
1

DESIGNING PROCEDURES WITHIN AN OBJECT-ORIENTED
ENTERPRISE MODEL

Ulrich Frank
GMD

Postfach 13 16
5205 Sankt Augustin 1, Germany

Phone: xx49 2241 142705
E-Mail: fr@gmdzi.gmd.de

ABSTRACT
The paper presents an integrated environment for designing object-oriented enterprise mod-
els. The conceptual framework it is based on recommends a multi-perspective approach. Two
views are of outstanding importance: the static object model and a dynamic model. First it is
demonstrated how conceptualizing an object model is guided by the Object Model Designer.
Object models are represented using a graphical notation that is enhanced by a structured
description of classes and associations which are modelled as classes as well. Then a method-
ology and a tool related to it - the Office Procedure Designer - to develop dynamic models of
office domains are presented in detail. The tool allows for a graphical representation of office
procedures that is illustrative for business people and takes into account the requirements of
object-oriented analysis and design at the same time. In interaction with the Object Model
Designer it supports identification, specification and refinement of objects (classes). It also
provides means to analyze the effectiveness of business procedures. The environment sup-
ports the integration of different steps within the development process from analysis to proto-
typical implementation. Is also allows to specify features of user interaction which are used to
generate prototypical user-interfaces.

1 INTRODUCTION
Design, implementation and use of corporate information systems are still afflicted with severe
economic problems. To name a few:

• There is not enough emphasis on a thorough and detailed requirements analysis that would
also include possible future demands.

• The participants in requirements analysis - like designers, users and managers - do not
share the same view of the problem. In other words: when they talk about the enterprise or
features of information systems they do not necessarily use the same language.

• The software architecture does not sufficiently reflect needs for maintenance and adapt-
ability.

Published in: Proceedings of the Third International Working Conference
on Dynamic Modelling of Information Systems. Delft 1992, S. 365-388

2

• Documentation is poor. There are no guidelines for style and content of documentation.
• The transition from design to implementation is still costly. It is often accompanied by loss

of information.
• Software development is too expensive. The results however are often poor.
Analyzing these and related problems reveals a lack both of integration and reusability.
Enterprise-wide conceptual models are commonly regarded as a proper orientation to over-
come these problems. For a number of reasons an object-oriented approach seems to be very
promising. The project "Computer Integrated Enterprise" [12] that had been started in 1990 at
the German National Research for Computer Science is dedicated to this subject. The general
project goals are to:
• develop a methodology as well as a set of tools to support the design and maintenance of

enterprise models.
• demonstrate the benefits of object-oriented analysis and design in a real-world application

by comprehensively modelling a specific enterprise.
We regard an object model as the core of an enterprise model. While an object model can be
sufficient to capture all the semantics you need for implementation it is definitely not suffi-
cient to cover all important aspects of analysis and design. An object model hardly allows for
expressing dynamic aspects of an information system. Object oriented design methodologies
(like [2, 21]) suggest state transition diagrams. However, we found these techniques not to be
appropriate for our idea of enterprise modelling (see also chapter 4). It has also to be taken
into account that objects are not always the preferred conceptualization for domain experts to
describe their perception of reality. We found that they rather choose a procedural perspective
that is expressed in terms like functions, activities and business procedures. Furthermore it is
desirable to model the different users´ views of objects - which can be best evaluated by pro-
viding a prototypical user-interface. Views and user-interfaces however can hardly be part of
a static object model since they vary with the user´s working context.
The methodology and design-environment that is introduced in this paper is intended to over-
come these deficiencies. Particularly it is to
• provide a representation of office procedures that is illustrative for business people and

takes into account the requirements of object-oriented analysis and design at the same
time.

• support identification, specification and refinement of objects (classes).
• provide means to analyze and refine the effectiveness of business procedures.
• demonstrate the construction of procedures by (re-) using configurable components.
• contribute to fast generating of prototypical user-interfaces.
• demonstrate a smooth integration with the object model.
The term “enterprise model” is far away from being used in a unique way. Therefore I will
first outline a framework that illustrates the purposes and design requirements of enterprise
models from our point of view.

3

2 A PRELIMINARY FRAMEWORK FOR DESIGNING
MULTI-PERSPECTIVE ENTERPRISE MODELS

Enterprise wide conceptual models are widely regarded as the most important prerequisite to
build integrated corporate information systems. Integration however should not be restricted
to a mere technical point of view. On our opinion enterprise models should be designed to
foster other dimensions of integration as well. At least the following aspects should be taken
into account:

• Integrating the components (software, hardware) of a computerized information system.
• Integrating the different stages of system life-cycles.
• Integrating the views of those who participate in analyzing, designing, implementing and

using an information system - as well as the views of those who make decisions about cor-
porate strategies.

