
37

An Integrated Modeling
Approach to Enterprise
Systems Architecture

Existing approaches to architecture description
need to be enhanced as they fail to fully
capture the unique characteristics of an

enterprise system.

The architecture of a system is a specification

that captures the structure and functionality

of the system in an abstract manner. The

specification should help various stakeholders

to understand and analyze different functional

and quality of service (QoS) aspects of the system

before its construction, without providing

overwhelming details.

In most software projects, the architecture

specification of an enterprise system is captured

using informal box and line diagrams with

textual annotations. The informal architecture

specification is transformed to implementation

through a manual development process where

the specification is hypothetically related to the

implementation (through manual verification).

Such a description suffers from people- and

project-specific idiosyncrasies leading to

ambiguity, misinterpretation and often,

erroneous implementation. Therefore, it is

essential to capture architecture specification

using formal notations with well-defined syntax

and semantics – through a tool.

A formal architecture specification should

ideally capture all the aspects that are unique to

the enterprise system and also help in reasoning

various architecture decisions.

An enterprise system typically automates

one or more business processes. The system

consists of several legacy and new applications

that are integrated to realize the consistent whole.

The enterprise system is implemented using

multiple technology platforms, commercial off-

the-shelf (COTS) products that may be deployed

in distributed hardware nodes.

There have been several attempts in the

past to model different aspects of the architecture.

For instance, there have been attempts to define

what should be the essential constituents of the

architecture1; the structural and behavioral

By Santonu Sarkar & Srinivas Thonse

SETLabs Briefings
ENTERPRISE ARCHITECTURE & BUSINESS COMPETITIVENESS VOL 2 NO 4

Oct – Dec 2004

38

description languages for architecture

specification2; notations to capture the

information content3; transformation of the high

level specification to implementation and so on.

 An analysis of the popular modeling

approaches reveals that the approaches do not

offer a complete solution that models all the

characteristics of an enterprise system in an

elegant manner. This observation has

motivated Infosys to define an integrated

architecture modeling approach by bringing

together the best practices of all the previous

approaches.

The architectural characteristics of an

enterprise system is analyzed and a modeling

approach is introduced here to capture the

architecture specification. The approach has been

converted to the InFlux Architecture

development methodology. A case study is

presented to explain the salient features of the

modeling approach .

ARCHITECTURE MODELING

REQUIREMENTS OF ENTERPRISE

SYSTEMS

To understand the modeling requirements, it is

important to be aware of the software architecture

description that needs to be captured. The

Software Engineering Institute (SEI) observes that

there is no universally accepted definition of

software architecture, but there are several

modern5, and classical definitions6 that are

documented. Despite variations, these definitions

suggest that the architecture of a system (not

restricted to enterprise applications alone) must

be able to capture the organization’s functional

elements, their interactions, the data elements

used and transformed, and various non-

functional or QoS attributes. It is widely

recognized that architecture can be best described

from multiple viewpoints7 (Each viewpoint in

isolation addresses certain aspects of the

architecture and helps in separating concerns, but

when combined, form the system blueprint.

Key concepts

An enterprise system has multiple stakeholders,

each interested in different aspects of the system.

The business analyst, for example, is interested

in the ‘to-be’ business processes and applications;

the domain specialist is interested in identifying

the functional applications and domain entities,

and the operations department, which has to

provision and deploy the infrastructure, may be

interested in the deployment configuration of

the hardware boxes and products (Table 1). The

architecture modeling language should have a

mechanism to capture these different aspects and

the ability to represent each aspect in isolation.

IEEE8 further suggests that the architecture

description should specify how the architecture

meets “the concerns of the identified stakeholders

of the system”.

EXISTING APPROACHES AND THEIR

LIMITATIONS

Many languages and notations have been defined

for architecture modeling. It has been commonly

understood, however, that the architecture, at a

minimum, should be described as a set of

interconnected coarse-grained components,

rather than as its implementation details such as

data structures and functions implementing

algorithms9.

