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Abstract

The design of distributed systems is a highly complicated and non-trivial task. Intro-
duction of multiple types of media into distributed systems causes a dramatic increase in
the complexity of design. To deal with the inherent complexity of systems, two approaches
have received considerable attention; ODP and UML. Open Distributed Processing (ODP)
is a joint ITU/ISO standardisation framework for constructing distributed systems. Unified
Modelling Language (UML) is a de facto standard for visualising, specifying, designing, and
documenting object-oriented systems.

This paper presents a case study using a UML approach for the design and specification
of distributed systems based on ODP. The purpose of the case study is to try this approach
on a large system containing multiple types of media. The case study is carried out on an
Interactive Multimedia Kiosk (IMK) example. IMKs integrate different types of media such
as text, graphics, audio, video, animation and sound in the form of a large system; this
provides an ideal subject for case study.

Keywords: Open Distributed Processing; COMET; Computational Viewpoint; Quality of
Service; Specification; UML; Object Constraint Language.

1 Introduction

There have been dramatic recent developments in the area of distributed systems fuelled by
the birth of new applications in our daily life, such as different web-based products and the
introduction of multimedia systems into day-to-day amenities such as shopping centres, transport
facilities and leisure establishments. However, the design of distributed systems is a highly
non-trivial task. In particular, introduction of different media types into systems increases the
complexity of the design and results in the creation of a new set of problems such as performance
related Quality of Service (QoS), portability and interoperability.

To ease the burden of dealing with the complexity of distributed systems, two approaches have
received considerable attention; ODP and UML. The Reference Model for Open Distributed Pro-
cessing (RM-ODP) [7] is a joint ITU/ISO standardisation framework for constructing distributed
systems in a multi-vendor environment. Significant features of ODP include object based spec-
ification and programming, use of transparencies to hide aspects of distribution and its use of
viewpoints. ODP viewpoints are used to help partition the complexity in distributed systems
design. Each viewpoint considers the specification of a distributed system from a particular per-
spective, and of particular relevance to QoS specification is the computational viewpoint. This



viewpoint is concerned with the algorithms and data flows which provide the distributed system
function. It represents the system and its environment in terms of objects which interact by
transfer of information via interfaces.

Since modern distributed systems are object-based, there has been considerable interest in the
use of the Unified Modelling Language (UML) [15]. Indeed, UML has quickly emerged as the
standard object-oriented analysis and design notation. However, because it attempts to provide
notation for most aspects of object-oriented design, users can select from a rich variety of design
diagrams in UML and there are few guidelines on how precisely the design is defined.

The RM-ODP presents a framework for constructing distributed systems and defines viewpoints
with associated viewpoint languages. However, ODP does not prescribe a specification or design
notation within those viewpoints. Thus, there is a need for a specification and modelling language
to instantiate the viewpoints and UML is as an ideal candidate for such a language. Various
approaches to integrate UML and ODP have been described in [14, 11, 13, 1, 2]. In [2], we
presented a UML based method for modelling distributed systems in a framework complying
with the RM-ODP. To address the performance issues, in [2] we elaborate on specification of the
QoS aspects of the system as a part of the attributes of the entities of the system.

One major objective of introducing a design method for distributed systems is to cope with
large examples involving different types of media in sufficient details to enable evaluation of the
system in terms of performance, consistency, etc. In this paper we illustrate our approach via
specification of static aspects of Interactive Multimedia Kiosks (IMKs). We also model the IMK
via a UML based but non-ODP approach, COMET [6] and compare the result. We also compare
UML and ODP and explain the contribution of our approach to bridging the gap between them.

The paper is organised as follows. The next section introduces IMKs and introduces our running
example. Section 3 and 4 uses our running example to provide a brief introduction to ODP
and reviews the design method of [2]. Section 5 applies the design method to the IMKs. We
shall make a comparison between RM-ODP, UML and the method of [2] in section 6 by pointing
out some of the concepts of RM-ODP that are missing from UML and the way that they are
introduced into our UML model. Section 6 also presents a model of IMK via COMET [6] to
compare it with our method. Finally, we conclude in section 7.

