
IEEE Conference on Control Applications (CCA), September 2001, Mexico

“©2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.”

1

Abstract-- Software industry increasingly faces today the challenge
of creating complex custom-made Industrial Process Measurement
and Control Systems (IPMCSs) within time and budget, while high
competition forces prices down. A lot of proprietary solutions
address the engineering process and evolving standards exploit the
function block construct as the main building block for the
development of IPMCSs. However, existing approaches are
procedural-like and they do not exploit the maximum benefits
introduced by the object technology. In the context of this work,
new technologies in Software Engineering as well as modern
CASE tools, which assist to improve the efficiency of software
development process, are considered. The Unified Modeling
Language (UML) was adopted for the definition of a notation to
assist in the design and development of open distributed IPMCSs.
The proposed notation constitutes the heart of our object-oriented
framework that attempts to improve the engineering process in
terms of reliability, development time and degree of automation.

Index Terms-- UML, Industrial Process Measurement and
Control Systems, engineering support system, fieldbus,
Object-Oriented design.

I. INTRODUCTION
The many different types of commercial fieldbuses resulted in a
wide diversity of devices and tools to support the development
of Industrial Process Measurement and Control Systems
(IPMCSs). A number of different approaches try to provide
interoperability in device and fieldbus level. MMS, an
application layer protocol of the ISO/OSI reference model, was
considered to be the most important of them. Even though
MMS is used in environments in which timing constraints are
fundamental, it deals poorly with timing specifications [1].
MMS extensions to handle the real time constrains were never
adopted by the market. More recent standards like IEC 61131
and IEC 61499 have introduced the function block construct as
the main building block, to facilitate the development of
IPMCSs [2]. The function block, is defined according to IEC
61499, as “a functional unit of software, comprising an
individual, named copy of the data structure specified by the
function block type, which persists from one invocation of the
function block to the next. The functionality of the function
block is provided by means of algorithms, which process inputs
and internal data and generate output data”. The above
standards attempt to address the interoperability issue, but they
still have a long way to go. Over and above, the function block
approach is procedural-like and it does not exploit the
maximum benefits introduced by the Object Technology (OT)
[3].

OT is being recognized as perhaps the best-known way to
revolutionize and improve dramatically the efficiency of the
software development process. OT is attracting a major area of
interest from industrial software developers in recent years,
under the promise to address all the concepts of modern
software engineering or to make the introduction of new such
concepts, where appropriate. Information hiding, messaging,
data abstraction, encapsulation above the subprogram level,
polymorphism and concurrency are examples of such concepts.
OO analysis produces models that are easier understood by end
users, as they are direct representations of real world concepts.
The OO paradigm promotes and facilitates reusability,
interoperability and, when applied well, produces solutions,
which closely resemble the original problem. The use of the OT
leads up to systems that are easily modified, extended and
maintained.

Software industry, on the other hand, increasingly faces
today the challenge of creating complex custom-made
distributed control systems within time and budget, while
high competition forces prices down. New technologies in
Software Engineering as well as modern CASE tools that
assist in improving the efficiency of software development
process should be considered for the development of
distributed IPMCSs.

All the above guided us, to consider the applicability of the
Unified Modeling Language (UML) in the development
process of distributed IPMCSs. UML has emerged as the
software industry’s dominant language and is already an
Object Management Group (OMG) standard. It represents a
collection of best engineering practices that have been
proved successful in the modeling of large and complex
systems. OMG is proposing the UML specification for
international standardization for information technology
[4]. Wide recognition and acceptance, which typically
enlarge the market for products based on it, will be the
major benefits.

In the context of this work, we made an attempt to tailor UML
to the particular requirements of distributed IPMCSs. We have
exploited both a lightweight and a heavyweight extension
mechanism, to create a set of constructs to assist the engineer in
the design and development process. Although UML currently
provides only lightweight extension mechanisms, it is expected
that heavyweight ones will also be supported in the near future

Using UML for the Development of Distributed
Industrial Process Measurement and Control Systems

Kleanthis C. Thramboulidis

 Electrical & Computer Engineering Department, University of Patras,
265 00 Patras, Greece, thrambo@ee.upatras.gr

IEEE Conference on Control Applications (CCA), September 2001, Mexico.