• Mutual integration of organization and information system.
Although these dimensions certainly require individual approaches, all those approaches need
to have one feature in common: in order to accomplish integration you have to establish con-
ceptualizations of the domain that is of interest, which are shared by a collection/community
of technical or human interpreters. Integration then happens by referring to common con-
cepts. We all know such semantic reference systems: sets of data types, functions of an oper-
ating system, the terminology of a certain community of software-developers or of sales-per-
sonal in a particular firm. Looking at these examples reveals that enterprise models should
represent different views of the enterprise.

2.1 Perspectives on the Enterprise
Considering the numerous views/conceptualizations (see for instance [8], [24]) one can think
of it is necessary to make a suitable selection. We decided on three main levels of abstraction:

• a strategic view
• an operational/organizational view
• an information system view

Designing and implementing a corporate information system requires to have a solid idea of
how the operations of the firm are organized. Since an information system should be effective
for a long time it is desirable to consider strategic options in time. On the other hand the infor-
mation system is such an important part of the organization that managers should be provided
with an illustrative representation of the information system. The strategic view, which is not
subject of this paper, is described by concepts like business goals, value chains (Porter), port-
folio analysis, corporate culture etc. Within the organizational view we differentiate between
three perspectives. The macro-view describes the main organizational units or functional
areas of an enterprise, like marketing, accounting, controlling, personal etc. On a more
detailed level concepts like roles, functions, objects, business rules, and scenes (for instance:
sales negotiations) are described. Finally there is a dynamic level to represent office proce-
dures in a way that is illustrative for managers. The informations system view is focussed on
what traditionally is called conceptual model. It should cover the following aspects ([3], p.
20):

4

“
• Static properties such as objects, object properties (sometimes called attributes), and rela-

tionships amongst objects (i.e., a particular class of object properties)

• Dynamic properties such as operations on objects, operation properties, and relationships
amongst operations (e.g., to form transactions)

• Integrity rules over objects (i.e., database states) and operations (i.e. state transitions)”

Thereby it is important to emphasize that models should be illustrative for people involved in
the development process, that is they should use concepts people in the domain of interest are
familiar with (for a more detailed discussion on this matter see [20]). While it is often argued
that the user-interface should not be part of a conceptual model because it depends on varying
user requirements and technical changes we think it is desirable to include a model of user
interaction. A user-interface can be essential for the effective use of a system. For this reason
it should be taken into account in time. Implementing a convenient user interface takes a great
amount of the overall effort. Thinking of a conceptual model as prerequisite for reusable soft-
ware components it is not satisfactory to exclude user-interface issues from the model. It is
important however to abstract as much as possible from specific features that are supposed to
be subject of technical change.
For specifying a conceptual model of the IS as well as for reconstructing the other views dif-
ferent levels of abstraction could be used. Is there any indication for the appropriate level of
abstraction or - in other words: what is the right amount of semantics that is specified for the
terms that are used? In general we may state that the concepts that are referred to in order to
accomplish integration should contain enough semantics not to bother any of the involved
components/humans with the need to reconstruct meaning for further processing. On the
other hand they should also support transparency by avoiding details that are not relevant for
the given purpose of integration. These thoughts recommend to use elements within the IS-
model that represent domain level concepts rather than more general technical concepts. For
instance: define a class “account” rather than only providing classes that could be used to
implement an account in a convenient way. If you then include a certain graphical representa-
tion of an account into a document the document processor should know the semantics of an
account (rather than displaying some sort of graphical primitives) - which would improve the
chances for powerful interpretations.
While domain level semantics certainly promote integration, evaluating the amount of seman-
tics is more complicated when it comes to reusability. We can hardly agree with Graham
([13], p. 239) who claims: “The fact is that all semantics compromise reuse”. It seems to be
more reasonable to put it this way: comfortable reuse requires a high amount of semantics,
however, the more semantics you put into a concept the higher is the chance that it does not
satisfy all specific requirements of the intended domain anymore. Our consequence from this
logical conclusion is not to incorporate less application level semantics. Whenever it does not
seem to be possible to find general concepts we would try another - less elegant - approach to
accomplish reusability: by providing a set of more special concepts that is offered to be
selected from in the case of a particular enterprise.
For enterprise models to be a medium for integration of the (in our case: three) different
views it is crucial to translate or mediate between them. Since the concepts that are used on
the strategic and on the organizational level cannot always be formalized, translation to the

5

concept of the IS-level in the sense of a unique mapping is sometimes impossible. In these
cases one could use some sort of links that indicate that the concepts are related.
The idea of multi-perspective enterprise models recommends to aim towards authentic
abstractions of reality. We think however that it is not sufficient to take the way an enterprise
is actually organized for granted. This is specially important when you think of effectively
integrating an information system with the organization; like Schank ([22], pp. 23) states for a
broader context:

“The first users of cars and computers had to struggle to make these completely new
machines operate within the limits of the systems that were designed for an earlier
world. ... Computers are severely limited by the world views and ideas that have pre-
ceded them.”