2 Interactive Multimedia Kiosk

An Interactive Multimedia Kiosk (IMK) [5] is a public stand that supplies text, graphics, video,
animation and sound information to the user. Our example Museum Information Kiosk (MIK) is
a real-time coordination of display of information related to a museum offering visitors interactive
input, which is based upon one used by Blair and Stefani in [3]. Its function can be divided into
three phases as follows.

The welcome phase: The visitor is presented with a welcoming video sequence with associated
audio explanation. This phase is terminated when the user presses the start key.

The menu phase: A menu is displayed and a short video and audio message is played repeatedly,
which invites the user to select a presentation. This phase is terminated when a user selects a
choice from the keyboard.

The conference phase: A sequence of N images accompanied by an associated audio commentary
is presented. The exact location of the presented work in the museum building is displayed
in a separate window. The audio commentary is divided into N subunits and presented in
synchronisation with the corresponding image. The next image is presented when the audio
commentary of the previous image has finished. The new audio commentary starts two seconds



after the display of the image. In addition, the access map is displayed simultaneously with the
first picture of the conference. On termination of the presentation, the application returns to the
menu phase.

The user can temporarily suspend and resume the conference phase with a toggle key with values
suspend and resume. The duration of such a suspension is limited to 30 seconds. At the end of
the 30 seconds if the user has not pressed resume, the presentation resumes automatically. It
is possible to leave the menu or conference phases by pressing a kill button, which transfers the
system to the welcome phase. There is a timeout of 5 minutes in the menu phase within which
if the user has not made a choice, the system assumes that he/she has left and returns to the
welcome phase.

3 Open Distributed Processing

The Reference Model for Open Distributed Processing (RM-ODP) [7] describes an architecture
for building open distributed systems [10] in a multi-vendor environment. Central to the RM-
ODP is the concept of viewpoints. Viewpoints partition a system specification into a number
of partial descriptions, each targeted towards a particular audience to avoid the wide scope and
inherent complexity of the domain. The reference model defines five viewpoints: enterprise,
information, computational, engineering and technology. The following subsection explains the
computational viewpoint, which is the focus of this paper. Further information regarding both
the reference model and its approach to using viewpoints can be found in [7, 10, 12].

3.1 ODP Computational viewpoint of the IMK

The computational viewpoint deals with the logical partitioning of the distributed system into
a series of interacting entities, which are referred to as objects. To avoid confusion with the
word ”object”, which is also a reserved word in UML, we use the term computational object, or
compobj for short. Fig. 1 depicts a high level description of the computational viewpoint of the
MIK system of Section 2.
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Figure 1: Museum Information Kiosk

In Fig. 1, empty circles depict objects; are ten compobj as follows. Welcome Audio/Video pro-
ducer produces audio and video frames which must be presented via the Welcome Audio/Video
consumer while the system is in the welcome phase. The audio producer of the phase Menu and



Conference are modelled via compobjs Menu audio producer and Conference audio producer. Au-
dio Presenter models the compobj that consumes the audio, for example, a speaker broadcasting
sound. There is a Keyboard compobj for entering data and an external Clock compobj. Finally,
there are three image sources modelled as compobjs Conference images, Access map image and
Menu image, which refer to the corresponding repositories of images.

To perform a service in a distributed environment, the computational objects involved need to
access one another, through (possibly multiple) interfaces. Such interfaces partition the external
behaviour associated with computational objects into logically distinct categories enabling a
computational object to interact with more than one other object. An interface is known to its
environment by its interface reference. For example, consider Fig. 2, which depicts the subsystem
of Fig. 1 dealing with welcome phase. The compobj Welcome Audio/ Video Producer has two
interfaces WelcomeAvControl and WelcomeAvOut. Each interface of a compobj is depicted via a
“T” shape attached to it.

