
Towards Designing Distributed Systems With
ConDIL

Felix Bübl

Technische Universität Berlin, Germany
Computergestützte InformationsSysteme (CIS)

{ fbuebl@cs.tu-berlin.de }
http://cis.cs.tu-berlin.de/∼fbuebl

Abstract Designing and maintaining a distributed system requires con-
sideration of dependencies and invariants in the system’s model. This pa-
per suggests expressing distribution decisions in the system model based
on the system’s context. Hence, UML is enriched by two new specifi-
cation techniques for planning distribution: On the one hand, ‘Context
properties’ describe dependencies on the design level between otherwise
possibly unrelated model elements, which share the same context. On
the other hand, ‘context-based distribution instructions’ specify distri-
bution decisions based on context properties. The distribution language
‘ConDIL’ combines both techniques. It consists of four layers introduced
informally via examples taken from a case study.

Keywords: Designing Distributed Systems, System Evolution, Design
Rationale, Resource Management

Published: in Proceedings of 2nd EDO in Davis, California in November
2000 on page 61–79 of LNCS Nr. 1999 c© Springer Verlag

Renamed: In all later publications the ‘context-based distribution in-
structions’ are called ‘context-based distribution constraints’, and ‘ConDIL’,
is called ‘DCL’ (Distribution Constraint Lanuage).

1 Introduction

1.1 Distribution Needs ‘Design for Change’

The context for which a software system was designed continuously changes
throughout its lifetime. Continuous software engineering is a paradigm discussed
in [11,17] and in KONTENG1 to keep track of ongoing changes and to adapt
legacy systems to altered requirements. The system’s design level must support
these changes - it must be prepared for changes. It must be possible to safely
transform the system model in consistent modification steps from one state of
evolution to the next without unwanted violation of existing dependencies and
invariants.
1 This work was supported by the German Federal Ministry of Education and Re-

search as part of the research project KONTENG (Kontinuierliches Engineering für
evolutionäre IuK-Infrastrukturen) under grant 01 IS 901 C



2 Felix Bübl, c© Springer 2000

This paper suggests taking basic distribution decisions into account right
from start of the software development process and expressing these decisions in
a distribution language on the design level.

1.2 Distribution needs ‘Design for Implementation’

An increasing number of services and data have to be spread across several dis-
tributed sites due to modern business requirements. Arranging the distribution
of services and data is a crucial task that can ultimately affect the performance,
integrity and reliability of the entire system. In most cases, this task is still car-
ried out only in the implementation phase. According to [7], this approach is
inefficient and results in expensive re-engineering of the model after discovering
the technological limitations. This frequently leads to adaptations directly on
the implementation level alone. Thus, verification of system properties is made
more complicated or even impossible due to outdated models. Section 2 discusses
typical design errors, which can be avoided, if essential distribution aspects are
already considered in analysis and design.

1.3 Case Study: Government Assisted Housing

The results presented here are based on a case study in cooperation of the
Senate of Berlin, debis and the Technical University of Berlin. In this case study,
distribution across offices in 23 districts of a complex software system for housing
allowance administration was designed.

2 Problem: Distribution Needs to be Considered From
the Start

The main problem addressed here is how to reach overall performance and avail-
ability while distributing a complex software system in a way that eases later
modification. Typical design problem are discussed here. First section 2.1 ex-
amines the need to consider distribution during the analysis phase. Afterwards
distribution in the design phase is observed in section 2.2. Then evolution in
distributed systems is addressed in section 2.3, before the goals of this paper are
summarized in section 2.4.

2.1 Preparing Distribution in the Analysis Phase

Already throughout the analysis phase key aspects, which determine the distri-
bution of a software system, should be addressed. The process of developing a
software system starts with a requirements engineering stage where functional
and non-functional requirements of the system are identified. Functional require-
ments determine a system’s functionality. Non-functional requirements describe
the quality that is expected from the system. Two typically aspects ignored so far
will be now analysed. On the one hand, existing infrastructures and resources –



Towards Designing Distributed Systems With ConDIL 3

hardware, software or organisational – might determine distribution and, there-
fore, must be reflected in analysis phase. On the other hand, a rough prediction
of the most frequently used services and data and their usage should be given:

1. Which workflows are most commonly used and how often is each of them
executed?

2. Which objects are heavily used and what quantity of each of them will have
to be managed by the system?

3. Along which basic contexts shall the system be cut? What are the key factors
that determine the allocation of services or data onto a node?

Application area experts can often answer these questions easily. They can
estimate these numbers or name the most frequently occurring workflows al-
ready in the analysis phase. In most cases, this important information is not
investigated sufficiently. Without considering a given infrastructure and the cru-
cial system load it cannot be determined whether a software system is well
balanced, scalable or reliable later on. The abovementioned analysis results need
to be reflected in the subsequent design phase.

2.2 Planning Distribution in the Design Phase

Up to now, a distribution decision has typically been taken in the implementation
phase. But the rationale for distribution decisions may be ignored later on if
they are already not expressed in the model. For instance, by writing down the
distribution requirements ‘all data needed by the field service must be stored on
the field worker’s laptops’ at the design level, the developers will not be allowed
to remove certain data from the laptops in future modifications. One distribution
requirement may contradict others. The field service example may contradict a
requirement stating that ‘personal data must not be stored on laptops’. In order
to reveal conflicting distribution requirements and to detect problems early they
should be written down in the beginning of the development process, not during
implementation. Fixing them during implementation is much more expensive.