Merely concentrating on representing given structures may result in sophisticatedly recon-
structing a mess. In order to avoid such a misconception it is necessary to provide means to
analyze the business, particularly the effectiveness of organizational structure and business
processes. Therefore a methodology/environment that is to support the design of enterprise
models should allow for analysis and simulation on the instance level (see [7] for a similar
approach).
Although generic enterprise models that fulfil the requirements of a wide range of firms are
an attractive research vision it is not possible to develop such models from scratch. You have
to start with one enterprise of a particular domain. Applying the same approach to a set of
similar enterprises allows for comparatively analyzing invariances and differences. Then
there is a chance to condense the specific model to a configurable generic model of a certain
scope. The domain we started with is car insurance within an insurance company.

2.2 Positioning the Tools within the Framework
The environment we developed is a first attempt to fulfil the requirements listed above. Cur-
rently it consists of three tools which are enhanced by a hypertext-system. Each of the tools
covers at least one of the three main levels of abstraction (see fig. 1). The Value Chain
Designer (which is not subject of this paper) allows to design and analyze strategic options by
applying Porter´s concept of value chains. Value activities, the core elements of value chains,
are in part described by resources and business processes they use - which are described on
the organizational level. The primary scope of the Object Model Designer is the IS-view. It is
however possible to model links to related concepts on other levels. For instance: class
“InsurancePolicy” refers to a real world object that may include legal aspects which cannot be
formalized. Such aspects could be described on the organizational level using appropriate
representations and then serve as an additional comment/explanation for the IS-level as well.
The Office Procedure Designer mainly covers (and connects) the organizational and the IS-
view.

6

3 THE OBJECT MODEL DESIGNER
The objects/classes and their relationships constitute the IS-model of an enterprise. The
Object Model Designer (OMD) is to support a systematic approach to object-oriented analy-
sis and design. It fosters fast-prototyping by partially generating executable code from
design-specifications. In order to allow for a distinctive as well as illustrative description a
structured object-editor is combined with a graphical representation of the model. The object
model can be accessed by other design-tools, too.

3.1 Conceptualizing Objects
While from a (re-)using programmer´s point of view it is sufficient to describe an object
solely by the services it provides analysis and design require a more detailed view. Our con-
cept of an object model is inspired by Booch [2] and Rumbaugh et.al. [21]. According to them
(and most other authors) an object is modelled by describing attributes and services. Addi-
tionally we use the category constraints. Furthermore it is possible to establish numerous rela-
tionships between objects/classes. Depending on the features of the implementation language
it can be important to make a difference between class and instance level (like in Smalltalk).
We found however that it is acceptable to neglect the class level. During analysis and design
you primarily focus on the features of an instance-object (not to be confused with a particular
instance, see 3.3). Furthermore class level specifications are hard to transform with languages

Strategic View

Value Chains
Corporate CultureGoals

Strategic Options

IS View

Classes
Associations

Procedures

TransactionsUser-Interfaces

Common Object Model
Organizational View

Tasks Events

Business Rules
Office ProceduresObjects

Roles

Classes Attributes
Constraints

Services
Associations

Default Widgets

Object Model
Designer

Activity Blocks
Procedures

Procedure Documents
States

User-Interfaces
Roles

Throughput

Office Procedure
Designer

Value Chains
Value Activities

Resources
Costs

Value Chain
Designer

Figure 1. Tools of the design environment and their relation to different views
of the enterprise

7

that do not regard classes as objects.
An attribute is regarded as an object that is encapsulated within the object. We do not allow
attributes - like Coad/Yourdan [5] - to only hold references to external objects that have an
existence of there own in the object space. An attribute is described by the following aspects:

• name
• class
• cardinality
• default value
• history
• authorization
• default widget

Specifying an attribute´s class is a prerequisite for typing. The OMD also allows to paste ser-
vices from an attribute´s class into the classes interface. For instance: class Employee may
contain an attribute of class BirthDate, the service age may now be generated for Employees,
too. If name conflicts occur, the user will be notified.
Cardinality has to be defined in min., max.-notation. For instance: a costumer´s telephone
number may have cardinality 0,*. Specifying a default value may allow for generating an
appropriate initialization method. If history is set to true every update of the attribute has to be
recorded somehow. The authorization to access an attribute can be separately described for
get- and put-access where each access type can be assigned one of three authorization num-
bers: private (0), protected (1) or public (2). It is not possible to define write-permission to be
greater than read-permission. Implementation of authorization levels certainly depends on the
features of the implementation language. Deviating from a solution like it is featured by C++
other objects can access attributes only via services. The OMD generates put and get services
for each attribute. Visibility of the services depends on the authorization level (see also
below). The current version only generates Smalltalk-like interfaces. For instance: definition
of the attribute “name” would result in the services name and name:.
In order to allow for generating prototypical user-interfaces it is possible to assign a default-
widget to each attribute. One can also define a label that is to be presented with the widget.
Additionally the size of the widget can be specified. This approach is a first attempt to deal
with the complexity of user interaction. It cannot be completely satisfactory: the way a value
of a certain class is presented to the user often is not unique but varies with the context of
interaction. For instance: you can display a name using a scrollable text view, a listbox etc. To
improve the chance to assign an appropriate user-interface it is possible to define widget
groups, for instance to display an address.
Services are characterized by their interface, where each attribute is defined by its class, and a
natural language description of the function they fulfil. Furthermore a precondition and a
postcondition can be specified. If the service returns an object, this object´s class can be spec-
ified. Like an attribute a service can be defined public, protected or private, which means to
propagate it into the classes public protocol, to allow it to be used only with some sort of
authorization (like a password) or to keep it secret. While attribute and service descriptions
already include constraints (like attribute-classes, pre- and postconditions) there may be other
object-constraints that cannot be assigned to just one attribute or service. This is the case for
integrity rules which interrelate different attributes or services. We differentiate between two