2

[4]. We consider the proposed notation as an important feature
of our framework based approach in the development of
distributed IPMCSs.

Frameworks provide an important enabling technology for
reusing both the architecture and the functionality of software
components allowing the IPMCS engineer to ignore all the
complexities inherent in field devices and fieldbuses and to
concentrate on the actual problem to be solved. Our framework
based approach assists process and system engineers in the
development and configuration of distributed IPMCSs. The
hole engineering process would be improved in terms of
reliability, development time and degree of automation
compared with the one proposed by the IEC 61499.

The rest of this paper is organized as follows. In section II, we
briefly describe our framework-based approach and highlight
the adopted technologies. A reference is made to our
interworking unit that forms the framework’s infrastructure. In
section III, the notation that is one of the most important
features of our framework, is presented in terms of UML’s
extension mechanisms. The requirements specification of an
Engineering Support System (ESS) that supports the notation is
briefly discussed. Finally, the last section is used to conclude
the paper.

II. OUR FRAMEWORK BASED APPROACH

A. The Framework
A lot of proprietary solutions address the engineering process of
the IPMCS. Evolving standards like IEC 61499 and the more
recent IEC61804 introduce the function block construct as the
main building block for the development of IPMCSs. However
the whole approach is procedural-like and it does not exploit the
maximum benefits introduced by the object technology. To
exploit the many benefits of the object technology as they were
encountered in our many projects where we applied it, we were
guided to a framework-based approach. Figure 1 shows a high
level view of our IMPCS framework. The framework address
both the IPMCS engineering process, which utilizes the
fieldbus-to-ESS channel and the IPMCS operational phase,
which utilizes the fieldbus-to-SCADA client channel and the
fieldbus-to-fieldbus channel.

The framework consists of a set of collaborating object
classes that embody an abstract design capable to provide
solutions for the family of IPMCS’s related problems. It
increases the reusability in both architecture and
functionality by addressing issues such as interoperability
and integrated development of distributed IPMCSs. Since
an important issue for the success of a framework is its
ability to support the integration of legacy systems and
enterprise applications, an attempt was made to this
direction. The framework may be considered in terms of:

1. An interworking unit, that is the infrastructure for the

development of the interoperability mechanism.
2. The specification of a virtual fieldbus.

3. An Engineering Support System, that is required to
support, according to IEC 61499, the design,
implementation, commissioning and operation of
IPMCSs.

4. A function block compliant extension of the UML
notation to assist in the design and implementation of
IPMCSs applications.

Figure 1. High-level view of the IPMCS framework.

For the fieldbus-to-SCADA client channel, we adopted
Internet although its role as a channel over which SCADA
applications are built is a fairly recent phenomenon.
Internet’s impact has been substantially greater than that of
other proprietary channels in existence for several decades.
For the same reasons we adopted Internet for the fieldbus-
to-ESS channel. However Ethernet in its current status is
not possible to be considered for the fieldbus-to-fieldbus
channel. Alternatives such as ATM, Gigabit Ethernet and
Fast switched Ethernet may be successfully adopted.

B. Network Topology
Figure 2 presents the network topology we selected to meet
the real-time constraints. An interworking unit is used to
interconnect each fieldbus to the backbone network
communication subsystem. This communication subsystem
must provide the quality of service (QoS) required to meet
the timing requirements. ATM is one of the successfully
used technologies for the interconnection of fieldbuses
[5][6]. However, we have also under consideration Gigabit
Ethernet or switched Fast Ethernet, which seems to meet
the needs of the framework in a lower cost.

C. Interworking Unit
Due to the strict timing constraints imposed by the
application domain, the interworking unit is characterized
as hard real-time. Data processing is expected to recognize
and to react to events as soon as possible or even in the
ideal case instantaneously. The use of an RTOS was
mandatory. We selected the RT Linux, which is an open
source real time Linux implementation running Linux as its
lowest priority execution thread. A robust and modular
architecture for the interworking unit has been defined and

IEEE Conference on Control Applications (CCA), September 2001, Mexico.

3

is currently under development [7][8]. Further, the
interworking unit was structured in such a way so as to
facilitate the integration of existing fieldbuses.

Figure 2. The proposed network topology.

