
Limits in Modelling Evolving Computer-based Systems

Massimo Felici
∗

LFCS, Division of Informatics
The University of Edinburgh

Mayfield Road, Edinburgh EH9 3JZ, UK

mas@dcs.ed.ac.uk

Juliana Küster Filipe
LFCS, Division of Informatics
The University of Edinburgh

Mayfield Road, Edinburgh EH9 3JZ, UK

jkf@dcs.ed.ac.uk

ABSTRACT
This paper explores the limitations of one technique for mod-
elling computer-based systems with evolving requirements.
A case study is introduced which highlights the importance
of taking a multi-perspective on dependable computer-based
systems. This should be reflected in the modelling tech-
nique. Such considerations motivate our ongoing research
agenda.

Keywords
Computer-based Systems, Modelling, Evolution, Design

1. INTRODUCTION
Design of computer-based systems requires different know-
ledge, activities, methodologies and tools reflecting the inner
complexity of the modern electronic-mediated society. The
massive usage of computer-based systems in our daily life
has become unavoidable. Computers do not only interact
continuously with our activities, but have became essential
to carry out most of them. Applications of computer-based
systems range from simple support to non critical activ-
ities (e.g., word-processing) to safety-critical applications
(e.g., process control, medical systems and avionics). De-
sign issues of computer-based systems can trigger system
degradation and malfunctioning up to critical loss in safety-
critical cases [8, 11]. The analyses of accidents point out that
some undependable failures are due to miss-modelling hu-
man aspects related to the system in its context and under-
estimation of system evolution [8, 11].

This paper describes a computer-based system involving hy-
brid distributed resources interacting with each other. The

∗This work has been partially funded by a grant of the Ital-
ian National Research Council (CNR) within the thematic
Science and Information Technology, Bando n. 203.15.11.
Research Programme: “Requirements Evolution: Under-
standing Formally Engineering Processes within Industrial
Contexts”.

analysis points out some of the limits in modelling evolv-
ing computer-based systems. The case study illustrates sev-
eral issues arising in the design of dependable, service-level,
human-process based systems. The identified limits in mod-
elling and evolving computer-based systems motivate our
ongoing research agenda.

The paper is structured as follows. Section 2 describes
the case study emphasising general aspects characterising
computer-based systems. Section 3 analyses the limits in
modelling and evolving such a system. The review of these
limits identifies our research agenda described in Section 4.
Finally, Section 5 summarises our conclusions.

2. CASE STUDY: PARCELCALL
ParcelCall1 is a project looking at creating a parcel localisa-
tion system: an open distributed system which is to be inte-
grated with the legacy systems of transport and logistic com-
panies (referred to as carriers). The project consortium in-
cludes hardware providers, integrators and carriers. Parcel-
Call, as described below, is an example of how computer-
based (or, software) systems are changing in the modern
electronic-mediated society. ParcelCall is useful to reveal en-
gineering aspects of computer-based systems as well as gen-
eral operational failures related to the nature of computer-
based systems.

Current demands have transformed the transport and lo-
gistics process of today into an increasingly complex pro-
cess requiring intelligent systems for sorting, planning, and
routing; enabling faster and more reliable transportation,
while supporting additional services such as time-sensitive
deliveries and tracing of products. While many larger com-
panies have developed solutions to provide their customers
with such services, high costs impede smaller companies to
do so as well. Current services provided to customers in-
clude notifications of product delivery or dispatch but are
not commonly very precise. The ParcelCall project explores
the development of a new low cost information infrastruc-
ture that enables the continuous information about the exact
geographic position of parcels at any time. Transportation
companies will thus be able to offer an additional valuable
service to customers: the position and status of transporta-
tion goods can be queried at any time.

1ParcelCall, EU project within the IST programme of the
Fifth Framework. Project publications and description can
be found at http://www.parcelcall.com.



Figure 1: The ParcelCall Architecture.

Figure 1 shows the architecture of the ParcelCall system
with three main components:

• a Mobile Logistic Server (MLS): is an exchange point
or a transport unit (container, trailer, freight wagon,
etc). The transport units carry the parcels. A par-
cel has a tag identifying it: a passive radio-frequency
identifier (RFID) tag or an active ”thinking” tag. A
thinking tag is able, for instance, to monitor environ-
ment conditions and emit alarms in case certain con-
straints are exceeded. Since containers can be inside
other containers MLSs form a hierarchy. MLSs always
know their current location via the GPS satellite po-
sitioning system.

• a Goods Tracing Server (GTS): comprises several da-
tabases one of which contains MLS hierarchies. More-
over, it keeps track of all the parcels registered in the
ParcelCall system. GTS is integrated with the legacy
system of transport or logistic companies.