8

types of constraints: guards and triggers. A guard is a constraint that prevents the object from
merging into a certain state. For instance: the resale-price assigned to a product should never
be less than the purchase-price. A trigger on the other hand prevents an information system
from becoming inconsistent by not reacting if some condition is fulfilled. For instance: If a
costumer who holds a car insurance policy has been driving without an accident for more than
three years and has not been assigned the highest claims bonus yet, his claim bonus has to be
increased.
In general it is desirable to provide multiple-inheritance which however should be used very
carefully. The current version of the OMD only allows to define single-inheritance relation-
ships between classes. One reason for this decision was not to hinder implementation by lan-
guages that do not support multiple-inheritance which is particularly true for the implementa-
tion language we use for generating executable objects (Smalltalk). There is however a possi-
bility to define semantics that are multiple-inheritance alike using the concept of roles (see
below).

3.2 Associations
Objects within an information system are interrelated in various ways: objects may use ser-
vices from other objects, they may be composed of other objects, their existence may depend
on other objects etc. Taking such associations/relationships into account is crucial for main-
taining the integrity of an IS. Therefore they are commonly regarded as an essential part of an
object model. There is however no consensus on how to describe them. Booch [2] claims that
it is sufficient to use only two sorts of relationships between objects: using and containing.
While a containing relationship describes aggregation, a using relationship means that the
related objects may interchange messages. Rumbaugh et.al. [21] do not suggest a limited set
of associations. Instead they allow the designer to define his own associations. We agree with
Booch that aggregation and interaction relationships are probably sufficient to classify most
relationships. Thinking of implementation it is also a good idea to limit the scope to a few
well analyzed concepts. But in order to design illustrative as well as semantically rich domain
level models we prefer associations which may include domain specific semantics and which
are labeled with names that are known in the application domain. Having a wider range of dif-
ferent types of associations allows to define views on aspects of the object model. If some-
body is interested in an organizational schema one could filter all classes which are associated
via “is subordinated” or “is superior”. A relationship may have features that cannot solely be
assigned to any of the connected objects. For instance: information on the relationship
attendsTo between an insurance agent and an insured person like “when was the relationship
established?” or “where was it established?”. For this reason we adopt the approach Rum-
baugh et al. suggest: associations may be modelled as classes. If you do not restrict the set of
allowable associations picking an association is necessarily somewhat arbitrary (which is also
the case for defining classes in general). This arbitrariness can be reduced by encouraging the
analyst/designer to select from a collection of previously defined associations before defining
a new one. Furthermore it is possible to take advantage of inheritance.
Last but not least: at the current state of art we regard the design of an object-oriented enter-
prise model as an evolutionary research process. That puts emphasis on cyclic refinement of
the defined concepts. In the long range there is a chance to substantially reduce the number of
classes (whether they are associations or “ordinary” classes) by inductive analysis.

9

0,
*

0,
1

1,
*

0,
*

1,
1

0,
*

1,
1

0,
*

1,
*

0,
*

1,
1

1,
1

0,
*

1,
1

0,
1

1,
*

1,
*

1,
1

1,
*

Figure 2. User-interface of the Object Model Designer

10

The permissible cardinality range of an association has to be specified in min,max-notation.
Each of the involved classes has to be assigned a tuple with the minimum number of instances
that have to be part of the association and the maximum number that is permitted. While
binary associations are preferable it is also possible to specify ternary associations. Associa-
tions should be named like predicates to make the model more descriptive. Since the appro-
priate predicate name often depends on the direction, it is possible to assign an inverse name
to each association. For instance: “is controlled by” would be the inverse name to “controls”.
One association class is thought to provide a substitute for multiple inheritance that even
offers some advantages over the original. An object can import another objects´ features by
establishing a “has role”-association (which is sometimes referred to as “dynamic” or
“object-level” inheritance). The roles that are assigned to a class can be ordered to resolve
possible naming conflicts. If you want to describe an employee who is a manager as well as a
salesperson you do not define a class “managing salesperson” that inherits from manager and
salesperson. Instead employee is assigned the roles manager and salesperson in a certain
order.
In order to facilitate searching for already defined classes as well as to support a systematic
approach to find new classes, the classes are grouped into categories. The definition of cate-
gories should be oriented towards domain level concepts. Some of the categories we have
chosen: accounting, car insurance, marketing, people, documents, devices, associations. Dif-
ferent from the concept used in Smalltalk a class may be assigned to more than one category.