Broadly, there are two categories of

notations recommended for architecture

description: object oriented (OO) notations and

languages, and Architecture Description

Languages (ADL). There are a few prominent

industry standards that prescribe what

architecture should model such as ISO RM-ODP

10746. The Zachman framework is another

39

Captures the business processes automated by the system
to give it a holistic, process-centric view. This view should
possess (but not be limited to) the process, the participants
of the process: applications and people, the roles played
by various users, the locations where the applications
would be deployed, and so on.

Describes various functional blocks (or subsystems) of
the system, the functional services offered by them, their
inter-relationships, the information exchanged by them,
and so on. It should describe how overall functionality
articulated by the acquirer of the system (typically client)
has been distributed among these subsystems and how
they interact among themselves to realize the
functionality.

Describes various information entities managed by the
above mentioned functional blocks or subsystems and
a high-level plan to realize these information entities.

Describes how the functional blocks and information
entities should be implemented in terms of the platform
and architecture styles (such as n-tier architecture),
interaction protocols, the COTS products (middleware,
functional products) , and so on.

Involves other existing systems (developed over time and
deployed in distributed locations) with which the system
needs to interact. The architecture modeling language
should be able to model the environment and interaction
with the environment.

Describes the hardware (computing, data and network)
infrastructure where the system would be deployed and
managed. It describes how performance, scalability and
reliability are achieved.

Describes how the downstream developers will
implement the system; principles and standards for
adoption by the design teams and the release and
configuration management guidelines.

In defining several architectural aspects especially the
business, functional, information, implementation
platform, technology and product selection, interaction
with environment, deployment & development, the
architect takes a series of architecture decisions. The
architecture specification should formally record these
architecture decisions so that they can be traced and
analyzed at a later stage and help various stakeholders
to understand the architecture better.

Involves security, performance, portability captured in
parallel with the functional specification. These aspects
need to be considered and incorporated during
architecture definition so that the development team can
implement the QoS aspects during the implementation
of the system.

Enterprise and LoB architects,
Acquirer (customer), Business users

Architect, Domain Analyst

Domain Analyst, Database Designer

Architect, Customer

Architect, Customer

Architect, Deployment Manager

Architect, Application Developer,
Release & configuration manager

Architect, Application Developer,
Customer

Business users, Customer, Architect

Business

Functional

Information

Implementation on
Technology & COTS
products

Environment

Deployment

Development

Design Rationale

Quality of Service

Aspect Description Concerned Stakeholders

Table 1: Different aspects of enterprise system architecture Source: Infosys Research
from stakeholder perspective.

40

standard that provides a set of views of the

architecture.

Architecture Description Languages

Architecture Descriptive Languages (ADLs) such

as C2, Wright, Darwin, Acme, and Rapide have

been specially designed to describe the

architecture of a system as an interconnection of

coarse-grained components. Though most ADLs

are based on formal semantic theory that helps

verify and analyze the architecture models that

are created using an ADL, there is little effort to

standardize ADLs. ADLs lack the notations to

capture all concepts of enterprise systems (Table

2). For example, ADLs do not capture the notion

of architecture stakeholders and multiple views

of a system.

Universal Modeling Language (UML)

The OO notation, especially UML, has become the

lingua franca in the software engineering

community to describe design elements in a

modular fashion in terms of data types,

algorithms, and procedures. The 4+1 view of

architecture modeling, a precursor to UML,

suggests that architecture should be described

using four views. Objetct-oriented notations,

similar to UML, have been used to describe

these views.

While UML is very successful in modeling

the implementation details, questions remain if

UML is the right language for architecture

description. It has been argued that UML in its

current form does not provide adequate support

to describe an architecture as interconnection of

coarse-grained components where it is possible

to model hierarchical decomposition, various

communication aspects, architecture styles, non-

functional properties and that it is possible to

perform various architectural analyses. This

observation has led to the effort of improving

the UML specification to incorporate various

architectural constructs in UML 2.0.

Other Methodologies

IEEE 1471 provides a definition of architecture for

software-intensive systems and a conceptual

framework to establish a normative set of

architecture terminologies. It does not, however,

prescribe any possible set of viewpoints and

views, a modeling notation to capture them, or a

process or method to describe the enterprise

architecture.