While defining the structure of a system in the design phase the assignment
of an attribute to a class2 can complicate or even inhibit distribution.

Each class is used in several contexts. For instance, a system’s context is
a company with both headquarters and field service. The notion of ‘context’ is
explained in section 3.1. Up to now the context of a class has not been considered
in the design phase. Thus, it cannot be determined during design whether one
class contains attributes from different contexts or not. If, e.g., a class belonging
to the context ‘headquarters’ also contains attributes of the context ‘field service’
the instances of this class have to be available in both contexts and therefore be
replicated or remotely invoked. Unnecessary network load can be avoided during
design if this class is split into classes that only contain attributes of one context.
2 In the case of designing a non object-oriented system please substitute ‘class’ with

‘entity-type’ throughout this paper



4 Felix Bübl, c© Springer 2000

Multimedia data or other large binary data may obstruct replication. For
instance, the class ‘Movie’ has a large attribute ‘Moviefile’ that stores a large
MPEG movie. And it contains additional normal attributes like ‘Movietitle’,
‘Producer’ and ‘Last time when this movie was accessed’. If this class is repli-
cated, high network traffic occurs each time when the ‘Last time when this movie
was accessed’ attribute changes. This attribute is modified each time the movie
is watched, and each time the whole changed instance of this class including
the many megabytes large ‘Moviefile’ must be copied over the network. This
error could be recognised already on the design level, if replication would be
considered during the design phase.

The dynamic behaviour of a system must also be reflected in distribution
decisions. But dynamic models can become highly complex. This paper suggests
taking only the names of the most often used workflows into account for plan-
ning distribution. These names can be investigated in the analysis phase and
play an important role here. Up to now a system model doesn’t show, which
classes are needed by which workflow or database transaction. Designers should
attempt to allocate all the classes needed by one workflow onto the same node to
avoid network or system overload. There is no technique yet available to assist
distribution decisions according to essential workflows or database transactions.

One distribution requirement can apply to several model elements, which can
be part of different views. It should take dependencies between model elements
into account. Current specification techniques for dependencies do not allow for
model elements which are not directly connected or related, or are not even part
of the same specification or view.

Considering distribution on the design level allows for the early prediction
of problems and facilitates modifying the system model as discussed in the next
section.

2.3 Modifying a Distributed System

Today many people develop many parts in many languages of many views
of one distributed software system. This leads to system models that contain
huge numbers of different model elements, like classes in class diagrams or tran-
sitions in petri nets. It gets increasingly difficult to understand such complex
‘wallpaper’. Besides other problems, two important tasks become hard to fulfil:

Distribution Decisions: In deciding upon the allocation or replication of one
model element, other distribution decisions and dependencies between re-
lated model elements must be considered.

System Evolution: The modification of one model element should take exist-
ing dependencies and distribution instructions into account in order not to
violate them, and it should be propagated to all other concerned model ele-
ments. As analysed in [14], existing design techniques typically concentrate
only on forward systems management.

New techniques for denoting dependencies and distribution instructions are
needed to reduce the high costs of rearranging a distributed system model.



Towards Designing Distributed Systems With ConDIL 5

2.4 Goal: To Plan Distribution on the Design Level

This paper suggests enriching a UML model by two new specification techniques
that facilitate decisions about a system’s distribution and support consistent
modification steps:

‘Context properties’ describe dependencies on the design level between oth-
erwise possibly unrelated model elements.

‘Context-based distribution instructions’ are invariants on the design level.
They specify distribution requirements for sets of model elements that share
a context. Thus, they facilitate the preservation of distribution constraints
at runtime or during model modifications.

The distribution language ‘ConDIL’ combines both techniques to express es-
sential distribution requirements. It consists of four layers introduced informally
via examples taken from a case study. Before introducing ConDIL in section 4,
the following section presents the new techniques in general.

3 Context-Based Instructions

The essence of ‘ConDIL’ is writing down key distribution constraints. Before
explaining why the Object Constraint Language OCL is not used, the two other
techniques applied instead are sketched here. Context properties are initially
discussed in section 3.1. They establish a basis for the context-based instructions
introduced in section 3.2.

3.1 Describing Indirect Dependencies via Context Properties

System models contain elements, like classes in class diagrams or transitions in
petri net diagrams. Model elements can depend on one another. Modification
of a system model must not violate dependencies between model elements, and
distribution decisions should take these dependencies into account. In order to
consider dependencies, they must be specified in the model. Model elements can
relate to each other even if an association does not directly link them. A new
technique for describing such correspondences was introduced in [3]: Context
properties allow the specification of dependencies between otherwise unrelated
model elements that share the same context – even across different views or
specifications.

A graphical representation and informal definition is indicated in figure 1.
The context property symbol resembles the UML symbol for comments, because
both describe the model element they are attached to. The context property
symbol is assigned to one model element and contains the names and values of
all the context properties specified for this model element: the context property
named ‘Workflow’ in figure 1 has the value ‘merging two contracts’ for the class
‘Contract’. Thus, it connects a static class to dynamic workflow that may be
specified elsewhere - e.g. in a petri net.