3.3 Prototypical Instantiation
The OMD allows for fast prototyping and evaluation on the instance level by generating exe-
cutable code. Smalltalk does not directly support important aspects of the object model: there
is no strong typing, in general constraints cannot be implemented in a convenient way. There-
fore we use a frame-oriented object definition language that is part of the Smalltalk Framekit
(SFK), which has been developed by two colleagues at GMD [11]. The conceptual descrip-
tion of a class can partially by transformed in SFK´s object definition language (primarily
attributes together with their associated access services). SFK allows to define classes and
associations by providing a partially declarative definition language. It enhances Smalltalk
with strong typing. Various types of constraints can be defined as well. Compiling a class
goes along with generating code for implementing guards and triggers. The following exam-
ple shows part of a frame-class definition. The code that is printed in italic has been added
manually.

11

4 THE OFFICE PROCEDURE DESIGNER
Although the object model includes a few dynamic aspects (like method pre- and postcondi-
tions) it does not allow to model business procedures in an illustrative and comprehensive
way. Object oriented design methodologies (like [2, 21]) suggest state transition diagrams.
However, for our purpose these techniques have two shortcomings. They do not provide a
representation that fits the average user´s perception of a business procedure. Since state tran-
sition diagrams describe the behaviour of objects of a certain class they can hardly be used to
support the design of procedures from preexisting components. Dedicated methods/tools to
support design and implementation of office procedures (for instance [6, 9, 14, 15, 16, 23])
seem to be more suitable. But they usually do not emphasize the integration of the dynamic
model with the static object model - if they are object-oriented at all.

4.1 Conceptualization of an Office Procedure
We regard a procedure as an ordered graph of activity blocks (which I will refer to as activity
as well), which can be represented as a semantically enriched Petri net. Each activity block
(for similar conceptualizations compare [14, 17]) is an object associated with a certain role of
an employee who is responsible for this particular task. An activity block can be modelled as
a procedure itself. The subject and the state of a procedure are captured in an object of class
“ProcedureDocument”. In the case of concurrent processing special constraints have to be
fulfilled (see below). Each activity block requires a certain state of the document as a precon-

initializeSlotDescriptions
"CarInsurancePolicy allSlotDescriptions"

(self slot: #ClaimsBonus)
range: Bonus;
maxCardinality: 1;
beforeAdd: [:policy :bonus :actBonus :transact|
(actBonus < policy maxBonus).

(self slot: #dateOfSigning)
range: ContractTime;
minCardinality: 1;
maxCardinality: 1.

(self slot: #methodOfPayment)
range: PaymentMethod.

(self slot: #paidPremium)
range: MoneyAmount;
minCardinality: 1.

•
•
•

Figure 3. Partial definition of class” CarInsurancePolicy” in SFK

12

dition. Processing the document within an activity results in one or more new states of the
document. Unlike a physical document it can be worked on at different locations at the same
time - provided there are constraints which prevent inconsistent states. An object of class
“ProcedureDocument” does not only offer a collection of information that has been related to
its different states. Furthermore it provides a prototypical user-interface for accessing this
information. A document is an illustrative as well as a powerful metaphor for describing user-
interfaces: it allows to present information in a way a user is familiar with and it is more ver-
satile than a mere window/widget-metaphor since it may incorporate a numerous pages and
various links between them.
A procedure’s semantics can be divided into the following categories:

General constraints
For instance: A procedure must not contain deadlocks. There must not be endless loops. There
should be no task that cannot be reached by any chance.

Constraints on activities
For instance: An activity requires a certain state of a certain document type. It must produce
one of a set of possible document states.

Constraints on documents
For instance: The variable parts of the document may be filled only with objects of a certain
class. A part of the document that is processed within one activity may not be processed within
another activity that works on the document concurrently.

Dispatching
For instance: After an activity block´s postcondition is fulfilled its successor has to be trig-
gered, after an activity has been started, an employee who can take over the associated role has
to be informed. It may be important to first check an employee’s queue of activities before dis-
patching a new activity to him. Dispatching has to be done according to organizational rules,
like: only one employee may be responsible for the whole procedure or for a collection of ac-
tivities.

Exceptions
For instance: Within an activity block an inconsistent document state is detected that had been
caused in a preceding activity. An employee becomes sick before completing the activity.

It is a crucial question for the design of a dynamic model to decide where to locate this
knowledge. While general constraints should be checked already during the design process,
all the other control knowledge can only be applied when the procedure is active. Each proce-
dure is supervised by a procedure manager, which is an object that coordinates procedures of
a certain domain. Whenever an event occurs that should trigger a procedure the procedure
manager is notified. It then looks up its description of the particular type of procedure and
instantiates the first activity block as well as the procedure document. Each activity block is
responsible for transforming the document´s state to one of the states that are defined as post-
conditions. The procedure manager and the procedure document serve as “glue” to link the
activity blocks. If an activity has terminated with one of its postconditional document states it
notifies the procedure manager. The procedure manager looks up its list of available (human)
operators and their queues of work to be done. Depending on its dispatch knowledge it will
then instantiate an appropriate activity object and move it into the queue of the selected clerk.