WelcomeAvIn WelcomeAvOut
Welcome Audio
>‘_J /Video Producer
Welcome .
Audio/Video avBinding WelcomeAvControl
Consumer avBindingOut avBindingIn

Figure 2: Audio/Video subsystem for the welcome phase

The computational viewpoint defines three types of interfaces: operational, stream and signal. Op-
erational interfaces support invocation of operations on potentially remote computational objects
and may be interrogations or announcements. A stream interface, for example WelcomeAvOut,
represents a continuous flow.

A signal is an atomic action resulting in a one-way communication from an initiating object to a
responding object. The interface WelcomeAvControl of Fig. 2 is an example of a signal interface.

In order for interactions between objects to occur, the interfaces of the relevant objects are
associated by the formation of a binding, which can be implicit or explicit. In an implicit there is
no term for expressing the binding action. In an explicit binding the binding itself is encapsulated
as an object which provides the infrastructure resources supporting the communication [3, 7]. We
shall refer to such objects as bindobj to distinguish them from compobjs. For example, the binding
between the producer and consumer in the welcome phase of Fig. 2 is modelled by a bindobj
called avBindin. Bindobjs, like compobjs, interact with the environment via interfaces. The
bindobj avBinding has two stream interfaces: avBindingIn receives the audio/video frames from
the environment; following the binding action, frames are delivered on the interface avBindingOut.

To the model real-time controllers that offer synchronisation reactive objects [3] are introduced. A
reactive object interacts with its environment exclusively through signal interfaces. For example,
in the multimedia presentation of Fig. 1 in order to synchronise and control the behaviour of the
interacting components a reactive object is included. A reactive object is depicted by a circle
containing letter “R”.



4 A UML approach to computational viewpoint modelling

In this section we shall briefly outline our modelling approach of [2], which provides a guideline
for modelling the computational viewpoint of ODP via UML diagrams. First we shall explain
how our approach is inspired by and relates to ODP and UML.

The static architecture of the UML is based on a four layered structure of user object, model,
metamodel and metametamodel [15]. The metametamodel defines the language for specifying
metamodel structure. A metamodel, which is an instance of the metametamodel, defines the
language for specifying the model. Models, which are instances of the metamodel, define the
language used to describe an information domain from which user objects, describing a specific
application domain, are specified. As a result, each layer defines a method of specification of the
layer below. In this paper we shall only be dealing with the bottom three layers.

Similarly, a three layered structure for ODP can be considered. One can think of the “Com-
putational viewpoint of RM-ODP” as a top layer which describes the computational aspects of
the architecture for building open distributed systems. Such descriptions result in a second layer
which is a template specifying the Specific Domain of Application (SDoA). The SDoA models
the computational aspects of applications with some common features. For each application that
belongs to the SDoA the “computational specification of an application ” can be created with
the help of the corresponding template.

Inspired by the above three layer structure, [2] models the computational viewpoint as a UML
diagram, which we call the Computational Metamodel Diagram (CMD). Different computational
entities and their relationship are modelled in the CMD. For each Specific Domain of Application
(SDoA), for example IMKs, [2] presents a heuristic for modifying the CMD and creating a class
diagram which models the static aspects of the system. We shall refer to such class diagrams as
the Computational Class Diagrams (CCD). As a result, the CCD models the “Computational
Specification of a SDoA”. The CCD serves as a template for modelling static aspects of the
computational viewpoint of applications which belong to the Specific Domain of Application
(SDoA). As a result, by applying a heuristic to CCD, for each such application, an object diagram
called the Computational Object Diagram (COD) is created which models the static aspects of
the computational viewpoint of such application.

4.1 Computational Metamodel Diagram

Fig. 3 is the Computational Metamodel Diagram (CMD), which models the computational
viewpoint of RM-ODP via a UML class diagram.

