, a Professor of Software Engineering
at George Mason University in Fairfax, Virginia, is an
internationally acknowledged authority on the soft-
ware design of distributed and real-time systems. His
career in software engineering spans both industry
and academia. He has developed concurrent, dis-
tributed, and real-time applications in industry;
designed software development methods and
applied them to real-world problems; and taught
short courses to professional software engineers
around the world. He has a B.Sc. in Electrical
Engineering from University College, London, and a
Ph.D. in Computer Science from Imperial College,
London.

His book, "Software Design Methods for Concurrent
and Real-Time Systems”, was published by Addison
Wesley as part of the Software Engineering Institute
Series on Software Engineering, and had its fourth
printing in 1999. His new book entitled "Designing
Concurrent, Distributed, and Real-Time Applications
with UML”, was also published by Addison Wesley in
August 2000. He is the developer of the DARTS,
ADARTS, CODARTS, and COMET software design
methods for concurrent, real-time, and distributed
applications. He teaches short courses to industry
and consults on software design and development
projects.

REFERENCES

» [Bacon97] Bacon J, "Concurrent Systems”, Second
Edition, Addison Wesley, 1997.

» [Booch98] G. Booch, J. Rumbaugh, |. Jacobson,
"The Unified Modeling Language User Guide’,
Addison Wesley, 1999.

- [Douglass99] B. P. Douglass, "Real-Time UML’,
Second Edition, Addison Wesley, 1999

- [Gomaa00] H. Gomaa, "Designing Concurrent,
Distributed, and Real-Time Applications with UML”,
Addison Wesley, 2000.

- [Jacobson92] I. Jacobson, Object-Oriented Software
Engineering, Addison Wesley, 1992.

- [MageeKramer99] J. Magee and J. Kramer,
"Concurrency: State Models & Java Programs’,
John Wiley & Sons, 1999.

« [Rosenberg99] D. Rosenberg and K Scott, "Use
Case Driven Object Modeling with UML", Addison
Wesley, 1999,

- [Rumbaugh99] J. Rumbaugh, G. Booch, |
Jacobson, "The Unified Modeling Language
Reference Manual’, Addison Wesley, 1999,

- [SEI93] Carnegie Mellon University Software
Engineering Institute, "A Practioner's Handbook for
Real-Time Analysis - Guide to Rate Monotonic
Analysis for Real-Time Systems”, Kluwer Academic
Publishers, Boston, 1993.

- [Selic94] B. Selic, G. Gullekson, and P. Ward, "Real-
Time Object-Oriented Modeling’, Wiley 1994.

Copyright 2001 by Dedicated Systems Magazine - 2001 Q1 (hHp://www.dedicated-systems.com)

49