13

The procedure document fosters integration of the activity blocks by holding the collection of
(at least partially) shared objects that need to be accessed within the procedure. When an
activity is triggered it updates the procedure document by passing a collection of needed
objects which have not been in the document yet. Only when the procedure has terminated
regularly the procedure manager will release the involved objects (and thereby commit the
final state of the procedure document).
When an activity runs into an exception (like a violated constraint or a user-generated inter-
rupt) it will notify the procedure manager which will care for exception handling (for
instance: roll back to the preceding activity block).
The Office Procedure Designer (OPD) is a tool to instruct analysis and design of office proce-
dures according to the outlined architectural framework. For this purpose it provides the ana-
lyst/designer with an interactive template for systematically describing a procedure´s tasks. It
also includes a graphical editor that allows to model office procedures in an illustrative way
using a set of graphical icons (see fig. 4). The icons represent either document states or tasks:

The OPD is not based on the waterfall-model. Instead we assume the different steps of system
development to be interwoven by cyclic feedback-loops. In order to allow for a systematic
description of the development approach that goes along with the OPD I will differentiate
between requirements analysis, design, analysis of organizational effectiveness, and prototyp-
ical implementation.

an activity that requires user-interaction

an activity that is not computer supported at all

an activity that is modelled as a procedure itself

an activity that does not require user interaction

a procedure document´s state

Figure 4. Icons used for the graphical representation of office procedures

14

Figure 5. Partial object model of an office procedure

Attributes
activeProcedures:OfficeP
availableOperators: Clerk

Services
nextOperator
handleException: excID

ProcedureManager

Attributes
document: ProcDocume
startTime: Time

Services
currentActivity
state

 OfficeProcedure

Attributes
created: Time
lastModified: Time

Services
displayView:
currentlyProcessed

ProcedureDocument

Attributes
startTime: Time
endTime: Time

Services
clerk
claim

ActivityBlock

dependsOn

supervises
1,1

0,*

1,1

1,1

1,1

1,*

isComposedOf

1,1

0,*

uses
1,1

1,*

 SubstantialMatterVer FormalCheck Settlement

isComposedOfis a

is a
is a

15

4.2 Requirements Analysis
Since the OPD is to support modelling of office procedures within a certain domain the first
step is to collect a list of procedures which are currently established within the domain of
interest. Thereby it should not matter whether the procedures are currently computer-sup-
ported at all. Modelling a particular procedure will then be done interactively by system ana-
lyst and domain expert. Starting with the event that triggers the procedure and that initializes
the procedure document they describe the procedure using the available icons and connecting
them by directed lines. Thereby we assume that it is intended to design a computer supported
procedure - no matter how it has been organized in the past. However, there may be activities
that cannot be supported by information technology. They can be characterized by an appro-
priate icon (see above). In this case the contents of the virtual procedure document would
need to be (at least partially) hardcopied. Afterwards the changes that have been applied to it
would have to be added somehow to the electronic document.
The first step of describing an office procedure as a net of activity blocks implicitly includes
the definition of temporal semantics. Activity blocks can be ordered sequentially or concur-
rently which implies a notion of before, after and simultaneous. This allows the OPD to per-
form certain consistency checks. For instance: detecting deadlocks, or an activity block that
produces a document state that had already been produced before (the last example is only a
strong indicator of inconsistent design).
Within the next step the activities are characterized by the structured, semi-formalized
description that is encouraged by the interactive-template. Thereby three main aspects are dif-
ferentiated: organizational, informational, and control. Organizational aspects are expressed
by assigning a responsible employee (represented by an appropriate role, like “Manager”) and
a department both to the whole procedure and to each activity block. Furthermore it is possi-
ble to define organizational constraints on the assignment of employees to activity blocks
(like each activity has to be taken care of by only one person, or an activity block has to be
supervised by the same person who supervised the preceding activity). Each activity block
should also be assigned an estimated processing time. Gathering the information that is
needed within an activity is crucial for capturing the essence of an activity. It is structured by
offering three categories of information sources: information system, people, and paper based
documents.
To specify the information that could be provided by the information system the system ana-
lyst has access to the object model. He can browse through the available classes and select the
ones that are needed. If it is not a whole object of a certain class that is required services and
objects of a particular class can be selected, too (see screenshot in figure 7). With each object/
service a template is presented to encourage the description of additional characteristics.
Among others it allows to specify the location (internal IS, external IS) of the object/service,
the access permission (read, write) that is required, what exceptions could occur, and whether
the information should be pasted into the procedure document. The tool will notify the system
analyst if write permission is assigned to a particular attribute within two simultaneously
active activity blocks. In case a service is selected that requires input, it can be specified
where the input comes from (paper document, user ...). At this step it may turn out that infor-
mation from the IS is needed which has not been defined in the object model yet. Looking at
office procedures thereby supports finding, specifying as well as refining classes for the static
part of the enterprise model.