6 Felix Bübl, c© Springer 2000

Figure 1. Enhancing UML via Context Properties.

A context property has a name and a set of possible values. Both are investi-
gated in the analysis phase. Due to the limited length of this paper, methodical
guidance is not discussed. The examples in the following sections distinguish
between functional and non-functional context properties and give hints on how
to use them. The ‘context properties’ used in this paper on design level differ
from the ‘context properties’ used in Microsoft’s COM/.NET on implementation
level. A future paper will deal with context properties on the implementation
level, but this paper focuses on the design level only.

Context properties are a technique that allows handling the results of analysis
phase in the subsequent design phase. This general purpose grouping mechanism
leads to better-documented system models and improves their overall compre-
hensibility. Knowing background information about elements enhances under-
standing of the model. It allows to focus on distributing or modifying within
subject-specific, problem-oriented views. For example, only those model elements
belonging to the workflow ‘merging two contracts’ are of interest in a distribu-
tion or modification decision. Knowing about a shared context is necessary in
order not to violate existing correspondences while distributing or modifying a
model.

The primary benefit of enriching model elements with context properties
is revealed in the next section, where they are used to specify a new type of
invariants.

3.2 Introducing Context-Based Instructions

In the previous section context properties were introduced as technique for de-
scribing dependencies between otherwise unrelated model elements. This section
suggests expressing decisions based on these correspondences as ‘instructions’
which are invariants on the design level and specify requirements. There are
many different kinds of implementation requirements during different phases of
developing a software system. This paper focuses on distribution decisions. Be-
fore describing a language for distribution instructions in section 4, two examples
are discussed here to promote their general benefits.

In first example, the system’s context is a company with both headquarters
and field service. Then, according to this context, there is a distribution instruc-
tion saying, that certain components have to run on the travelling salesman’s
laptop without being in connecting to the server. This distribution instruction is



Towards Designing Distributed Systems With ConDIL 7

valid for all model elements, whose context property ‘operational area’ has the
value ‘field service’ – it is a context-based instruction. This example is one an-
swer to the question ‘along which basic contexts shall the system be cut?’ raised
in section 2.1 by cutting the system into operational areas. In the case of a con-
text change, like an alteration in the company’s privacy or security policy the
system must be adapted to the new requirements without violating the already
existing distribution instruction. In this case, either no component necessary for
working offline should be removed from the field worker’s laptop for security
or privacy reasons, or the distribution instruction must be adapted. Therefore,
modifying the model must take already existing distribution instructions into
account in order not to violate them.

Another example demonstrates how ensure distribution requirements via
context-based distribution instructions. In order to develop a smoothly oper-
ating distributed system every workflow3 should be able to run locally on a
single node without generating network traffic. A frequently executed workflow
should be described in a context property ‘workflow’ with the value ‘merging
two contracts’ to all model elements needed by this workflow, and than state a
distribution instruction allocating everything needed by this workflow onto the
same node.

Classical load balance calculations need non-functional context properties
instead of functional ones like ‘workflow’. Some of the examples in section 4
illustrate how to use context-based instructions in predicting and establishing
an evenly load balance in distributed systems.

Fundamental choices about how to distribute a model should reflect the sys-
tem’s context and should be preserved and considered in a modification step.
Therefore they must be expressed on the design level. Up to now, there has not
been a method or technique for describing reasons for distribution decisions. A
language for specifying distribution requirements is proposed in the next section.

4 The Distribution Language ‘ConDIL’

The context-based Distribution Instructions Language ‘ConDIL’ consists of
four layers or views enhancing UML:

The enhanced UML class diagram identifies the classes to be distributed.
The net topology layer indicates the hardware resources available in the dis-

tributed system.
The distribution instructions layer states distribution decisions for sets of

classes of the enhanced class diagram.
The enhanced, generated UML deployment diagram displays the results

of the other layers’ specifications.

The layers are introduced informally via simplified examples taken from the
case study. Before describing each layer the following section addresses limita-
tions of ConDIL.
3 In the case of designing a distributed database system please substitute ‘workflow’

with ‘transaction’ throughout this paper



8 Felix Bübl, c© Springer 2000

4.1 Designing distributed Components or Databases with ConDIL?

The short descriptions of the four layers given above speak about distributing
‘elements’ of the enhanced class diagram. It depends on the type of distributed
system to choose a more concrete term: In the case of a component-based system
‘components’ ‘classes’ or ‘objects’ are distributed, while in designing a database,
it is intended to distribute ‘entity-types’ or ‘entities’. The general version of
ConDIL proposed here neither fits all the needs of component-based systems
nor of distributed databases.

Neither case is discussed in this paper due to space limitations. Forthcoming
papers will study each case separately. This paper restricts itself to allocating
‘classes’ on ‘nodes’ without going into detail about whether this means allo-
cating a class in a component’s interface or in a local schema of a distributed
database system. Among the other unexplored topics of interest also are, e.g.,
heterogeneity, the choice of distribution technologies or the allocation of model
element other than classes.

The general version of the distribution language ConDIL allows the specifi-
cation of any kind of distributed system because it only expresses the most basic
distribution requirements necessary.