• the Goods Information Server (GIS): interacts with
the customers, provides the authorised customer the
current location of her/his parcels, and keeps her/him
informed in case of delivery delays. Interactions be-
tween the customers and the GIS are bidirectional and
done via a terminal or a mobile phone.

All components interact through common open interfaces on
top of standardised communication protocols (e.g., TCP/IP,
GMS, GPRS, Bluetooth). The legacy system of a carrier is a
computer-based system including both human carriers and
machines.

The ParcelCall architecture is an example of how the mod-
ern electronic-mediated society has evolved since the util-
isation of software as a means to perform computations.
The original role of software was to automatically execute
computations in order to simplify human workload (e.g,
mathematical computations). Software consisted of single-
platform (almost single-user) code developed and executed
in the same environment. Nowadays computer-based sys-
tems like ParcelCall are heterogeneous multi-user, multi-

platforms and multi-environments distributed systems sup-
porting a wide range of human activities (e.g., computation,
safety and security assurance, monitoring, etc.). The wide
utilisation of software and its integration in many differ-
ent applications, ranging from commercial to safety-critical
systems, has changed the nature of software. This role rev-
olution has changed the perception of design of computer-
based systems [9]. Computer-based systems are not only a
means to perform computational activities but also where
the computations take place. The computational activity is
distributed over the heterogenous resources (e.g., Software,
Hardware and Liveware [5]) of a system and may be human
as well. Hence cognition is not limited neither to the human
cognition nor to the computer computation. The human
is part of a computer-based system, and computations are
the result of interactions among computer-based activities
creating artefacts.

For instance, once integrated with the carrier system, the
parcel localisation system will affect and influence the car-
rier’s organisation in several different ways: economically,
sociologically, and so on. Moreover, the impact on the work
performed by human carriers is particularly important. No-
tice that in the carrier system computer-based activities
consist of entwined human and machine actions, which will
necessarily change even if the result of one such activity
(e.g., delivery of a parcel) might apparently be the same.
The ParcelCall system provides further artefacts, like the
response to an alarm emitted by a parcel with a ”thinking”
tag. This artefact is the resulting outcome of combining
human and machine artefacts.

A further implication of the ParcelCall’s localisation system
concerns quality of service (QoS) requirements like, for in-
stance, timeliness, capacity, predictability, reliability, safety
and security. One example of such a requirement in the
ParcelCall system corresponds to the time required normally
for accessing the status and localisation information of an
item. According to ParcelCall documents, this should not
exceed 15 seconds. This type of requirement is difficult to
assess during design (e.g., how to test the system’s perfor-
mance during design?), as it may be sensitive to change-
able human and technical factors. Other issues arise with
conflicting requirements. For instance, information may be
delayed for security in order to protect the parcel from ma-
licious intentions. This delay is a trade-off between perfor-
mance requirements related to information retrieval (to the
customer) and security constrains (to protect the customers’
goods). This shows how complex could be the identification
and definition of non-functional requirements (e.g., quality,
dependability, survivability, etc.) for computer-based sys-
tems.

3. LIMITS
In this section we discuss some issues arising in the spec-
ification and design of ParcelCall. We focus on the limits
experienced in modelling ParcelCall and in analysing its evo-
lution.

3.1 Modelling
As described in the previous section, ParcelCall is a com-
puter-based system consisting of distributed and interact-
ing heterogeneous resources. To model the ParcelCall sys-



tem and its integration with the carrier system we take a
component-based approach. We essentially use a pragmatic
extension of UML [10, 13] for component-based design as
given in [4]. We have used it to specify some aspects of
ParcelCall in [7].

Using UML we assume that the computer-based system un-
der development can be modelled according to the object-
oriented paradigm, that is, in terms of objects, relationships
between objects, and so on. Furthermore, a component-
based approach for specification allows us to model Parcel-
Call’s architecture at a high level of abstraction focusing
on the main components and their interactions. UML is
mainly a diagrammatic language offering several diagrams
to capture different aspects of a system. It includes the
Object Constraint Language (OCL), a textual notation for
representing static constraints on the model which cannot
be given through the diagrams. To adopt the UML mod-
elling language, UML tools and methodologies for the anal-
ysis and design of dependable computer-based systems, it is
necessary to adapt these to an inter-disciplinary approach.

