
Distributed Software Engineering: a Rigorous Architectural Approach

Jeff Kramer
Department of Computing, Imperial College London

j.kramer@imperial.ac.uk

Abstract

The engineering of distributed software is a

complex task which requires a rigorous approach.
Software architectural (structural) concepts and
principles are highly beneficial in specifying,
designing, analysing, constructing and evolving
distributed software. A rigorous architectural
approach dictates formalisms and techniques that are
compositional, components that are context
independent and systems that can be constructed and
evolved incrementally. This extended abstract
overviews some of the underlying reasons for adopting
this architectural approach and provides a brief
“rational history” [1] of our research work, together
with some selected references.

1. Why do we need architecture
descriptions?

Distributed processing offers the most general,
flexible and promising approach for the provision of
computing services. It offers advantages in its potential
for improving availability and reliability through
replication; performance through parallelism; and
sharing and interoperability through interconnection.

Studies in software maintenance for distributed
systems has indicated that the general move to
distribution contributed to the simplification of the
primitive software components used in distributed
systems. However, this benefit is often overwhelmed
by the increased complexity of the overall system.
There is therefore a need to deal with issues such as
component interaction and composition, design
complexity, system organisation and reasoning.
Rigorous use of a software architecture offers much
potential benefit in providing a framework or skeleton
with which to deal with these issues.

2. How can architecture descriptions help?

Software architecture descriptions aim to specify
system structure at a sufficiently abstract level to deal
with large and complex systems yet be sufficiently
detailed to support reasoning about various aspects and
properties. Architectures are generally defined
hierarchically, as compositions of interconnected
components. A component type is defined in a context-
independent manner in terms of its communication
interface: the services it provides to other components
and the services it requires in order to perform its
functionality.

Composite components are defined in terms of their
constituent components (other primitive or composite
components) and the bindings between these. Services
provided internally are bound to an interface service
provision so as to be available externally. Service
requirements which cannot be satisfied internal to the
composite component are made visible at its interface.
Thus architectural descriptions support abstraction by
hierarchical decomposition and encapsulation. The
purpose of an Architectural Description Language
(ADL) is to facilitate provision of precise software
architecture descriptions, and to provide associated
reasoning and/or software construction support.

3. What form should an ADL take?

A software architecture can be used as a model in
much the same way as other engineers build models to
check particular aspects of a system design. We believe
that an ADL should be sufficiently abstract to support
multiple views. These views can be presented as
elaborations of the shared architectural structure. For
instance, for behaviour modelling and reasoning, these
elaborations add the particular component behaviour
and interaction details of interest to the underlying
structure. For system construction, the architecture is
elaborated with the necessary implementation details.
It can then be used to compose component
implementations so as to construct and interconnect the

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

particular distributed system. Thus the same
instantiated architecture can be used for aspects such as
behaviour modelling and system construction. Having
a common architectural structure helps to preserve
consistency between the various models and the system
itself. Another important aspect of the ADL is the
need to support variation in the form of system
families. An architecture is a general description
which, on instantiation, is tailored to produce a system
instance which represents a member of the
architectural family.

4. A brief history of our approach

As described in [1], our work could be roughly
divided into three overlapping phases. Firstly, the use
of a declarative explicit architecture characterises our
work on configuration programming. The prototype
distributed system Conic [2,3,4] included the ability to
specify, construct and dynamically evolve a distributed
software system [2,5], using a configuration language
to explicitly compose software components [6,7].
Work on the general purpose ADL, Darwin [8,9,10],
and its industrial instantiation, Koala [11], followed,
providing a sound structural language and facilities for
variations respectively. The second phase focused on
modelling in an architectural framework. The aim is to
analyse systems as structural compositions of their
constituent components' behaviour. This led to work
with labelled transition systems (LTS), the process
algebra, FSP (Finite State Processes) [13] and
construction of the model checker, LTSA
[14,15,16,17]. Model animation and model synthesis
from scenarios [18] has enriched this vein of research.
Our current work, is concerned with implicit structural
specifications. The aim is to generate and check
structures which satisfy constraints that can be imposed
both statically and dynamically. We believe that this is
needed in realising self-organising systems that both
automatically configure themselves and subsequently
reconfigure themselves to accommodate dynamically
changing context and requirements without human
intervention [19,20].

5. What was our general experience?

It is our experience that software architecture
descriptions at an appropriate level of abstraction seem
to be crucial even during the requirements specification
process. Requirements are often not fully elaborated or
even understood before a (hypothetical) solution
architecture is developed. The architecture often helps
to raise new issues and requirements. It is important
that the architecture should be stable, representing the

essential core aspects of the system structure which do
not change radically during software development.
System evolution is then seen as a combination of
minor changes to or replacement of primitive
components, or major changes to composite
components and hence the system structure. We
believe that pure top-down design and refinement are
essentially impractical except for very constrained
well-understood parts of application domains. Design
decomposition and compositional analysis and
reasoning go hand-in-hand. They should be performed
iteratively and incrementally, with automated
compositional modelling techniques being used to
provide the necessary feedback to designers to help
correct errors and raise confidence in their designs.
This experience has been gained over many years,
working initially with industry such as British Coal and
British Petroleum, and more recently with Philips and
others.