Since the most of the commercial SCADA systems have
adopted the de-facto market standard OLE for Process Control
(OPC), we decided to provide an OPC compliant interface over
the fieldbus-to-SCADA client channel [9]. This way, we can
interface with no extra cost with the majority of commercial
SCADA systems based on it.

From the perspective of developing independent engineering
support systems, the VF may be considered as an aggregation
of device proxies, industrial process parameters and application
specific parameters. A formal device specification that enables
device interoperability is indispensable for the definition of the
device proxy. Several notations, known as Device Description
Languages (DDLs), already support the specification of field
devices. HART DDL, Profibus device description and
Lonworks DDL are some examples. The problem is only
partially addressed by evolving standards like IEC61499 and
IEC61804. Using the related work on Profibus presented in
[10], we are developing an Object-Oriented field device model
compliant with the above standards to support the engineering
tool in the design and instrumentation phase [11]. A lot of
virtual fieldbus operations are derived from this model.

For the interworking unit to provide interoperability in the
fieldbus level a Virtual Fieldbus (VF) has been defined. It
exposes an object-oriented API to support:

1. the interconnection of fieldbus device islands of the

various commercial fieldbuses,
2. the uniform interface to the enterprise intranet and
3. the development of fieldbus independent Engineering

Support Systems

With the explosive growth of Internet, emerging standards
such as XML make transmitting data over the Web
inexpensive and efficient [12]. XML looks promising as the
industry standard in the IPMCS domain. It was adopted in
the context of the proposed framework to allow applications
to communicate regardless of their programming model. It
is expected that the majority of the fieldbus vendors will
support XML as a universal Internet format since it address

successfully the issues many earlier proprietary solutions
tried to resolve. Part 2 of the IEC61499 standard, address
the definition of a formal information model that will
enable CASE tools and utilities to manipulate and exchange
system designs based on function blocks. Customized tags
in additions to those used by the IEC 61499, must be
defined for the description of the represented information’s
structure so it is easy to transform structured industrial data
into XML and vice versa.

III. THE PROPOSED NOTATION

A. UML’s extension mechanisms
UML is a general-purpose visual modeling language that is
used to specify, visualize and document the artifacts of software
system [13]. It is becoming the de-facto standard and is
currently supported by the majority of the design and
development tools.

In our attempt to tailor this modeling language to the particular
requirements of the IPMCS, we have exploited its inherent
extension mechanisms, to create a set of constructs to assist the
engineer in the design and development process. UML
currently provides only lightweight extension mechanisms.
However, it is expected that heavyweight ones will also be
supported in the near future.

UML’s lightweight extension mechanisms have been designed
so that commercial CASE tools can store and manipulate the
extensions without understanding their full semantics. The
extensions are stored and manipulated as strings, so they can be
entered, stored as part of a model and passed to other CASE
tools. The particular syntax and semantics of these extensions
must be defined so as to be the basis for the development of
specific back-end tools or add-ins that would be written to
process the introduced extensions. Constructs, which are
defined using the extension mechanisms, reduce the semantic
gap between the physical problem and its analysis and design
models. Further, UML’s inherent facility for interchanging
models among several OO CASE tools and IDE’s, will ease the
design and development of distributed IPMCSs.

B. IPMCS stereotypes
We mainly utilized the UML’s extension mechanism that is
called stereotype. A stereotype is a kind of model element
defined in the model itself. The stereotyped elements would
have their own distinct icons since the most of the
commercial CASE tools support this extension. We defined
the following stereotypes as the main building blocks of the
IPMCS model:

• the FunctionBlock-stereotype (FB-stereotype),
• the Data-Dependency-stereotype (DD-stereotype),
• the Control-Dependency-stereotype (CD-stereotype),
• the Industrial Process Terminator stereotype (IPT-

stereotype), and
• the Real-World Object stereotype (RWO-stereotype).

IEEE Conference on Control Applications (CCA), September 2001, Mexico.

4

The IPT-stereotype is used to represent any device of the
industrial process that acts as source or sink of data or
control information for the control application. It is
discriminated to input-IPT, output-IPT and input/output-
IPT. In the steam boiler system [14], for example, the steam
quantity measuring unit, the pump control unit, the water
level measuring unit and the valve control unit are all
represented in the system’s context diagram, by means of
the IPT stereotype construct, as is shown in figure 3.

Figure 3. IPT stereotypes in system’s context diagram.