UML is mainly used by software engineers or computer sci-
entists, i.e., by people who can be easily trained to use it. To
develop complex systems which involve a team of people of
different disciplines, UML is not adequate as a common lan-
guage. Even though UML as used in the requirement analy-
sis relies mainly on simpler diagrams (like use case diagrams,
sequence diagrams and possibly also statechart diagrams)
that should be understandable enough for discussions with
non-technical people this is far from being the case. These
diagrams have been developed by software engineers (widely
used to thinking in object-oriented terms) for software en-
gineers. The diagrams do not reflect different perspectives
or understandings of a system or its requirements, ways of
working or thinking. Hence using UML implies adopting the
design viewpoints represented by the UML syntax. Mak-
ing available new alternative diagrams developed by people
from other disciplines for capturing their understanding of
the requirements, and combining their use with the UML di-
agrams would be a partial solution. A need for integrating
these diagrams would follow. Alternatively, more powerful
and different kinds of tools should be made available for a
mixed team of people including tools for non-technical as
well as for technical people.

From the software engineer’s point of view, dependable sys-
tems raise further issues which need to be dealt with. In
particular, how to capture QoS requirements. UML does
not provide an adequate solution to this problem. In the
ParcelCall example, for modelling adequately the depend-
able integration and interaction of the parcel localisation
system and carrier system we need to:

• model QoS requirements that may cut across several
components in the system;

• model part of the environment of the system as well;

• understand human behaviour and their understanding
of the computer-based system.

UML describes the interactions between the software system

and its environment (which includes the human) through
use cases (which can later be refined into other types of dia-
grams). There is, however, a strong distinction between the
software system and its external environment. There is no
intention of integrating the environment, or part of it, into
the model. This clearly limits the expressiveness of mod-
elling languages like UML for the computer-based systems
that we are interested in; capturing at least certain environ-
mental features when modelling computer-based systems is
essential. Moreover, it is crucial to understand and capture
human behaviour and their interactions with the system in
order to be able to assess or even predict possible failures.

One approach that considers the human in systems where
human-computer interactions are highly critical is the work
by J. Rushby as described in [14], among others. To try
to analyse how errors can result from human-computer in-
teraction, the approach compares what is called the mental
model of an operator (system user) and the system model.
The mental model corresponds to the model the operator
believes to be the real model of the system. Both the sys-
tem model and the mental model are described as finite
state transition systems and checked for consistency using
a mechanised formal method. The outcome of such a check
suggests places where design should be improved.

In any case, to model human behaviour there is a need to
borrow concepts and models from other disciplines like Cog-
nitive Science and/or Artificial Intelligence. A combined for-
mal approach can then be used to describe software systems
and part of their environment, as well as their interactions.
Verification tools based on such combined formalisms would
make it possible to verify for instance dependable systems
with human-computer interaction.

The design of computer-based systems like ParcelCall re-
quires expertise from different disciplines. Human factors
and organisational knowledge are important skills to define
the systems requirements and how to deploy the system into
a particular context. Engineering skills become crucial in
designing, developing and testing. Most of the expected
outcomes overlap different kinds of expertise. Hence a pro-
duction environment requires all these different kinds of ex-
pertise and productive cooperation. This is a major issue
in organising and managing multi-disciplinary development
environments. Solving some issues in the presence of multi-
disciplinarity can imply to turn into inter-disciplinarity, that
is, the development environment has evolved in such a way
to create its own inter-disciplinary settings. The mech-
anisms behind this evolution from multi-disciplinarity to
inter-disciplinarity are still vaguely understood. Moreover,
how to translate the above concepts into design, i.e., how
to move from a multi-disciplinary to an inter-disciplinary
design of computer-based systems, is challenging for future
research.

3.2 Design for Evolution
Evolution is one of the most critical issues in the design
of computer-based systems. Systems are already obsolete
when they are delivered either because the environment has
changed or stakeholders have changed their understanding
about the system and its requirements. One of the rea-
sons for this is that systems are engineered following a static



paradigm. Even iterative development processes like the spi-
ral model only capture evolution to a limited extent.

Experience shows [1, 2, 3, 12, 15] that it is not possible
to freeze requirements at any stage of the life cycle. De-
signing phases are organised in terms of beginnings, ends,
deadlines, that often developing environments fail to meet.
Systems evolution is mainly considered within maintenance.
But the evolution of computer-based systems is a concept
broader than maintenance. Evolution actually starts as soon
as a business case identifies a particular system, that is, evo-
lution starts even before the system exists. Unfortunately
most of the methodologies provide little support to evolu-
tion. Hence the need to develop new methodologies sup-
porting system evolution. We started in different contexts
to analyse requirements evolution [1, 2, 3]. The analysis
of the taxonomy of requirements changes and product fea-
tures has improved our understanding of the specific case
study. Our previous experience should be taken into con-
sideration while designing ParcelCall. The design context
should register symptoms of evolution, otherwise it will not
be possible to understand evolutionary information. Evolu-
tion stresses a different way of interpreting system design.
Future research should investigate how methodologies can
support design for evolution. In this new perspective, de-
sign and evolution are at the same level. Systems do not
evolve, if we do not design their evolution.