16

To characterize information that is provided by people the particular person has to be speci-
fied by selecting a role from a given collection or adding it to the collection. Then you can
pick one or more media that are used for communication (like phone, fax, face-to-face, letter
...). Finally there is another template that instructs what else could be specified (time esti-
mated for delivering information, costs, exceptions, what is to be transferred to the procedure
document, etc.).
There is also a collection of paper based documents (contracts, manuals, letters, memos ...)
the system analyst can select from or enhance. A paper´s origin can be specified by picking
from a collection of locations (departments, organizations ...). The paper document can then
be further described by filling in a template that requests information on time, costs, excep-
tions, what is to be transferred to the procedure document, etc.
In order to instruct the description of the control flow within an activity block a template is
presented that is generated depending on the document states that may result from the activity
(see figure 7). It encourages a declarative description, which is however not required in this
phase. To support system analyst and domain expert in filling the template a report that
includes a description of all the required information is presented in another text view.

Figure 6. User-interface generated by the Office Procedure Designer

17

Figure 7. User-interface of the Office Procedure Designer

18

4.3 Design
What we called requirements analysis already results in a preliminary design of an office pro-
cedure. One activity that can be related to design is reviewing how the results of requirements
analysis affected the object model. Do the proposed additional attributes or services recom-
mend to redesign the object model? If this is the case it may be necessary to refine the proce-
dure description as well.
The activities that constitute a procedure are preliminary named in a way domain experts are
familiar with, for instance “Verification of Substantial Matter”. These names have to be
changed now to appropriate class names in order to allow for generating class templates.
During analysis the control knowledge template is filled in a narrative natural language style.
This description is to be reviewed now in order to accomplish a more precise specification
that refers to objects and attributes/services. In order to allow for automatic interpretation it is
desirable to use a formal language. It is also necessary to analyze the exceptions that have
been listed in order to specify how they should be handled. Furthermore the procedure man-
ager´s dispatch knowledge may have to be modified.
The OPD can now generate a prototypical user-interface. To accomplish this it looks up what
attributes/services as well as access types have been specified for each activity block. Within
the object model a default widget should be associated with each attribute, service-parameter
or returned object respectively. Taken these specifications together it is possible to prelimi-
narily associate a set of widgets with each document state. These widgets are then placed
within a window. The (sizeable) window comes up in a default size. The number of widgets
however is not limited by the window size since the window´s content (that is all its widgets)
is scrollable. The generated user-interface does not always provide a satisfactory layout (see
figure 6 for an example of an acceptable result). Moving, resizing and even replacing widgets
however can be done interactively. Each widget is linked to a service. When the objects that
are needed within a procedure are instantiated it is possible to access them via the interface.
Defining the order of input can be done interactively, too. A description of more specific
interaction semantics can only be added as comment.

4.4 Analysis of organizational Effectiveness
After having preliminarily completed requirements analysis and design the available descrip-
tions can be used to analyze the effectiveness of the procedure´s organization. For this pur-
pose a communication diagram can be generated. It shows the different roles participating in
the procedure as well as the media they use to communicate. For further evaluation this dia-
gram has to be interpreted by a domain expert. A more substantial indicator for the need to
reorganize the procedure is a report of detected media frictions (like they occur when paper-
based information has to be transferred to the IS). Other indicators for further evaluation are
the total time the involved employees have to work on the procedure as well as the costs that
can be calculated from the different costs that have been specified.
Another question is more interesting but also more complicated to analyze since its scope is
not restricted to the described type of procedure: what is the optimum number of employees
needed to guarantee a satisfactory throughput? Or in other words: how can organizational
slack be reduced to an optimum? For this kind of analysis the conceptual level is not suffi-
cient. Instead it is the case for simulation. The current version of the OPD provides only lim-
ited simulation capabilities. Bottlenecks only occur in case more than one person works on a

19

procedure (assumed that totally automated activities do not take considerable time). For this
case it is possible to assign a number of people to each activity block that requires user inter-
action. Simulation then reveals bottlenecks and total throughput-numbers for different con-
stellations. This however will only be sufficient in rare cases. Employees occupied within one
procedure may also have to fulfill other tasks. It has also to be taken into account that employ-
ees have vacation days, that they may become sick (may be depending on the work load they
face), that effectiveness of human work depends on a variety of aspects. Furthermore quality
of work cannot be neglected, its relation to other variables however is hard to find out. Last
but not least it does not make much sense to optimize the organization of a single type of
office procedure. Since procedures may be interrelated you need to widen the scope (Porter´s
value chain concept is one approach to get an enterprise wide view). Optimizing the organiza-
tion of work has been a dream for long. We do not think that enterprise modelling along with
simulating organizational alternatives will make this dream come true. It can help however to
reduce complexity by providing an illustrative representation of important aspects and by
detecting certain types of organizational misconception.