For every real-world object, in the application domain, that
is relevant to the problem, there should be a corresponding
software object in the system [15]. For example, in the
steam boiler system, the steam boiler, the valve, and the
pumps, are all relevant real-world objects because they
impact the steam boiler control system. The real-world
relevant objects maybe considered as I/O devices that
interface to the control system, providing inputs and
receiving outputs from the system. As an example, the
valve and the pumps are real-world objects that are
equipped with actuators that receive outputs from the
control system. On the other hand, the steam boiler is a real-
world object that has sensors that provide inputs to the
control system.

Service provider objects, either called control objects,
provide the overall coordination for the group of objects
that cooperate for the execution of each service of the
control system. The whole system should be structured into
subsystems, where each subsystem provides all the
functionality provided by the objects it contains.
Subsystems can be represented either as packages or as
composite objects. We recommend the use of composite
objects since the UML package has limited usage: it cannot
participate in object interaction (collaboration) diagrams. In
this case, the subsystem class diagram is used to depict the
relationships between subsystems.

Later in the design phase the use of the wrapper stereotype
provides a virtual interface that hides the actual interface to
the real-world I/O device. Users of the wrapper stereotype

are insulated from changes to the real-world device i.e. the
change of a pump or a valve.

C. The function Block stereotype
The information content and form of the FB-stereotype are
the same as those of a class but its meaning and usage is
different. The FB-stereotype can be treated as special kind
of class, it has attributes and operations, but it has special
constraints on its relationships to other elements of the
model as well as on its usage. There is no need for the
introduced constraints to be automatically verified by a
general-purpose CASE tool. They can be enforced
manually or verified by an add-in tool that understands the
specific stereotype. We use tagged values to store the
additional properties of the FB-stereotype, which are not
supported by the corresponding base element. A tagged
value of a FB-stereotype is a pair of strings that stores a
piece of information about the specific stereotype. The tag
is, a name of some property that the modeler must record
and the value given to this property for the specific
instance. Tagged values would also provide a way to attach
to the model elements, the implementation-dependent
information, that is needed by code generators and other
add-ins such as project planners and report generators.

In more detail the FB-stereotype is defined as a special kind
of class that has:
• Attributes
• Methods
• Data-Dependencies
• Control-Dependencies
• A state-transition diagram or an execution control chart

(ECC)

The FB-stereotype attributes represent either its local
parameters or the internal parameters that correspond to its
data-dependencies. The FB-stereotype methods are
discriminated in:
• Set-Get methods. The set and get methods are

automatically produced by the code generator add-in to
implement the FB-stereotype’s data-dependencies.

• Response methods. A response method defines the
response of the FB-stereotype to a specific control-
dependency.

• Common methods, which are mainly used to maximize
reusability.

D. Data and control dependency stereotypes
The DD-stereotype is defined as a special kind of
association mainly between FB-stereotypes and FB-
stereotypes and IPT-stereotype. There is a DD-stereotype
for each data input of the corresponding function block as is
defined by IEC 61499. The resulting association is a
producer-consumer data association. The semantics of the
DD-stereotype are extended so as to represent the set of
data inputs provided by the same function block.
For each DD there is an internal data parameter that takes its
value from the appropriate set or get method that is
automatically derived by the tool that generates the code to

<<IPT>>
Steam Quantity
Measuring Unit

<<IPT>>
Water Level

Measuring Unit

<<IPT>>
Pump Control Unit

<<IPT>>
Valve Control Unit

Operator

<<RWO>>
Pump

<<RWO>>
Valve

<<RWO>>
Boiler

Steam Boiler Control System

IEEE Conference on Control Applications (CCA), September 2001, Mexico.

5

implement the DD. For each DD the designer has to define
which of the associated elements play the producer, consumer
and actor roles. The engineering tool uses this information to
produce the appropriate set or get methods that are used to
implement the DD. In more detail the corresponding internal
data parameter of a DD may take its value in one of the
following two ways:

• The producer diagram element sends a message of type

set(attributeName, attributeValue)
• The consumer diagram element sends a message of type

get(attributeName) to the producer element which
may be FB or IPT.