4. A RESEARCH AGENDA
The previous section points out some limits related to mod-
elling and evolving ParcelCall. As more changes to the sys-
tem are necessary, the complexity of the system increases.
The management of the system’s complexity without any
methodological support for understanding and bounding the
side effects all over the life cycle will collapse triggering sub-
sequent complexity explosions. There are still few meth-
ods to analyse and design scalable complexity. Our anal-
ysis of the ParcelCall case study suggests some limits in
modelling such systems due to their inner complexity. The
modelling issues and the evolutionary perspectives point out
the crucial importance of analysing, modelling and evolving
computer-based systems. It emphasises how development
depends on these three aspects and how which they be un-
derstood as orthogonal to the entire life cycle. Design of
computer-based systems should be based on an integration
of analysis, modelling and evolution. Failing in taking into
account one of these aspects will affect our ability to deploy
evolvable computer-base systems.

A mature development environment should be able to anal-
yse its own multi-disciplinarity in order to understand which
inter-disciplinarity it is able to deploy. In other words, this
inter-disciplinarity should match the one required by the
specific computer-based system that the development envi-
ronment aims to produce. To analyse multi-disciplinarity
in a context and understand the process to deploy inter-
disciplinarity into the development of computer-based sys-
tems is a key factor to success.

Experience shows that computer-based systems do fail. Con-
sequently, these systems should be designed in such a way
that considers faults. Evolution provides new insights in
how to handle faults and should thus be considered in the

design of such systems. This implies a new strategy in de-
signing computer-based systems. The deployment of quality
(dependable or survivable) computer-based systems can be
obtained by designing its evolution to reach continuous qual-
ity (dependability or survivability). Quality (dependable or
survivable) computer-based systems depend on our ability
to react to failures by evolution.

Our analysis of ParcelCall points out research directions to
improve our ability in modelling and evolving computer-
based systems. In particular, in order to deal with evo-
lution of computer-based systems we are currently devising
an empirical framework to analyse rough data [3]. Industry
collects a massive quantity of data, which is not analysed.
This is because there is little support to analysing and struc-
turing life cycle data. A systematic and methodological data
analysis should be part of the corporate culture and not con-
sidered as an extra and expensive activity. Analysis is the
only way to provide feedback to design and organisation.

The empirical framework represents the basis for under-
standing how requirements of computer-based systems evol-
ve. This will allow to identify the stable and changeable
parts of a computer-based system and making this informa-
tion available for future developments. In contrast to the
widely held perception about evolution, we consider evo-
lution a paradigm for designing computer-based systems.
Hence we intend to investigate evolutionary tools and metho-
dologies for designing. Our analysis aims to take into ac-
count a multi-disciplinary perspective in order to link and
understand socio and technical evolutions. The evolution-
ary perspective aims moreover to understand how evolution
influences undependability and may influence dependability
of computer-based systems.

ParcelCall made clear the current limits in expressing multi-
perspective modelling. In order to improve our ability to
model computer-based systems we need to understand how
to incorporate human-factors information. Several questions
can be formulated on our case study providing essential in-
formation which is, however, not further taken into account
in current modelling techniques. Such questions include:
how does the localisation system influence the carrier sys-
tem in terms of organisation and culture; how do people view
and cope with the information provided by the localisation
system; how do different groups within a carrier organisa-
tion conceptualise and represent temporal issues; what is
the impact of temporal validity of information on the work-
ing procedure of the humans in the carrier system; how are
planning and routing decisions changed; how is status and
localisation information represented for the different parties
involved in the transportation network from carriers or sub-
carriers to customers; how accurate should provided infor-
mation be; and so on.

Furthermore, current methodologies provide little guidance
(or none) in how to integrate non-functional requirements
into modelling. Simulation or verification tools could pro-
vide some feedback on the satisfiability of non-functional
requirements which cut across different components of the
system. The development of tools requires a formal mod-
elling approach. In [7] we provide a logical framework to
formalise the pragmatic extension of UML for component-



based specification from [4]. Our framework consists of a
distributed temporal logic Mdtl which allows us to describe
for instance local and global properties of components and
component interactions [6]. With our framework we can al-
ready describe interactions between the several components
within the ParcelCall system; between the customers and
ParcelCall (in this case the component GIS); and between
the legacy system of the carrier and ParcelCall (in this case
component GTS). In the last case, we can also deal with
the interactions caused by human carriers and ParcelCall.
We can, however, not describe the human carrier percep-
tion of ParcelCall. We are considering an extension of our
distributed logic to incorporate agent logics (essentially log-
ics of knowledge of belief) for describing relevant aspects of
human behaviour. How non-functional requirements can be
captured in our logic or how feasible such an approach is for
verification needs to be investigated.