The CMD consists of a number of classes modelling different entities of the computational view-
point. For example, the class SystemComponent embodies classes of computational objects and
binding objects. Similarly, the class ReactiveObject represents the class of all reactive objects.
The class Infs represents interfaces to computational or binding objects, and the class RSigInfs
represents interfaces to the class of all reactive objects which is always a signal interface.

Between the classes in the CMD there are a number of associations, and each association mod-
els the relationship between the classes that it connects. For example, the association between
SystemComponent and Infs models interfaces assigned to computational or binding objects. Sim-
ilarly, the association between ReactiveObject and RSigInfs models the signal interfaces of the
reactive objects.

As an example, we shall explain the class SystemComponent which has five attributes. Name
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Figure 3: The Computational Metamodel Diagram

identifies the SystemComponent. Role is used to differentiate between computational objects
and binding objects, and has type enumeration (enum) which lists the set of possible values.
The names of the interfaces of each computational or binding object are listed by the attribute

InfNames.

Attributes ReqQos and ProQoS of the class SystemComponent model required and provided QoS,
respectively. The QoS provided to the environment by the computational object and the QoS
required by the object from its environment [3]. A computational object guarantees to supply the
provided QoS to the environment only if it receives the required QoS from the environment and
is referred to as a contractual approach to QoS. We specify each of these attributes via QL [3], a
first order real-time logic based on RTL [8]. As a result, the type of such attributes is specified
as QL clauses (@QLclause).

The class Infs models the interfaces in ODP and has two attributes of Names and InfType which
refer to the name and the type of the each interface. Types of interfaces are operational interfaces
OpInf, signal interfaces SigInf or stream interfaces Strinf. Different types of interfaces are mod-
elled via three sub-classes OplInfs, StrInfs and SigInfs corresponding to operational interfaces,
stream interfaces and signal interfaces in the computational model, respectively. Thus, in UML
terminology, the class Infs is a generalisation of classes OplInfs, Strinfs and SigInfs.

5 IMK as a Specific Domain of Application

In this section, we focus on an Interactive Multimedia Kiosk (IMK) as a Specific Domain of
Application (SDoA) and use the CMD of Fig. 3 to produce its Computational Class Diagram.
The CCD acts as a template for instantiation of object diagram of different applications such as



the MIK belonging to the SDoA IMK.

5.1 Computational Class Diagram for IMK Systems

A heuristic for the creation of Computational Class Diagrams (CCD) from the CMD of Fig.
3 is explained in [2]. To avoid confusion, for the rest of the section the word metaclass refers
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Figure 4: The CCD of the Interactive Multimedia Kiosk

to the CMD of Fig. 3 which acts as a template for creation of Fig. 4. First, we start from
metaclass SystemComponent and create classes AudioProducer, VideoProducer, ImageProducer
and AudioVideoProducer which model the resources which are manipulated to produce sounds,
graphics, pictures and video clips files. For example, the class AudioProducer which is created
from the template metaclass SystemComponent of Fig. 3 has the usual attributes of the meta-
class SystemComponent. Moreover, it has the additional attribute ListOfAudioFiles which gives
the list of audio files. There is also a method SizeOfAudioFiles() assigning to each file its size.
Other producer classes can be explained similarly. The files produced via objects from the above
classes are transferred through interfaces to consumer objects AudioConsumer, VideoConsumer
and Audio VideoConsumer which model windows and speakers that broadcast Audio, Video and
AudioVideo files into the user environment. They are all created from template metaclasses Sys-
temComponent. For example, the AudioConsumer class, has the usual attributes of the metaclass
SystemComponent and models a speaker. As a result, attributes Volume and Tone of a typical
speaker are included.

The next stage which creates bindobjs results in the creation of StreamBindings, SignalBindings
and QoSBindings. StreamBindings deal with transferring continuous media. To check if the
QoS of a binding is satisfied the class QoSBindings is created which interacts with a control
mechanism. Signals are carried through SignalBindings.