4.2 ConDIL’s Enhanced UML Class Diagram

The previous section explained why ConDIL has been restricted to allocating
classes to nodes. Classes are specified in an enhanced UML class diagram. The
example illustrated in figure 2 describes a system where poor people can apply
for a state grant that helps them to pay their rent. The housing allowance is
an n:m association between the applicant and the apartment and lasts only
for a certain time. The following concepts have been added to the UML Class
Diagram:

Association Qualifiers & Classes are standard UML techniques which are
used here to specify foreign keys for each association. Up to now foreign
keys were not specified in the conceptual design. This well-known relational
database concept is necessary to enable cutting an association when the
classes at its ends are allocated onto different nodes. The concept of foreign
key attributes for 1:n or n:m associations is explained in standard database
literature. As illustrated between ‘Apartment’ and ‘Owner’, the arrow at
1:n-associations is required to give their qualifiers a clear semantic. An n:m
association like between the classes ‘Applicant’ and ‘Apartment’ needs an
association class – ‘Housing Allowance’ – to hold two foreign key attributes:
in the qualifier of the association class for both foreign keys the name of the
class referred to is followed by the name of the foreign key attribute.

Context Properties were introduced in section 3.1. Each context property has
a name, e.g., ‘Operational Area’ and values, e.g., ‘Headquarters’. A legend
shows all the valid values for each context property. The default value of each
context property is underlined. In the case the context property has only the



Towards Designing Distributed Systems With ConDIL 9

Figure 2. Extract of an Enhanced UML Class Diagram Showing the Case
Study.

default value for a class, it can be left out in the context property symbol of
this class. In this example, the context property ‘Workflow’ has the default
value ‘DVWohn’. As all classes in figure 2 belong to this workflow, none of
them needs to specify it in its context property symbol. In the next section,
figure 3 shows an alternative approach, where – for improved comprehensi-
bility – the designer spelled out the values of all context properties for each
class even if it is the default value.

The context properties suggested here may be useful for planning a dis-
tributed system in general. When designing a particular system some of these
proposed context properties may be ignored and some unmentioned ones may
be added by the developer, as needed. Figure 2 exemplifies both functional and
non-functional properties:

‘Workflow’ describes the functionality – it is a context property of functional
type. It reflects the most frequent workflows or use cases and enables the
designer to write down distribution requirements for these workflows. For
instance, in a distributed system all of the model elements needed by a cer-
tain workflow should be allocated to the same computer in order to be able to
execute this workflow without connecting to the network. This requirement
can be verified by marking all of the concerned model elements accordingly.
Thus, static aspects of system behaviour can be expressed.

‘Operational Area’ is another example for managing distribution via a func-
tional context property. It enables the writing down of the distribution de-
cisions for certain departments or domains. Functional context properties
provide an organisational perspective and thereby facilitate software design
as indicated by [12].



10 Felix Bübl, c© Springer 2000

‘Personal Data’ signals when a class contains data that must not be dis-
tributed due to its intimate content. It is of functional type and exemplifies
how to model roles or authorization via context properties.

‘Amount’ is of non-functional (qualitative) type. Its value holds the estimated
number of instances of each class.

‘Daily Updates’ allows to distinguish between frequently changing and rather
static data. This non-functional information is needed to estimate the net-
work load later on.

Hiding avoidable dynamics by only considering static aspects of behaviour
is the primary benefit of using functional context properties. They allow con-
sideration of methods, services, sequence or operations and others details to be
left out in distribution decisions. Otherwise the model complexity would increase
rapidly. The goal of this paper is to keep distribution decisions as straightforward
as possible.

Section 4.5 give a demonstration how to use qualitative (non-functional)
context properties for calculating metrics in order to facilitate system assessment.

After having only slightly extended the standard UML diagram up to now,
two totally new visual languages are proposed in the next two sections.

4.3 ConDIL’s Net Topology Layer

Taking distribution decisions demands awareness of hardware resources. The net
topology layer depicts the hardware resources. It identifies nodes and connections
as demonstrated in figure 3:

A node is denoted by a symbol resembling a computer. By working with sym-
bolic names like ‘RAID-Server’ the same net topology diagram can be de-
ployed for different customers and cases, and it does not have to be changed
if the hardware is replaced. Symbolic names can describe hardware require-
ments or services like ‘database’, ‘sensor’, ‘router’ or ‘printer’. A constraint
stated for one symbolic node, e.g. ‘Laptop’, applies to all nodes of this kind.
By using symbolic names, the network topology diagram must not be mod-
ified if the number of laptops changes.

A Connection links nodes and is drawn with the standard UML deployment
diagram symbol for connections.

Both nodes and connections are more closely described via context proper-
ties. In the net topology diagram mostly ‘non-functional’ context properties are
used. They are needed later on for establishing reasonable load balance. For in-
stance, the non-functional context property ‘Speed’ can be helpful in taking a
distribution decision. Improving a system’s load balance via ConDIL is discussed
in section 4.5.

The net topology diagram will feature additional symbols like ‘table space’
for databases or ‘container’for Enterprise Java Beans. These specific symbols
will be published in articles concentrating on certain platforms.



Towards Designing Distributed Systems With ConDIL 11

Figure 3. The ConDIL Net Topology Layer.