ISO RM-ODP defines viewpoints for

enterprise architecture. It does not identify the

views and does not cover the aspect of

downstream handoffs. While the Zachman

framework provides a set of views of enterprise

architecture, it is subjective, not formal and is

not backed by notation.

The Meta-Model Approach

A meta-model-based approach to capture the

architectural description can be used to overcome

the above shortcomings. In this approach the

architecture metadata is defined using the

framework suggested in OMG MOF. The

approach has been implemented by Infosys as

the InFlux Architecture Development

Methodology.

DESIGN PRINCIPLES

The architecture meta-model notations have been

created based on the following set of design

principles:

P1: Adopt industry standards for

normative set of terminologies and

notations to define architecture. This helps

create a standard set of architectural

vocabularies for communication across

various stakeholders.

P2: Facilitate separation of concerns to

41

manage architectural complexities. Due to the

diversity in architecture aspects it is a

recommended practice to use multiple

viewpoints and views to describe the

architecture.

P3: The metadata should contain

modeling entities and notations close to

an architect’s notion of an enterprise

system. The metadata should support

evolution to introduce new concepts and

notations.

P4: Facilitate downstream integration. The

notations should be unambiguous with

well-defined semantics so that they can be

incorporated in an architecture definition

tool with the aim of downstream design

tools integration.

P5: Facilitate automation in various

architecture analyses. The notations

should have well-defined semantics so that

it is possible to perform various analyses

on the architecture model.

Based on these principles the architecture

meta-model has been defined with the following

characteristics:

1. [P1,P2] Adoption of IEEE 1471: The

architecture definition has been

adopted from IEEE 1471 standard. The

conceptual framework provided by

IEEE 1471 has been used as the basis for

defining the modeling entities and the

modeling tool.

2. [P2] Adoption of ISO/IEC RM-ODP 10746

viewpoints for separation of concerns:

Since IEEE does not prescribe any

viewpoint, it is left to the practitioner to

select the appropriate viewpoints. The

meta-model approach adopts ISO/IEC RM-

ODP 10746 recommended viewpoints as

these viewpoints closely match the

enterprise system architecture aspects

introduced in Table 1. Further, a new

viewpoint called Software Organization

Viewpoint has been introduced for better

downstream design integration.

3. [P3] Adoption of MOF for architecture

metadata: MOF suggests a four-layer

approach to describe any kind of metadata.

In the context of architecture modeling, the

architecture metadata comprises of a set

of architectural entities and their

relationships defined using MOF meta-

metadata.

4. [P4] Facilitate Platform independent and

platform specific modeling: The modeling

entities have been designed so as to clearly

separate platform-independent and

platform- specific aspects of the

architecture with clear traceability

relationships between them.

5. Adoption of ADL concept: The notion

of components and connectors has

been modeled using specific notations

and these notations have been used in

the engineering viewpoint . The

component concept has been used for

model application components such as

EJB, .NET components , and

architecture components such as

middleware etc.

6. QoS aspects with meta-model notations:

The proposed approach has adopted ISO

9126 recommended classification of

various QoS aspects. Currently, the

performance and availability aspects are

under active consideration for QoS

modeling in a formal manner.

7. Design rationale captured with meta-

model notations: The meta-model

enhances IEEE 1471 definition of design

rationale. It introduces notations to capture

42

design rationale, architecture principles,

architecture decisions, and so on. These

notations are linked to different views and

viewpoints.

8. Architecture Traceability: The meta-model

entities associated with various

viewpoints are also linked together so that

these viewpoints can be integrated to form

a consistent whole. The meta-model also

associates various design rationale with

the viewpoints so that it is possible to have

reasons behind constructing a view in a

particular manner.

IMPLEMENTATION OF KEY CONCEPTS

Viewpoints and views: The architecture of a

system is defined using a set of diagrams that

belong to RM-ODP viewpoints. Each viewpoint

in turn is described using a set of views (or

diagrams) and each diagram is defined using a

set of notations (Table 2).