6. What are some of the outstanding
problems?

Some distributed software environments are

particularly difficult to construct, manage and analyse
as they tend to be highly dynamic. Current ADL
descriptions tend to be largely static and can describe
only restricted forms of dynamically changing
structures. In such circumstances, architectures should
impose constraints on the kinds of components that can
be integrated into the system and on the interactions
that can take place. This is a difficult area that requires
further research and experimentation, but is crucial if
we are to be able to manage and reason about systems
such as those of the scale, diversity, complexity and
dynamism constructed from Web services. As
mentioned, the goal is to provide support for self-
organising systems.

Another aspect which seems to be particularly
difficult at the architectural level is the association of
non-functional properties such as performance
modelling. It would seem that, in order to perform
realistic performance modelling, there needs to be
sufficient detail as to the actual performance of
implemented components, their allocation, resource
conflicts and interaction properties and delays. This
may well mean that anything other than crude response
estimates and performance analysis is just not possible
at an abstract architectural level. However even such
crude indications of feasibility are useful. We are
currently interested in extending our architectural
behaviour models to handle probabilistic models.

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

7. Acknowledgements

I would like acknowledge the contribution of my co-
workers in the Distributed Software Engineering group
at Imperial College who over the years have
contributed hugely to the work outlined and referenced
in this extended abstract. In particular, I have worked
closely with Jeff Magee for over 25 years. Much of the
research has been supported by the Engineering and
Physical Sciences Research Council and is currently
partly supported by EPSRC grant READS
GR/S03270/01.

8. Selected References to our work

[1] Kramer, J. and Magee J., Engineering Distributed
Software: a Structural Discipline. ESEC/FSE ’05 (10th
European Software Engineering Conference (ESEC) / 13th
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-13)), Lisbon, Portugal: 283-285.

[2] Kramer J. and Magee J., Dynamic Configuration for
Distributed Systems, IEEE Trans. on Software Eng., SE-11
(4), (1985), 424-436.

[3] Magee J., Kramer J., and Sloman M.S., Constructing
Distributed Systems in Conic, IEEE Trans. on Software Eng.,
SE-15 (6), (1989), 663-675.

[4] Kramer J., Magee J. and Finkelstein A., A Constructive
Approach to the Design of Distributed Systems, (10th IEEE
Int. Conf on Distributed Computing Systems) Paris, (1990),
580-587

[5] Kramer J. and Magee J., The Evolving Philosophers
Problem: Dynamic Change Management, IEEE Trans. on
Software Eng., SE-16 (11), (1990), 1293-1306.

[6] Kramer J., Magee J. and Ng K., Graphical Configuration
Programming, IEEE Computer, 22 (10), (1989), 53-65.

[7 Kramer J., Configuration Programming - A Framework
for the Development of Distributable Systems, (IEEE Int.
Conf. on Computer Systems and Software Engineering
(CompEuro 90)), Tel-Aviv, Israel, (1990), 374-384.

[8] Magee J., Dulay N. and Kramer J., Regis: A Constructive
Development Environment for Distributed Programs,
Distributed Systems Engineering Journal, 1 (5), Special Issue
on Configurable Distributed Systems, (1994), 304-312.

[9] Magee J., Dulay N., Eisenbach S., Kramer J., Specifying
Distributed Software Architectures, (5th European Software
Engineering Conference (ESEC ‘95), Sitges, September
1995), LNCS 989, (Springer-Verlag), 1995, 137-153.

[10] Magee J. and Kramer J., Dynamic Structure in Software
Architectures, (4th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE 4)), San
Francisco, (October 1996), SEN, Vol.21, No.6, November
1996, 3-14.

[11] van Ommering, R., van der Linden, F., Kramer, J., and
Magee, J. The Koala Component Model for Consumer
Electronics Software. Computer 33, 3 (2000), 33-85.

[12] Magee J. and Kramer J., Composing Distributed Objects
in CORBA, in Information Systems Interoperability,
Kramer B., Papazoglou M. and Schmidt H., Research Studies
Press / John Wiley & Sons Inc., England, 1998.

[13] Magee J. and Kramer J., Concurrency: State Models and
Java Programs, Wiley 1999; 2006 2nd Edition.

[14] Magee J., Kramer J. and Giannakopoulou D., Behaviour
Analysis of Software Architectures, First Working IFIP
Conference on Software Architecture (WICSA1), San
Antonio, Texas, 22-24 February 1999, pages 35 –50.

[15] Cheung S.C. and Kramer J., Checking Subsystem
Safety Properties in Compositional Reachability Analysis,
(18th IEEE Int. Conf. on Software Engineering (ICSE-18),
Berlin, 1996), 144-154.

[16] Giannakopoulou D., Magee J. and Kramer J. Checking
progress with Action Priority: Is it Fair?, ESEC / SIGSOFT
FSE 1999, LNCS 1687, p511-527

 [17] Giannakopoulou D. and Magee J., Fluent model
checking for event-based systems. ESEC / SIGSOFT FSE
2003: 257-266.

[18] Uchitel S., Kramer J. and Magee J., Incremental
elaboration of scenario-based specifications and behavior
models using implied scenarios. ACM Trans. Softw. Eng.
Methodol. TOSEM 13(1): 37-85 (2004).

[19] Georgiadis I., Magee J. and Kramer J.: Self-organising
software architectures for distributed systems. ACM WOSS
2002, p 33-38.

[20] Chatley R., Eisenbach S., Kramer J., Magee J., Uchitel
S., Predictable Dynamic Plugin Systems. FASE 2004, p129-
143.

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