It would be possible to include distribution instructions in the net topol-
ogy diagram, but there are already several symbols associated with one node,
and there will be even more in future enhancements of this layer. Distribution
instructions are better depicted in their own layer, which is introduced now.

4.4 ConDIL’s Distribution Instructions Layer

In this central ConDIL layer two different types of distribution instructions con-
trol either allocation or replication decisions. As shown in the next figures, a
distribution instruction is drawn as follows: an arrow points from the symbol
specifying the elements involved that shall be distributed to the symbol speci-
fying the target where the elements involved shall be allocated. The allocation
instructions are introduced first.

Context-Based Allocation Instructions specify allocation constraints for
more than one target. The basic assumption for discriminating between allo-
cation and replication instructions is that there is exactly one master copy of
each instance of a class. In the case of assigning one class to several nodes, only
one node holds an original instance. All other copies of this instance on other



12 Felix Bübl, c© Springer 2000

nodes are replicated from this master copy. This notion enables the underlying
middleware or database to ensure consistency.

Figure 4. Allocation Instructions of the ConDIL Distribution Instructions
Layer.

You shouldn’t confuse classes with instances in this section. The general
version of ConDIL introduced in this paper describes distribution on the class
level only. It enforces all original instances of one class to be allocated on the
same node. The upcoming version of ConDIL for databases will stick to the
class level as well. In contrast, the future version of ConDIL for components will
deal with allocation on instance level and will allow original instances of the
same class on several computers.

In order to assure the allocation of a class on only one node different priorities
are given to each kind of allocation instructions. They are exemplified in figure
4 from left to right:

Single allocation instructions are demonstrated on the left side of figure
4. They have the highest priority – no opposing set allocation instruction
applies for a class, if a single allocation instruction for it exists. It is not
allowed to spell out contradicting single allocation instructions for the same
class.

Set allocation instructions are illustrated in the middle part of figure 4.
They apply for every class that fits to the context condition and is not
allocated via a single allocation instruction. In the example given, all classes
having the context property ‘Quantity’ with values of less than 20,000 are
allocated onto the node ‘Justus’. Being able to give set instructions is the
main benefit of ConDIL. Grouping classes, which share the same context,
allows taking distribution decisions based on essential requirements. If a class
is assigned to different nodes via contradicting set allocation instruction, one
assignment becomes the master copy, and all others become synchronous
replicates of this master copy.

One default allocation instruction as shown on the right in figure 4 must
be specified in a system model. It has the lowest priority and applies only
to classes where no other allocation instructions apply.



Towards Designing Distributed Systems With ConDIL 13

Context-Based Replication Instructions are exemplified in figure 5. The
symbols are explained now from left to right:

Figure 5. Replication Instructions of the ConDIL Distribution Instructions
Layer.

A camera represents asynchronous replication. It needs additional attributes
that are placed directly under the camera symbol. The attribute ‘When’
must be indicated in any case because asynchronous replication cannot be
implemented without knowing when to replicate. The attribute ‘Conflicts’
must be stated only in the case of writeable or deleteable replication and
describes what to do in the case of update or deletion conflicts. This in-
formation may be omitted if default rules are given for all asynchronous
replication instructions when to replicate or what to do in the case of con-
flicts.

The dotted arrow of a replication instruction indicates write only replication.
A lightning bolt represents synchronous replication as demonstrated on

the top of figure 5.
Set instructions , again, are the most powerful application of ConDIL. Avail-

able database products possess fast group replication mechanisms as Oracle’s
‘refresh groups’ for the implementation of set replication instructions. Con-
trary to allocation instructions, there are no different priorities for replication
instructions, and there is no default replication instruction.

The Filter symbol is needed to express views, where only some of the instances
of the source class(es) shall be replicated. Normally filters only make sense
for single replication instructions, because they use an SQL WHERE clause



14 Felix Bübl, c© Springer 2000

that names attribute of the selected class(es). In a filtered set instruction, like
in figure 5, all classes selected by the context condition ‘Quantity less then
20,000’ must have the attribute ‘Begin’. This could happen in historical data
warehouses, but in general not all classes selected by the context condition
have the attribute(s) needed by the filter condition.

Overall, this section introduces the key concepts in an informal way. Both
the details of the context-based distribution language ConDIL and adequate
methodical guidance are topics of future research. The next section suggests
automatically generating an enhanced UML deployment diagram showing the
results of the requirement specifications.

4.5 ConDIL’s Enhanced, Generated UML Deployment Diagram

Without illustrating the results of a specification stated in the other three lay-
ers, a designer cannot verify if the goals of designing a distributed system have
been reached: reliability, scalability and load balance need to be confirmed in
an overview diagram showing all the details. ConDIL uses an enhanced UML
deployment diagram for validation of the distribution goals and for architectural
reasoning as discussed in [15]. The enhanced deployment diagram can automat-
ically be generated based on the specifications in the other three layers.

Figure 6 shows one possible result of ConDIL distribution design. In this
example, not all of the goals have been accomplished yet. The classes have been
successfully allocated and replicated in a way that the workflows or database
transaction on ‘Justus’ and ‘Bob’ can be executed locally. Thus, both computers
can continue working even if the network fails. But in ensuring reliability, the
other aims (scalability and load balance) are not achieved. In the example, both
the connection ‘District-LAN’ and the computer ‘Bob’ show overload.