The CD-stereotype is defined as a special kind of association
between FB-stereotypes and FB-stereotypes and IPTs. There is
a CD-stereotype for each event input of the corresponding
function block. For each CD, a corresponding method called
response method, defines the behavior of the consumer FB to
the event captured by the CD. In the context of the response
method the FB may carry out a series of actions. These actions
may:

• perform computational processes,
• modify the values of specific attributes and fire an ECC

transition,
• enable or disable continuous methods,
• trigger one-shot methods,
• enable one or more DDs,
• enable one or more CDs

The need for other kind of actions shall be examined and
the required mechanisms for their implementation must be
defined.

To make a formal representation of the above constructs and to
facilitate the implementation of related ESS, the UML notation
was used. Figure 4 shows part of the derived UML model that
clearly represents most of the above concepts.

Dependency_stereotypeIPMCS_stereotype

MethodECC

State TransitionConditi Action

getMethod

responceMethod

Transition

IPMCS_application

setMethod

DataDependency ControlDependency

Attirbute

IPT_stereotype
FB_stereotype

*

*

1
Producer
1..*

* *

*

1 1..*

Consumer

0,1 *

1

11

*

1

*

*

1
Source

*

1
Destination 1

1

*

1..*

*

Figure 4. Part of the FB-stereotype’s UML model

E. The metamodel pattern
An alternative way to represent the above constructs and to
satisfy the need for IPMCSs models to be reliably stored,
shared, manipulated and exchanged across tools, is to adopt
the meta-model architectural pattern [16]. In general meta-
modeling is recognized as one of the most powerful
techniques for managing the complexity of distributed
applications like the ones required by modern IPMCSs. The
application of this architectural pattern, which is a proven
infrastructure for defining the precise semantics required by
complex software models, resulted in the three layer meta-
model architecture that is shown in figure 5. The layer in
the bottom represents the user objects layer that is an
instance of the application’s Analysis Model and is defined
by use of the engineering tool. The model layer captures the
specific applications analysis and design models. Specific
design patterns for function block oriented systems, such as
the Model-View-Controller presented in [17] would be
captured in this layer. The metamodel layer is composed of
a set of metaclasses that define the precise semantics
required by the complexity of the IPMCS models for their
reliable storage, sharing, manipulation and exchange across
engineering support systems. Dependency, data and control
dependency, and Function block are examples of
metaclasses of this layer.

Figure 5. The 3-layer meta-model for the development of

IPMCSs.

F. ESS’s requirements specification
The use case driven approach has been used for the
requirements specification of ESS. At the same time an
attempt has been made to be compatible with part 1 of the
IEC61499, which address the rules for the declaration and
use of the function blocks and the requirements for
compliant systems and standards. According to this, an ESS
must support the engineer, in both the analysis and design
phases as well as in the implementation phase. Using such a
system, the engineer must be able to start with the analysis
of the plant diagram so as to capture the control
requirements. Then, he should be able to define the major
areas of functionality and their interaction with the plant.
During this task, he should be able, to exploit FB-
stereotypes provided by intelligent field devices such as

IEEE Conference on Control Applications (CCA), September 2001, Mexico.

6

smart valves, but also to assign functionality into physical
resources such as PLCs, instruments and controllers. All the
above should be accomplished independently of the
underlying communication subsystem even in the extreme
case, where it is an aggregation of interconnected fieldbus
segments, from different vendors. During the design phase
of the application, the engineer analyses the physical plant
and uses FB-stereotypes, DDs, CDs, and other software
constructs to represent the key abstractions of the
application domain. He inserts the appropriate IPTs into the
working space, so as to properly define the interaction of
the control system with the plant. He also inserts field
devices to the engineering workspace while connecting the
field devices to the proper fieldbus. He makes use of
device’s specifications to create device representatives
(device proxies) into the working space. Later during the
design of the system, the engineer physically distributes the
software building blocks to the available field devices and
fieldbuses through their proxies. Partitioning, assignment,
scheduling are among his/her most important tasks to
properly prepare for downloading. Testing and monitoring
the application are among the optional functionalities that
an ESS must support.

Adopting either the stereotype approach or the metamodel
one, existing CASE tools that support the UML notation
may be used to elaborate to modern Engineering Support
Systems. A great increase is encountered during the last
years in the number and complexity of commercial CASE
tools. Their functionality has been expanded and their
degree of automation has been significantly improved. The
most of the modern commercial CASE tools support the
UML notation and a lot of this know how can be
successfully utilized for the development of the IPMCS
Engineering Support Systems. We adopted an open source
CASE tool for the development of our ESS.