The user can interact with an IMK through Keyboards and Pointers like mice, trackballs or
trackpads. Such devices are modelled via the class UserInputDevice which is also created from
the metaclass SystemComponent of Fig. 3.

The subclasses of the class Infs are identical in the CMD and the CCD. Similarly, the classes
ReactiveObject and RsigInfs are identical to the corresponding metaclasses in CMD. After creation
of the above classes we need to produce the CMD associations and connect the classes of the CCD
together suitably. By creating the association of CMD with the ending Scs and Infs, the relation
between Infs classes and other classes of CCD created from SystemComponent are depicted. For
example, in the CCD, by connecting the class Audio VideoProducer to Infs with the multiplicity of
1 and 1... we mean that each object of the class AudioVideoProducer has a number of interfaces.

5.2 Computational Object Diagram of the Museum Information Kiosk

To produce a model of the computational viewpoint of the Museum Information Kiosk, which is
an example of an Information Multimedia Kiosk, [2] presents a heuristic similar to the heuristic
explained above.

Applying this heuristic to the Museum Information Kiosk results in a rather large and detailed
object diagram. For the purpose of explanation, Fig. 5 depicts the part of the COD which
corresponds to the Audio/Video subsystem of Fig. 2. Following the heuristic of [2] one can easily
complete the object diagram of Fig. 5 to obtain the full COD of the MIK.
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Figure 5: Computational Object Diagram for the video stream

The heuristic [2] for the creation of a COD starts with creation of computational and binding ob-
jects. First, objects welcomeAVConsumer and welcomeAVProducer from the classes Audio Video-
Consumer and AudioVideoProducer are created. Each of these objects includes the attributes of
the corresponding class. For example, the object with name welcomeAVConsumer is a computa-
tional object with Role = #compobj. It has only one interface welcomeAvIn and no provided or
required QoS.

Similarly, we need to create binding objects avBindings from StreamBindings. The provides and
required QoS of avBinding is as follows. The binding object avBinding will provide a through-
put of 25 frames per sec and 5 packet per sec, with a delay of between 40 and 60 msec per
frames/packets for video/audio, respectively. It must receive the audio frames at a rate of 25



frames per sec and audio packets at a rate of 5 packets per sec from the producer.

The next step is creation of interface objects welcomeAVIn, avBindIn, etc. from the class infs.
This follows by instantiation from Stream and Signal classes. The final stage of the heuristic
creates the Parameter objects and links corresponding objects together, which in results in the
object diagram of Fig. 5.

6 Discussion

There are certain concepts of RM-ODP that cannot be found in UML directly also there are a
set of notions in UML that cannot be mapped directly to RM-ODP. A comparison between UML
and RM-ODP is drawn in [12]. In the current section we shall discuss some of the differences
between UML and RM-ODP as explained in [12] and the way that our approach addresses such
issues. We also compare our approach to that of COMET.

Types and classes

The RM-ODP differentiates between types and classes. In the UML, the designer can specify
a type as a stereotype of class, which seems a convenient way of modelling. We are currently
working towards integrating stereotypes into our research. Stereotypes are particularly helpful
for the creation of UML profiles [4], which facilitate use of existing tools. This put a great
emphasis on the issue of types. As a result, in this paper, we have implemented the idea of type
system of RM-ODP in our UML models. Each attribute and method of our classes or objects
or metaclasses must have a type which is either a basic type such as Integer, String, ... or other
types which are defined in RM-ODP such as wideo, audio which are types for streams. This
results in models which are called strongly typed in the terminology of UML [15]. We use OCL
to impose constraints on models [2]. Having a strongly typed model is required for writing OCL
expressions as OCL is a typed language. Now, the issue of type checking can be resolved by
applying the type checking algorithms of RM-ODP to all attributes and methods of the objects
in the model.