Use of Component and Connectors: The component

and connector concepts introduced in ADLs are

generic and abstract. ADLs do not prescribe which

aspect of architecture should be modeled using

these concepts since ADLs do not have concepts of

viewpoints and views. However, the proposed

approach uses component and connector notations

in the engineering viewpoint.14

Architecture Principles and rationale: IEEE 1471

recommends design rationale for architectural

concepts and consideration of alternative

concepts but does not prescribe any approach

for documenting the rationale. The proposed

approach adopts the IEEE 1471 recommendation

and provides a more prescriptive approach by

defining additional design rationale notations

(Table 3).

The design rationale entities are linked with

each view (refer Table 2). By using this approach it

is possible to associate the rationale precisely with

the focused aspect of the architecture.

Architecture Traceability

Architecture traceability has been

addressed at two levels:

Viewpoint traceability: While a

viewpoint-based architecture description

facilitates the separation of concerns and

helps manage the complexity, it is also

necessary to have mechanisms to link all

the viewpoints to define the consistent

whole. A sample set of traceabilities are

as follows:

1. How can business processes be realized

using subsystems?

2. How are domain entity lifecycles

controlled by subsystems?

3. How can subsystems be implemented

using technology?

4. How can subsystems be deployed in the

hardware infrastructure?

5. How can subsystems be implemented

as packages?

Design rationale traceability: Entities

in a specific architecture diagram have

been identified based on certain design

rationale. For instance, COTS products

in an application diagram may be

selected based on evaluation criteria.

The clustering of devices in the

deployment diagram may be necessary

to meet certain QoS requirements. The

domain analysis diagram may be

influenced by a few architecture

principles. The decision of breaking up

a system into a set of subsystems can

also be based on a certain design

rationale. The meta-model facilitates

capturing the traceability of design

rationale (described in Table 3) behind

diagram and diagram elements.

43

Collaboration

Work flow

Context

Functional

Domain Analysis

Domain Lifecycle

Logical

Application

Deployment

Layer

Realization

Business process, activities (manual,
automated, interactive) & tasks,
workflow, roles, systems

System, external system (derived from
collaboration & workflow diagrams),
subsystem, messages, service

Domain entities and their relationship
with the messages,

location, UML relationships among the
entities, state transition

Application and architecture
components, services, connectors
(simple and compound), required-
provided interfaces, protocols, tier

COTS product, operating environment,
deployable unit (such as executable,
shared library, deployable components
like JAR, assembly)

Computing, data and communication
hardware, data center

Application framework, package,
layer, UML sequence diagrams

 Enterprise

Computational

Information

Engineering

Technology

Software
Engineering (new
viewpoint)

High level view of the systems, the
stakeholders of these systems and their
interactions

Detailed business process involving the
systems, and stakeholders (identified in
collaboration diagram). The process is
described in terms of activities performed
by the system and stakeholders and work
items exchanged.

Top level diagram to define system under
consideration and its relationship with
the environment

Hierarchical decomposition of the system
into subsystems, their interaction and
messages exchanged

Domain entities and their relationships at
a high level (conceptual data modeling).

Dynamic aspects of a Domain entity

This diagram describes how subsystems
and application components are
organized based on an architecture style
(such as n-tier, client/server, publish-
subscribe), the architecture services
required and so on.

This diagram describes software
platforms (operating system,
middleware, database servers) and
COTS products on which the application
components and domain entities are
deployed during runtime.

Infrastructure required to implement the
system such as hardware boxes, network
links, database servers, firewall,
routers etc

This diagram describes how the
application components are further
broken up into packages (or modules) and
their dependencies

This diagram illustrates how significant
scenarios of system usage are executed
using the architecture

View point Diagram Description Diagram Notations

Table 2: Architecture modeling notations Source: Infosys Research

QoS modeling

The proposed meta-model approach to

architecture handles performance and availability

as the QoS attributes. Other QoS attributes in ISO

9126 have not been modeled so far. The

performance attribute of the model is further

discussed below.

For performance modeling, each business

44

activity is broken down to a set of atomic user

tasks and system tasks. A system task is

associated with an application service and certain

performance attributes – expected mean /

minimum / maximum percentile response times.