The numbers representing the system load in figure 6 are derived from the
non-functional context properties given in the other layers. They can either be
automatically calculated via given formulas, or they can be intellectually esti-
mated via common sense. Some standard context properties have been suggested,
but standard formulas for load balance calculation are a topic of future research.
At the EDO symposium three precision levels for optimising load balance were
discussed:

1. Estimation based on common sense and experience is the quickest and most
vague way to figure out load balance.

2. Simulating an UML model as proposed by [9] turns out better load numbers,
but needs an arbitrary detailed modelling of the system behaviour.

3. The best but most expensive load prediction results from prototypical bench-
marking.

The enhanced deployment diagram assists in detecting problems before im-
plementation phase. Figure 6 demonstrates the need to change the other ConDIL
layers until a satisfactory trade off between the contradicting goals of distribution
design is reached.



Towards Designing Distributed Systems With ConDIL 15

Figure 6. Displaying a System Overview with ConDIL’s Generated Enhanced
UML Deployment Diagram.

5 Related Research

5.1 Planning distribution

After distributed applications became popular and sophisticated in the 80is, de-
velopers needed techniques to support their development. According to [1] over
100 new programming languages specifically for implementing distributed appli-
cations were invented. But hardly anyone took distribution into consideration
already on the design level, whereas ConDIL does. Research concentrated on
dealing with parallelism, communication, and partial failures on implementa-
tion level. On the contrary, ConDIL describes distribution on the design level.

For instance, the Orthogonal Distribution Language (ODL) proposed in [5]
supplements the programming language C++ for distributed processing and,
thus, does not support distribution decisions during the design phase. Roughly
the same applies to aspect oriented languages, which, in principle, resemble the
idea of context properties. D2AL as one of these aspect oriented languages, how-
ever, differs in that it is based on the system model, not on its implementation.
Though the closest to ConDIL, the differences will now be discussed.



16 Felix Bübl, c© Springer 2000

According to [2], D2AL enables the programmer to specify the distribution
configuration based on UML. Whereas ConDIL states a distribution instruction
for a group of classes which share the same context, D2AL groups collaborating
objects that are directly linked via associations. Objects that heavily interact
must be located together. D2AL describes in textual language in which manner
those objects interact which are connected via associations. This does not work
for objects that are not directly linked like ‘all objects needed by the field service’.
In contrast, ConDIL is a visual approach based on a shared context instead of
object collaboration.

For companies, staying competitive means meeting continuously changing
business requirements. As presented in [18], especially business process dom-
inated systems demand flexible models. This paper proposes enriching system
models via distribution decisions, which can be based on important business pro-
cesses. In this paper the context property ‘Workflow’ was used to increase the
adaptability of a model by enriching it via invariants according to its business
processes.

One way in which we cope with large and complex systems is to abstract
away some of the detail, considering them at an architectural level as composi-
tion of interacting components. To this end, the variously termed Coordination,
Configuration and Architectural Description Languages facilitate description,
comprehension and reasoning at that level, providing a clean separations of con-
cerns and facilitating reuse. According to [8], in the search to provide sufficient
detail for reasoning, analysis or construction, many approaches are in danger
of obscuring the essential structural aspect of the architecture, thereby losing
the benefit of abstraction. ConDIL is a concise and simple language explicitly
designed for describing architectural distribution structures.

Darwin (or ‘δarwin’ ) is a ‘configuration language’ for distributed systems
described in [13] that makes architecture explicit by specifying the connections
between software agents. Instead of describing explicitly connections between
distributed objects, ConDIL expresses vague dependencies via contexts proper-
ties and writes down instructions for model elements that share a context.

In [12] policy driven management for distributed systems integrates organi-
sational engineering and distributed databases. Replication models are described
within the organisation model. This way, consistency of replication policies can
be inferred from the organisational model. In ConDIL, distribution instructions
write down replication requirements. ConDIL can assist policy driven manage-
ment for distributed systems.

There used to be a lot of interest in machine-processed records of design
rationale. According to the many authors of [10] the idea was that designers
would not only record the results of their design thinking using computer-based
tools, but also the process that they followed while designing. Thus, the software
designer would also record a justification for why it was as it was and what other
alternatives were considered and rejected. Context-based instructions are one
way to record design decisions. The problem is that designers simply don’t like
to do this. The challenge is to make the effort of recording rationale worthwhile



Towards Designing Distributed Systems With ConDIL 17

and not too onerous for the designer. In return for writing down design decisions
via context-based instructions they harvest several benefits sketched below.

5.2 ConDIL and UML

In the long term ConDIL proposes becoming part of UML. This section inspects
each new ConDIL concept, whether it can be realised via standard UML exten-
sion mechanisms or not:

Context properties can either be based on UML tagged values or on UML
comments. Using tagged values is the concept closest representing context
properties, because both are key-value pairs. Typically one class is character-
ized by several context properties. Each tagged value floats around its class
separated from the other tagged values belonging to the class. This can be
confusing when numerous tagged values belong to the same model element.
Therefore, a specialisation of the UML comment symbol is proposed in this
paper to place all of the context properties and their values of one class into
one single symbol.