IV. CONCLUSIONS
The function block concept has been proposed by recent
standards for the development of distributed IPMCSs. The
function block approach is purely functional and does not
exploit the benefits of the Object Technology. Object
Orientation is now a mature technology with many
remarkable commercial tools supporting the whole software
life cycle. UML is becoming the de-facto standard and is
currently adopted by the majority of modern CASE tools.

An extension of the UML notation was defined to enable
the design and development of distributed IPMCSs using
the widely accepted UML notation and the mature general-
purpose CASE tools. The notation could be used as a
modeling language to visualize, specify, construct and
document the artifacts of IPMCSs. Both the stereotype
extension mechanism and the metamodel one, were
considered to capture the key abstractions required for the
UML based development of distributed IPMCS
applications. The FB stereotype, the Data and Event
Dependency and the IPT stereotype are the most important
constructs defined.

Our primary objective in defining our framework based
approach was to simplify the development of IPMCS
applications by hiding complexities associated with
fieldbuses and field devices. We focused on the abstractions
required to identify reusable components and on the
constructs necessary to support customization of the
framework required by the specific application.

We are currently working on the development of the
interworking unit and the prototype of an Engineering
Support System.

Acknowledgements

This work has been funded in part by the Greek General
Secretariat for Research and Technology in the context of
PENED 99 ED 469 project. I gratefully thank Chris
Koulamas and Chris Tranoris, members of the development
team, for their helpful discussions.

References

[1] Justin Akazan, Zoubir Mammeri, “Real-Time extensions to

MMS”, IEEE International Workshop on Factoy Communication
Systems, 1995.

[2] IEC Technical Committee TC65/WG6, “IEC61499 Industrial-
Process Measurement and Control – Specification”, IEC Draft
2000

[3] R.W. Lewis, “Modeling Distributed Control Systems Using
IEC61499 function block s”, Technical Articles, URL:
http://www.searcheng.co.uk/selection/control/tech.htm

[4] Cris Kobryn, “UML 2001: A standardization odyssey”,
Communications of the ACM, October 1999, vol.42, No 10.

[5] O. Kunert, “ Interconnecting fieldbuses through ATM”, IEEE
international workshop on factory communication systems, 1997.

[6] C.Cseh, M.Jansen, J.Jasperneite, “ATM networks for factory
communication”, 7th IEEE International Conference on Emerging
Technologies and Factory Automation, 1999.

[7] K. Thramboulidis, C. Tranoris, “An Architecture for the
Development of Function Block Oriented Engineering Support
Systems”, IEEE International Symposium on Computational
Intelligence in Robotics and Automation, Canada 2001.

[8] C. Tranoris, S. Aslanis, K. Thramboulidis, “Using RT_Linux for
the interconnection of industrial fielsbuses” ASME international,
First National Conference on Recent Advances in Mechanical
Engineering, September 17-20, 2001 Patras, Greece.

[9] OPC Task Force, "OLE for Process Control Specification, Final
Release V1.0", OPC Foundation 1998.

[10] Christian Diedrich, Peter Neumann, “Field Device Integration in
DCS Engineering using a Device Model”, IEEE 1998.

[11] K. Thramboulidis, A. Prayati, “Field Device Specification for
the Development of Function Block Oriented Engineering
Support Systems”, submitted for presentation to ETFA 2001.

[12] Extensible Markup Language (XML) 1.0 (Second Edition), W3C
Recommendation, 6 October 2000.

[13] “OMG Unified Modeling Language Specification”, Version 1.3,
First Edition, Object Management Group Inc. March 2000.

[14] J. R. Abrial, “Steam-boiler control specification problem”,
August 10, 1994.

[15] K.Thrampoulidis, K.Agavanakis "Introducing Object Interaction
Diagrams : A technique for A&D" Journal of Object-Oriented
Programming (JOOP) June 1995.

[16] Maarten Boasson, “The Artistry of Software Architecture”, IEEE
Software, November 1995, vol. 12 No 6.

[17] J.H. Christensen , “Design patterns for systems engineering with
IEC61499”.