Interfaces

An interface in the UML can not be directly instantiated. In our approach, we have modelled
interfaces as separate classes Infs. As a result, using our heuristics we can create interfaces from
such classes. There is an attribute Name in Infs that, in line with RM-ODP, is an identifier for
an interface object. An attribute InfType is included that can be used to create different types
of interface stream, signal and operational. In addition, all details of different types of interfaces
are modelled via subclasses of Infs of CMD of Fig. 3 according to the instruction in RM-ODP.

Binding

In the UML there is no direct equivalent for the notion of a binding. The RM-ODP introduces
two types of binding: compound and primitive. The compound binding action of the RM-ODP
is performed by a binding object. Compound bindings are modelled as objects which are in-
stantiated from SystemComponent in CMD with the role of bindobj. Our detailed specification
of bindobjs allows us to specify complex real-time systems precisely. A primitive binding action
allows binding of two interfaces of the same or different computational objects. The primitive
binding between interfaces (Infs) is denoted by the self association called PB the metaclass Infs.
In the CMD model of Fig. 3, the primitive binding actions instantiate the association from class
Infs into itself. The RM-ODP requires the primitive binding to be between interfaces of the same
type with complementary causality, which is implemented via an OCL invariant, see [2].

The attribute Name
One of the features of our approach, see CMD of Fig. 3, is that we have included an attribute



Name : String in SystemComponent, ReactiveObject, Signal,... referring to the name of such
entities. This might seems slightly strange in the eye of a UML modeller, since normally names
of objects appear in the first upper box of an instantiated object. The motivation for this is the
fact that in the RM-ODP names are identifiers of corresponding entities. To emphasise this we
have included Name as an attributes. This also facilitates writing OCL expressions on the classes
and metaclasses.

Layered structure

A central issue in our method is the use of a layered structure CMD, CCD, and COD which
is inspired by UML and RM-ODP. We have tried to mimic the way that a modeller will use
RM-ODP to produce ODP compliant design. Similarly, the CMD lays the pattern for creation
of CODs. Now, it poses a question that, starting from scratch without application of our layered
approach, what would the final model of the static aspects of the system look like? To answer this

question, we have modelled the MIK via Concurrent Object Modelling and architectural design
me Thod (COMET) [6].

Modelling MIK via COMET

COMET [6] is an object oriented software development process and the full COMET life cycle
includes requirements modelling, analysis, design, comstruction, integration and testing. The
COMET depicts a static model of the system via class diagrams. One of the challenges of
the creation of the static model is to identify the concepts involved. To assist the designer in
this respect, COMET presents a method called Object Structuring Criteria [6], which assists
the designer in structuring the system into suitable categories of objects. Fig. 6 represents
different category of application objects and the hierarchical relationship between them in terms
of generalisation between concepts. As a result, each application object is either an interface,
entity, control or application logic. Similarly, each interface is either a user interface, device
interface or system interface.

_<<application>>
A

[<sinterface>>]  [<<cntity>>]  [<<control>>] [<<application logic>>|
i

<<user <<device
interface>>] |interface>>
A

interface>>| —<saic

dependent]
control>>

Figure 6: Classification of application classes using stereotypes

Fig. 7 presents a static model of the Museum Information Kiosk (MIK) derived from COMET.
The keyboard is modelled as an input device interface, which means that it is an interface software
entity interacting with the hardware device keyboard. Image Producer and Audio/Video Producer
are output device interfaces which interact with hardware devices such as monitors and speakers.
COMET refers to wvoice files, images, access maps and menu as entities. Local Control is a
coordinator, which facilitates lip synchronisation between Image Producer and Audio Producer.
To ensure the correct functionality of the system, a state dependent control called Central Control
is provided. Both Central Control and Local Control need to be aware of the time of the system,
as a result a timer class clock is included.