User tasks are associated with think times. Each

activity is associated with workload attributes

like requests per hour for each operating time

window based on business transaction volumes.

This information can be used to execute

capacity planning and infrastructure sizing

algorithms and define a suitable infrastructure

for the system.

ARCHITECTURE MODELING USING

INFLUX

The architecture meta-data that was described

previously has been realized in InFlux

workbench, a modeling tool that is used to

capture and analyze architecture descriptions.

The enterprise viewpoint is captured as a

collection of business processes in the

workbench. The tool facilitates creation of other

architecture diagrams from the business

processes. The architecture toolkit feature

classification framework suggested by

Medvidovic and Taylor has been used to

evaluate the features of InFlux workbench. The

present capability of the tool with respect to the

classification framework is as follows:

Information capturing: The tool provides

a visual means to define the architecture

consisting of multiple views or diagrams

(Table 3).

Active design: The tool proactively supports

an architect to manage consistency between

the views. For instance, the tool helps in

mapping an application component

(identified in technology viewpoint) to an

application server and eventually to the

hardware.

Report generation: The future version of

the tool would generate the architecture

document and various traceability

analysis reports during the course of

design. The traceability reports will be

Notation

Mission

Architecture Principle

ArchitectureDecision,
ArchitectureOptions,
EvalCriteria

Description

The concept of a mission is adopted from IEEE1471 and
enhanced with a specific set of attributes such as
business driver, mission & plan, initiatives, and external
constraints.

Architecture Principles are captured as general rules and
guidelines to achieve the mission.

ArchitectureDecision models the decision taken while
defining a View. A View can be associated with zero or
more such decisions. A decision is made in two ways:

1. By selecting an option from one or more
‘ArchitectureOptions’

2. Based on some evaluation criteria (EvalCriteria).

The ArchitectureDecision notation is linked with the
Diagram notations. Thus this notations helps one to
describe the rationale behind the defining a diagram and
the rationale behind selecting important architectural
entities.

Table 3: Modeling of Design Rationale Source: Infosys Research

45

generated by analyzing various

traceability aspects supported by the

meta-model.

Downstream integration: The tool

maintains the model information in XMI

formats. The future version of the tool

would be able to export the package

structure for downstream development.

Modeling Illustration: A Case Study

An enterprise has initiated a global effort to create

a single billing solution applicable to all

regions. The new billing system will replace the

existing collection of separate systems that

currently support billing functionality by

creating a single network-wide billing solution.

InFlux workbench helps the architect to

construct different architecture diagrams

(described in Table 2) as a part of ‘Billing System

To-Be’ model.

Computational Viewpoint

The Computational viewpoint consisting of

context and functional diagrams is based on the

business processes (Figure 1). The systems shown

in the functional diagram such as Billing System,

Figure 1: Computational Viewpoint: A snap shot of the Source: Infosys Research
Functional Diagram of the billing system

46

Genesis, and Pricing are identified in the business

process. The subsystems are obtained by

clustering the closely related activities defined in

the business process.

Information Viewpoint

The Information Viewpoint consists of

architecturally significant domain entities such as

tariff, discounts, billing entity, and their

relationships (Figure 2). The domain entities can be

derived from the messages that are communicated

among the subsystems identified in the

Computational Viewpoint and the work products

identified in the workflow diagram (Enterprise

Viewpoint). To capture the relationships, the Infosys’

approach has adopted UML generalization,

aggregation and association concepts.

Technology & Engineering Viewpoints

These viewpoints consist of logical diagrams,

application diagrams and deployment diagrams.

A logical diagram can be derived by mapping

technology elements on the functional elements

identified in the Functional Diagram (refer Figure

1). Here, the architect decides the architecture

style (such as a three-tier solution), the architecture

Figure 2: Information Viewpoint: Sample Domain Source: Infosys Research
Analysis Diagram

47

Figure 3: Technology Viewpoint: Application Diagram Source: Infosys Research

services (such as presentation service, notification

service, transaction service, and so on) that is

required by the functional elements,

communication aspects (API call, messaging,

remote procedure calls and so on).