5. CONCLUSIONS
In this paper we focus on multi-disciplinarity in design of
computer-based systems with the aim of clarifying current
gaps and problems. We outline the need to obtain an inter-
disciplinary approach in design and discussed how modelling
languages like UML offer a limited support in dealing with
dependable computer-based systems. In order to model
computer-based systems, as in our case the legacy system
of transport and logistic companies and its integration with
the localisation system offered by ParcelCall, an approach
like UML is not satisfactory. Several non-functional require-
ments arising from diverse perspectives on the system in-
cluding those of disciplines like cognitive science, artificial
intelligence, sociology and psychology, cannot be captured.
A more powerful framework emerging from combined ef-
forts of the different disciplines is required. Furthermore,
the analysis of the case study points out limits in modelling
evolving computer-based systems. Such considerations mo-
tivate our ongoing and future research. Finally, we believe
that considerations made in this paper can be beneficial to
other people approaching or dealing with the design of de-
pendable computer-based systems.

6. ACKNOWLEDGEMENTS
We thank the ParcelCall consortium for providing the case
study and in particular Robin Williams. Work reported
here has been conducted within DIRC2 (Interdisciplinary
research collaboration in dependability of computer-based
systems), a UK EPSRC (Engineering and Physical Sciences
Research Council) funded project.

7. REFERENCES
[1] S. Anderson and M. Felici. Controlling requirements

evolution: An avionics case study. In Proceedings of
SAFECOMP 2000, 19th International Conference on
Computer Safety, Reliability and Security, LNCS
1943, pages 361–370, Rotterdam, The Netherlands,
Oct. 2000. Springer-Verlag.

[2] S. Anderson and M. Felici. Requirements changes
risk/cost analyses: An avionics case study. In
M. Cottam, D. Harvey, R. Pape, and J. Tait, editors,
Foresight and Precaution, Proceedings of ESREL 2000,

2http://www.dirc.org.uk/

SARS and SRA-EUROPE Annual Conference,
volume 2, pages 921–925, Edinburgh, Scotland, United
Kingdom, May 2000.

[3] S. Anderson and M. Felici. Requirements evolution:
From process to product oriented management. In
Proceedings of Profes 2001, 3rd International
Conference on Product Focused Software Process
Improvement, LNCS 2188, pages 27–41,
Kaiserslautern, Germany, Sept. 2001. Springer-Verlag.

[4] J. Cheesman and J. Daniels. UML Components.
Component Software Series. Addison-Wesley, 2001.

[5] E. Edwards. Man and machine: Systems for safety. In
Proceedings of British Airline Pilots Associations
Technical Symposium, pages 21–36, London, 1972.
British Airline Pilots Associations.

[6] J. Küster Filipe. Fundamentals of a Module Logic for
Distributed Object Systems. Journal of Functional
and Logic Programming, 2000(3), March 2000.

[7] J. Küster Filipe. A logic-based formalization for
component specification. Submitted for publication.

[8] N. G. Leveson. SAFEWARE: System Safety and
Computers. Addison-Wesley, 1995.

[9] D. A. Norman. The Invisible Computer. The MIT
Press, 1998.

[10] OMG Unified Modeling Language Revision Task
Force. OMG Unified Modeling Language Specification,
Version 1.4 draft, February 2001.

[11] C. Perrow. Normal Accidents: Living with High-Risk
Technologies. Princenton University Press, 1999.

[12] PROTEUS. Meeting the challenge of changing
requirements. Deliverable 1.3, Centre for Software
Reliability, University of Newcastle upon Tyne, June
1996.

[13] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual.
Addison-Wesley, 1999.

[14] J. Rushby. Modeling the human in human factors. In
U. Voges, editor, Proceedings of Safecomp 2001, The
20th International Conference on Computer, Safety
and Reliability, LNCS 2187, pages 86–91, Budapest,
Hungary, Sept. 2001. Springer-Verlag.

[15] G. Stark, A. Skillicorn, and R. Ameele. An
examination of the effects of requirements changes on
software releases. CROSSTALK The Journal of
Defense Software Engineering, pages 11–16, Dec. 1998.