Comparison

There are some similarities between our approach and the COMET. The COMET uses diagrams
such as Object Structuring Criteria (OSC) of Fig. 6 as a template for identifying the concepts
involved and structuring them into class diagrams such as Fig. 7. Similarly, we use the CMD of

10



<Input device interface>> <output device interface>>|1 <<entity>>
keyboard |Audio/Video Producer 1 Welcome Video

I I R

| 1 | <<entity>>
images
<<state dependent control>>"| | 1
Central Control
1 ] ‘ 1 > <<entity>>
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Audio Producer i Ly oice file e

Figure 7: A class diagram for MIK using classification method of COMET

Fig. 3 to produce the CCD of Fig. 4. There are clearly some overlaps between CMD and OSC.
However, it seems that the categorisation of concepts in OSC is inspired by engineering aspects
of the system. For example, control, application logic, etc, resemble the components which are
expected to appear in the final low level design of the system. We believe that this prevents a
COMET user from modelling at a higher level of abstraction. As a result, our approach has the
advantage of avoiding the complexity of design in early stages by abstraction into more general
categories of objects. Later, relying on heuristics, each high level category can mapped into
the CCD classes, which are fine grained objects related to a specific group of applications. The
process of such mapping is carried over single classes, which enables the user to avoid dealing
with large complex systems.

Being ODP based, our approach rapidly results in a more precise design. For example, COMET
does not address the issue of binding as a part of OSC and starting from categorisation of Fig. 6
the designer fails to include bindings. As a result, if the model requires to address issues related
to binding, such as QoS for delivery of streams between two interfaces, suitable modelling course
of action must be taken in further iteration development stages.

7 Related Work and Conclusion

A number of researchers are working on integrations of UML and RM-ODP. Many of them are
interested in UML in the context of enterprise specification. Aagadel and Milosevic [1] study the
way that enterprise viewpoints can be used as a part of software development cycle via UML.
They also elaborate on different enterprise modelling concepts in terms of UML. Linington [11]
uses UML to specify the enterprise viewpoint specifications of RM-ODP. Steen and Derrick [13]
present a metamodel UML core for the enterprise viewpoint in the RM-ODP and also study the
extent that UML can be applied for the specification of the enterprise viewpoint.

Other papers concentrate on specific applications. Oldewick and Berre [14] apply a methodology
based on RM-ODP and UML to geographical information systems. Kande et al. [9] apply UML
to specify service components of telecommunications management networking systems which are
originally modelled in the framework of RM-ODP.

In this paper, we have applied the method of [2] to an Interactive Multimedia Kiosk example. We
have presented a class diagram from which UML models of different IMK applications such as
MIKs can be created. Our case study demonstrates that our approach is successfully applicable
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to systems containing multiple types of media. Our example in [2] illustrated simple audio and
video channels; the case study of this paper encompases a larger range of media types such as
text, graphics, animation and sound files. We have also addressed the issue of extensibility by
demonstrating that the method is applicable to large examples. It is straightforward to follow the
method explained in the paper to present a UML model of a central database system interacting
with more than one IMK.

Doing the case study, we observed that the challenging part of the implementation of our process
is the creation of the Computational Class Diagram (CCD). Since creation of the CCD requires
a detailed knowledge of the Specific Domain of Application (SDoA). For example, to instantiate
the CCD of the IMK, we have to know what compobj, bindobj, ... are involved and what their
attributes are. In other words, like any other modelling task, it is essential to obtain a deep
understanding of the SDoA. However, our method has the advantage of directing the modeller
to search for the information and also recording such information in UML diagrams in a manner
which complies the RM-ODP. The heuristic nature of our approach suggests that there is clear
scope to develop tailored tools based on existing UML tools.

The paper has made a comparison between UML and ODP and shows that the approach [2]
bridges the gap between specification via UML and ODP. The paper also applies a non-ODP
(COMET) approach to the modelling of the application and draws a comparison with our method.
We argue that our approach not only results in a more precise models, but also it avoids the com-
plexity of design by starting at a higher level of conceptual modeling and follows the refinement
of the model focusing on smaller and more manageable components of the system.

We are currently working on creation of a UML profile [4] which implements our method. In
future we are planning to address the behavioural aspects of such distributed systems and also
apply our approach to modelling of multicasting.
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