The application diagram provides a

configuration of the deployable units that can be

deployed either on hardware or software

infrastructure. It shows all the processes for the

system, the infrastructure software (middleware,

application servers, and so on) that help run the

application and the deployment units (JAR, DLLs,

and so on). ‘Pricing’ and ‘Customer Management’

applications are deployed on a J2EE Application

Server. Invoicing is a separate executable and

Tax Engine is a COTS product (Figure 3).

The Deployment Diagram depicts a view

of how the processing nodes are arranged across

locations and the software that will be installed

on them. It depicts all the hardware and network

connectivity requirements for the system and

how the hardware is clustered and distributed

across different geographical locations. The

shows that the application is deployed in two

separate Data Centers. Each Data Center will have

a web server running on a machine and a cluster

48

of J2EE servers running on a separate machine

(Figure 4).

COMPARISON TO OTHER APPROACHES

Existing architecture standards by themselves

cannot address all aspects that are of interest to

the stakeholders of enterprise systems. While

ADLs, based on component and connector

concepts, formalize the box and line diagrams,

they do not clearly articulate how one can define

business process, information, and technology

aspects of the architecture and integrate these

aspects to provide a consistent whole. Further,

ADLs do not provide adequate support to model

multiple views to describe different aspects of a

system.

UML notations and tools on the other

hand have been successful in downstream design.

However, the modeling concepts provided by

UML do not match the architect’s vocabulary for

system description. Besides they do not

completely meet the needs of distributed

component based architectures of today that

involve platforms such as J2EE and .NET, Service-

Figure 4: Technology Viewpoint: Deployment Diagram Source: Infosys Research

49

Oriented Architecture (SOA) and integration

middleware. This makes it necessary to integrate

and extend these standards to meet architecture

modeling requirements. The proposed approach

is an attempt in this direction to provide a

modeling language for enterprise systems that is

based on distributed component architectures.

The approach has integrated IEEE 1471, ISO RM-

ODP, ISO 9126, UML, MOF and Component-

connector concepts. It subscribes to the concept

of views- and viewpoint-based architecture

description suggested in IEEE 1471, RUP and

4+1 approach and RM-ODP. It has extended and

tailored these standards for the needs

of enterprise systems and supplemented these

with graphical architecture notation and a

modeling tool.

The fundamental concepts behind

component-connector formalism has been used

to describe the application components, their

interface and interaction details. The UML

aggregation and association relationships have

been used to describe the information aspect of

the architecture.

The proposed approach utilizes various

architecture modeling concepts and enhances a

number of architecture modeling aspects of

other approaches while also introducing

new aspects.

Business Architecture

The 4+1 approach of architecture modeling does

not state how business architecture (involving

business process and other associated concepts

described in Table 1) can be modeled. EDOC

profile defines notations, stereotyped from UML

entities, to model business architecture as RM-

ODP enterprise viewpoint. However, it does not

prescribe how many views a practitioner should

define for enterprise viewpoint. The popular

ADLs do not adequately describe a mechanism

to capture the business architecture. The

proposed approach suggests specific notations

for business processes workflows to define

enterprise viewpoint similar to EDOC. Moreover,

it prescribes specific views as diagrams under

enterprise viewpoint.

Functional Architecture

Most ADLs use component-connector concepts

to model functional architecture. Many ADLs

incorporate rigorous formalism in the language

to perform various analyses such as functional

simulation, verification and code generation. UML

and UML-based architecture modeling

approaches do not have such concepts. UML EDOC

defines notations for component-connector

concepts using stereotypes of UML class and

association. The proposed approach uses

notations similar to EDOC and introduces

additional concept of system, subsystems,

functional components and connectors (simple

and compound) to model functional architecture.

It treats component and connectors as first class

modeling entities and these concepts are

influenced by the ADLs. Unlike ADLs, the current

version does not have the adequate formal rigor

to capture the semantics.

Information Architecture

ADLs do not address information modeling

adequately. The 4+1 approach does not contain a

specific view to capture information aspects. It

recommends ER diagrams and class diagrams for

information modeling. EDOC provides notations

for information modeling through RM-ODP

recommended information viewpoint.