No stereotypes or packages: In order to write down distribution instructions
for sets of classes it is necessary to group classes that share a context. ConDIL
describes the context of classes via the new technique ‘context properties’
rather than grouping classes of the same context via existing UML mech-
anisms. Usually several context properties exists with each of them having
multiple values. In [3] mechanisms, like UML stereotypes or UML packages,
are rejected, because they cannot handle several overlapping contexts. Usu-
ally quite a few context properties exist where each has multiple values. For
instance, if your system has n different values for ‘Workflow’, you would
need 2n− 1 different stereotypes to classify your classes. Considering an ad-
ditional context property, e.g. ‘Operational Area’ would result in an even
more confusing number of stereotypes.

The enhanced class layer of ConDIL can be implemented via standard UML
extension mechanisms.

The net topology layer is not part of the UML at present and calls for en-
hancements of the UML metamodel.

The context-based distribution instruction layer cannot be derived from
contemporary UML as well. Context-based instructions are constraints as-
sociated with context properties (tagged values). The Object Constraint
Language OCL summarized in [16] is the UML standard for specifying
constraints like invariants, pre- or post-conditions and other constraints
in object-oriented models. OCL was not chosen for stating context-based
distribution instructions for several reasons. The model should serve as a
document understood by designers, programmers and customers and, there-
fore, should use such simplified specification techniques. ConDIL is an easily
comprehendible, straightforward visual language separated into layers and
reduced to the bare minimum of what’s needed for designing distribution. A
major distinction is that one OCL constraints refers to one model element,



18 Felix Bübl, c© Springer 2000

while one context-based instructions refers to many model elements. Even
the OCL 1.4 draft does not permit one constraint for several model elements.

The enhanced deployment diagram can be realized via standard UML ex-
tension mechanisms. UML deployment diagrams are not widely considered to
be attractive – e.g. [6] describes them as ‘informal comic’. ConDIL improves
their expressiveness and demonstrates their reasonable usage in developing
distributed systems.

6 Conclusion

6.1 Limitations of ConDIL

Up to now ConDIL is only used on design level. An upcoming paper will exam-
ine the influence of ConDIL on the handling of distributed objects at runtime.
ConDIL is restricted to static aspects of system behaviour. Reducing behaviour
to the names of frequent workflows ignores a lot of the information that may
have an impact on distribution decisions. For instance, the ConDIL layers do not
show if and how workflows depend on each other. But such detailed modelling of
dynamics would hardly improve the load balance calculation or the verification
of the other design goals. The quality of the load balance prediction wouldn’t
fairly increase by accurate consideration of behaviour, because all non-functional
numbers are estimated anyway and won’t turn out a precise prediction. On the
contrary, ignoring dynamical aspects provides some of the benefits that are sum-
marized in the next section.

6.2 Benefits of ConDIL

ConDIL supports the design of distributed systems from the start of the develop-
ment process. Key distribution requirements can now be expressed at the design
level. It detects problems already during design. And it eases the identification
of essential dependencies and invariants and thus improves the readability of the
model, facilitates distribution decisions and helps to prevent their violation in
later modification steps.

ConDIL’s enhanced deployment diagram assists in establishing a trade off
between load balance, reliability and scalability because it provides for the con-
sideration of relevant aspects, such as names of frequent workflows or existing
hardware resources. Detailed modelling of dynamical system behaviour is not
needed for assessment of distribution decisions. Fewer iterations in the develop-
ment process are necessary when distribution requirements were already taken
into account during design.

When one model element changes, other related elements might also have
to be adapted. Maintenance is a key issue in continuous software engineering.
ConDIL helps ensure consistency in system evolution. A ConDIL instruction
serves as an invariant and thus prevents violation of distribution requirements
in a modification step. It helps detect when design or context modifications com-
promise intended functionality. The dependencies and invariants expressed via



Towards Designing Distributed Systems With ConDIL 19

ConDIL can prevent unanticipated side-effects during redesign, and they support
collaborative distributed design. It is changing contexts which drive evolution.
ConDIL’s instructions are context-based and are therefore easily adapted to
context modifications.

6.3 ConDIL Roadmap

Currently a CASE tool capable of ConDIL concepts is implemented at the Tech-
nical University of Berlin by extending the tool ‘Rational Rose’. A first prototype
is available for download at http://cis.cs.tu-berlin.de/∼fbuebl/ConDIL.

The following subjects will be addressed in future research:

Enhancing ConDIL: Two versions of ConDIL will be published for designing
either distributed component-based systems or distributed databases.

Method: Proposing a new technique is pointless without developing an ade-
quate method for its appropriate use. For instance, both context properties
and context-based instructions could be acquired during the reengineering
process. Recovering basic dependencies and invariants can outline the distri-
bution architecture of a legacy system. Furthermore, guidelines will be de-
veloped how to combine ConDIL and ConCOIL ([4]). – the Context-based
Component Outline Instruction Language introduced in [4]. It describes the
logical architecture of a component-based system.

Algorithm & tool for consistent modification: An algorithm for maintain-
ing consistency in a modification step by considering existing context-based
instructions will be developed. In a first step, this algorithm will serve to
generate the enhanced deployment diagram. As ‘proof of concept’ a tool
for evolution support will be implemented. This tool won’t be based on the
already existing Rational Rose extension, because ConDIL turned out to
overstrain Rose’s extensibility.