EDOC primarily uses UML class

stereotypes for ER concepts, provides traceability

of entities with functional elements (system,

subsystems) and provides for grouping of entities

and associating the groups with information

50

stores hosted in enterprise geographical

locations for information modeling.

Implementation technology and COTS

products

The proposed model supports explicit notations

to model concepts such as architecture services,

middleware, deployable units, communication

aspects, and their traceability with the functional

aspects. Most ADLs do not have adequate

constructs to capture implementation

technology, architecture services, and COTS

products. The UML and 4+1 view approach

suggests a process view to model deployable

units and their communication but it does not

have equivalent notations for all the above

mentioned concepts. EDOC focuses mostly on

communication aspects (FCM model) and

component distribution. It is not clear how an

enterprise can model various other architectural

aspects that are related to the implementation

technology identified in Table 1.

Environment

The context and application diagrams are

provided in the proposed approach to model the

interaction between the system and its

environment from functional and technology

perspectives. There is no such equivalent concept

in other standards.

Deployment

This aspect of the approach supports an

application diagram and deployment diagram

in technology viewpoint to model

deployment aspects. UML 4+1 approach has

a Physical View that provides a subset of the

deployment-related concepts. Other

standards do not have an equivalent

representation.

Development

An additional software organization viewpoint that

is not supported by ADLs is also provided in the

meta-model approach for better downstream

design integration.

Design rationale

The IEEE 1471 conceptual framework emphasizes

the necessity of design rationale but the

framework does not suggest any approach to

capture it. The framework provides explicit

notations to capture them. UML, EDOC profile

and ADL do not have notations to capture

such concepts.

Architecture traceability

The aspect provides for traceability among the

views and viewpoints. The meta-model

elements are connected through traceability

relationships. UML 4+1 does not

address traceability explicitly, but it is

The meta model approach uses fundamental concepts behind
component-connector formalism to describe the application

components, their interface and interaction details

51

possible to create such relationships. EDOC

profile allows the designer to establish

integration among different viewpoints. ADLs

do not directly support the notion of

architecture traceability. The extent of support

is not clear.

QoS modeling

UML does not provide a mechanism to model

QoS aspects of the architecture. Some ADLs

capture QoS properties such as timing and

security aspects. However the applicability

is restricted to special class of applications such

as real time systems. It is not clear if these

concepts can be adopted in enterprise class

applications. The proposed modeling language

addresses some of the QoS aspects and currently

it defines the performance and availability

aspects.

CONCLUSION

The proposed modeling language in its current

state does not have the complete capability

to perform various architecture analyses. System

generation from the architecture specification

is only partial in terms of skeleton packages.

Work is currently underway to enrich the

framework. Rigorous behavioral semantics for

various architecture analysis capabilities is

required. It needs to support QoS modeling

for the ISO 9126 attributes. It needs tighter

linking with patterns. These will be the directions

for future work in the architecture modeling

framework.

REFERENCES

1. Booch, G., Jacobson, I., and Rambaugh, J.,

1998. The Unified Modeling Language

User Guide, Addison Wesley

2. Chen, P. P., 1980. Entity-Relationship

Approach to Systems Analysis and Design,

Proc. 1st International Conference on the

Entity-Relationship Approach. North-

Holland, ISBN 0-444-85487-8

3. Clements P., Bachmann F., Bass L. , Garlan

D., Ivers J., Little R., Nord R., Stafford J.,

2002. Documenting Software Architecture

Views and Beyond, Addison-Wesley

4. Garlan, D. and Kornpanck, A. J., 2000.

Reconciling the needs of architectural

description with object-modeling

notations, in Proceedings of the Third

International Conference on the Unified

Modeling Language – 2000

5. Hillard, R., 2001. IEEE Std 1471 and

Beyond, Position Paper SEI First

Architecture Representation Workshop

6. IEEE1471, 2000. IEEE Standard 1471-2000,

IEEE Recommended Practice for

Architectural Description of Software-

Intensive Systems, September 2000

7. InFlux Architecture Development

Methodology (http://setlabs/

ArchitectureModeling/)

8. ISO10746-2, 1996. ISO/IEC 10746-2: 1996,

Information technology.Open distributed

processing.Reference model:Foundations.