ConDIL at runtime: An upcoming paper will examine whether a scheduler
can exploit ConDIL constraints for the sake of an optimal load balance.

References

1. Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Programming lan-
guages for distributed computing systems. ACM Computing Surveys, 21(3):261–
322, 1989.

2. Ulrich Becker. D2AL - a design-based distribution aspect language. Technical Re-
port TR-I4-98-07 of the Friedrich-Alexander University Erlangen-Nürnberg, 1998.

3. Felix Bübl. Context properties for the flexible grouping of model elements. In Hans-
Joachim Klein, editor, 12. GI Workshop ‘Grundlagen von Datenbanken’, Technical
Report Nr. 2005, pages 16–20. Christian-Albrechts-Universität Kiel, June 2000.

4. Felix Bübl. Towards the early outlining of component-based systems with Con-
COIL. In ICSSEA 2000, Paris, December 2000.

5. M. Fäustle. An orthogonal distribution language for uniform object-oriented lan-
guages. In A. Bode and H. Wedekind, editors, Parallel Comp. Architectures: The-
ory, Hardware, Software and Appl., LNCS, Berlin, 1993. Springer.



20 Felix Bübl, c© Springer 2000

6. Martin Fowler and Kendall Scott. UML Distilled. Object Technologies. Addison-
Wesley, Reading, second edition, 1999.

7. Peter Koletzke and Paul Dorsey. Oracle Designer Handbook. Osborne/McGraw-
Hill for Oracle Press, Berkeley, second edition, 1999.

8. Jeff Kramer and Jeff Magee. Exposing the skeleton in the coordination closet. In
Coordination 97, Berlin, pages 18–31, 1997.

9. Miguel de Miguel, Thomas Lambolais, Sophie Piekarec, Stéphane Betgé-Brezetz,
and Jérôme Pequery. Automatic generation of simulation models for the evalua-
tion of performance and reliability of architectures specified in UML. In Volker
Gruhn, Wolfgang Emmerich, and Stefan Tai, editors, Engineering Distributed Ob-
jects (EDO 2000), LNCS, Berlin, 2000. Springer.

10. Thomas P. Moran and John M. Carroll, editors. Design Rationale : Concepts,
Techniques, and Use (Computers, Cognition, and Work). Lawrence Erlbaum As-
sociates, Inc., 1996.

11. Hausi Müller and Herber Weber, editors. Continuous Engineering of Industrial
Scale Software Systems, Dagstuhl Seminar #98092, Report No. 203, IBFI, Schloss
Dagstuhl, March 2-6 1998.

12. Antonio Rito Silva, Helena Galhardas, Paulo Sousa, Jorge Silva, and Pedro Sousa.
Designing distributed databases from an organisational perspective. In 4th Euro-
pean Conference on Information Systems, Lisbon, Portugal, 1996.

13. D. Spinellis. δarwin reference manual. Technical report, Dept. of Computing,
Imperial College, London, 1994.

14. Stefan Tai. Constructing Distributed Component Architectures in Continuous Soft-
ware Engineering. Wissenschaft & Technik Verlag, Berlin, Germany, 1999.

15. Francesco Tisato, Andrea Savigni, Walter Cazzola, and Andrea Sosio. Architec-
tural reflection realising software architectures via reflective activities. In Volker
Gruhn, Wolfgang Emmerich, and Stefan Tai, editors, Engineering Distributed Ob-
jects (EDO 2000), LNCS, Berlin, 2000. Springer.

16. Jos B. Warmer and Anneke G. Kleppe. Object Constraint Language – Precise
modeling with UML. Addison-Wesley, Reading, 1999.

17. Herbert Weber. IT Infrastrukturen 2005 - Informations- und Kommunikations-
Infrastrukturen als evolutionäre Systeme. White Paper, Fraunhofer ISST, 1999.

18. Herbert Weber, Asuman Sünbül, and Julia Padberg. Evolutionary development
of business process centered architectures using component technologies. In So-
ciety for Design and Process Science, IEEE International Conference on Systems
Integration IDPT, 2000.


	Introduction 
	 Distribution Needs `Design for Change'
	 Distribution needs `Design for Implementation' 
	 Case Study: Government Assisted Housing 

	Problem: Distribution Needs to be Considered From the Start
	 Preparing Distribution in the Analysis Phase 
	 Planning Distribution in the Design Phase 
	 Modifying a Distributed System 
	Goal: To Plan Distribution on the Design Level 

	 Context-Based Instructions 
	 Describing Indirect Dependencies via Context Properties 
	 Introducing Context-Based Instructions 

	The Distribution Language `ConDIL'
	 Designing distributed Components or Databases with ConDIL?
	 ConDIL's Enhanced UML Class Diagram
	 ConDIL's Net Topology Layer 
	 ConDIL's Distribution Instructions Layer
	 ConDIL's Enhanced, Generated UML Deployment Diagram 

	Related Research
	Planning distribution
	 ConDIL and UML 

	 Conclusion 
	Limitations of ConDIL
	Benefits of ConDIL
	ConDIL Roadmap