9. Kandé, M. M., Crettaz, V. A., Strohmeier,

and Sendall, S., 2001. Bridging the gap

between IEEE 1471, Architecture

Description Languages and UML, Springer

Software and Systems Modeling Journal,

Vol 1 Issue 2 pp 113-129 Special Issue UML

2001

10. Kruchten, P., 1995. Architectural

Blueprints-The 4+1 View Model of

Software Architecture, IEEE Software,

vol 12, no 6, pp. 42-50

11. MDA, 2001. Model Driven Architecture- A

Technical Perspective, OMG Architecture

Board MDA Drafting Team, Review Draft

Version 00-17

52

12. Medvidovic, N., and Taylor, R. N., 2000. A

Classification and Comparison Framework

for Software Architecture Description

Languages, IEEE Trans. Software

Engineering, vol. 26, pp. 70-93

13. MOF, 2002. MOF Conceptual Overview,

OMG Meta Object Facility v 1.4.

14. Perry, D. E., and Wolf, A.L., 1992.

Foundation for the Study of Software

Architectures, SIGSOFT Software Eng.

Notes, vol 17, no 4, pp. 40-52

15. Sarkar, S., and Thonse, S., 2004. -EAML

Architecture Modeling Language for

Enterprise Application, IEEE Conference

on E-Commerce Technology for Dynamic

E-Business

16. SEI, 2003. How do you define software

architecture, SEI on-line publications,

available at: http://www.sei.cmu.edu/

architecture/definitions.html

17. Shaw, M. and Garlan, D., 1996. Software

Architecture: Perspectives on an Emerging

Discipline. Prentice Hall

18. Stojanovic Z., Dahanayake A., and Sol H.,

2001. “Integration of component-based

development concepts and RM-ODP

viewpoints”, in 1st workshop on Open

Distributed Processing 2001, Setbul

Portugal, pp 98-109

19. Störrle, H., 2001. Towards Architecture

Modeling with UML Subsystems, Ludwig-

Maximilians-Universität München

20. Stutz, C., Siedersleben, J., Kretschmer, D., and

Krug, W., 2002. Analysis beyond UML, in IEEE

Joint International Conference on

Requirements Engineering (RE’02), September

09 – 13, Essen, Germany, pp. 215 – 218

21. UML2.0., 2000. UML 2.0 Superstructure

RFP, OMG Request for Proposal, OMG

document ad/00-09-02

22. Zachman, J. A., 1987. A Framework for

Information Systems Architecture. IBM

Systems Journal, vol. 26, no. 3. IBM

Publication G321-5298

For information on obtaining additional copies, reprinting or translating articles, and all other

correspondence, please contact:

Telephone : 91-80-51173878

Email: SetlabsBriefings@infosys.com

© SETLabs 2004, Infosys Technologies Limited.

Infosys acknowledges the proprietary rights of the trademarks and product names of the other

companies mentioned in this issue of SETLabs Briefings. The information provided in this

document is intended for the sole use of the recipient and for educational purposes only. Infosys

makes no express or implied warranties relating to the information contained in this document

or to any derived results obtained by the recipient from the use of the information in the

document. Infosys further does not guarantee the sequence, timeliness, accuracy or completeness

of the information and will not be liable in any way to the recipient for any delays, inaccuracies,

errors in, or omissions of, any of the information or in the transmission thereof, or for any

damages arising there from. Opinions and forecasts constitute our judgment at the time of

release and are subject to change without notice. This document does not contain information

provided to us in confidence by our clients.

Authors featured in this issue

SANTONU SARKAR
Santonu Sarkar, PhD, is a Senior Technical Architect at SETLabs. His research interests include architecture
modeling and analysis, agent technology, formal modeling, QoS analysis, and web services. He can be reached
at santonu_sarkar@infosys.com

SRINIVAS THONSE
Srinivas Thonse is a Principal Architect at SETLabs. He engages in research projects in the areas of IT
methodologies, software architecture and business process management. He can be reached at
srinit@infosys.com