4.5 Prototypical Implementation
Analysis and design should deliver a comprehensive description of activity blocks. Prototypi-
cal implementation aims at completing/refining this description to an extent that allows for a
test run of a procedure. Such a test run is not intended to offer simulation but to give the
potential users a substantial impression of the system.
The framework needed for an office procedure is already implemented. On the conceptual
level it mainly consists of three classes: procedure manager, activity block, and procedure
document. They have to be specialized now for the particular type of procedure. In the easiest
case a class that had already been implemented in the past can be (re-)used. Otherwise spe-
cialization requires modification. This is particularly the case for new activities. The corre-
sponding classes inherit from the abstract class “ActivityBlock” (see fig. 5). Their semantics
is usually not completely formalized during analysis and design. Therefore the current ver-
sion of OPD requires to write some additional code using an implementation language, which
is Smalltalk in our case.
One part of the prototype´s user-interface is based on the OPD´s graphical representation of a
procedure. Such a representation also provides an illustrative view of an active procedure.
The current state of the procedure is indicated by a highlighted icon. To get a more detailed
view (like: who is responsible for this activity, what is the name of the costumer involved in
this procedure etc.) the user clicks on the icon.

5 IMPLEMENTATION OF THE DESIGN ENVIRONMENT
All the tools of the integrated design environment (Object Model Designer, Office Procedure
Designer, Value Chain Designer) have been written in Smalltalk-80 within the Objectworks®
environment. High productivity could be achieved by using additional tools/utilities:
• ObjectKit®, a Smalltalk class library that contains classes which allow to make objects

persistent.
• Smalltalk Frame Kit (already mentioned above)

20

• Tigre®, an interactive interface-builder that also includes some database features.
• Objectforms®, an interactive interface-builder that allows to generate an interface from a

formal description. Different from Tigre® it uses Smalltalk´s model/view/controller con-
cept.

• Analyst®, a desktop publishing system that supports hyper-documents.
• NEDT®, a class library that supports the development of customized graphical editors.
All these tools reside in one Smalltalk image which allows for a high level of integration.
Implementing the current version which was accompanied by modelling the car insurance
department of an insurance company took less than two man years. Development was done
on Sun workstations. To port the environment to another platform (like Macintosh or MS/
DOS-Windows) it is sufficient to transfer the image file and have it interpreted by the target-
machine´s Smalltalk interpreter.

6 CONCLUSIONS
Our experience with modelling an office domain within an insurance company has shown
that the proposed representation of office procedures offers a suitable level of abstraction for
enterprise modelling. Not only that it allows to add dynamic (respectively temporal) seman-
tics to the model. The graphical notation was intuitively understood by both system analysts
and domain experts. Thereby it is a valuable medium for starting knowledge acquisition or
object modelling respectively. While Meyer´s optimistic claim “the objects are just there for
the picking” ([18], p. 51] may be true for those of us who are object-enthusiastic software
engineers it does definitely not reflect the way the average user perceives his domain. Instead
users seem to prefer procedures as guidance in conceptualizing the domain they work in.
Therefore asking for a detailed description of office procedures does not only serve the pur-
pose of designing a dynamic model it also provides a heuristic to shape the static object
model.
There is still a lot of research to be done. In order to refine the domain model we have built so
far it is necessary to apply the approach to other domains, preferable car insurance depart-
ments within other insurance companies. Our work has been primarily concentrated on object
models and office procedures. Other levels of abstraction proposed in the conceptual frame-
work (within the organizational and the strategic view) recommend a less formal representa-
tion. Knowledge that is described in textbook-style could be added using the already available
hypertext features. We also plan to enhance the system´s capabilities to simulate and thereby
evaluate alternative ways to organize procedures. A graphical representation of an object
model is intended to be more illustrative than a mere textual representation. Large models
however become complex and are not easy to survey anymore - specially when you allow for
an unlimited number of associations. We plan two measures that contribute to more clarity: a
“pretty-print” algorithm to rearrange the icons and filters that allow to restrict the classes of
associations that are shown.
Although office procedures are an illustrative metaphor it is not sufficient to describe all
kinds of work in the office. Certain tasks (like comparing the records of certain customers)
can be regarded as short procedures (consisting only of one activity block). Unstructured

21

cooperative work however requires other concepts as well as another graphical representa-
tion. It would be interesting to complement the OPD by a tool that allows for illustratively
modelling CSCW-applications (for an example on the instance level see [9]).
Reusability as well as integration cannot be accomplished by isolated research. There is not
one best design that has to be discovered. Instead there may be numerous good designs. Wide
range reusability therefore heavily depends on commitment to one or at least a few designs.
The commitment we think of implies participation. A preliminary model of a certain enter-
prise type could serve as input for discussing and refining the model within a larger commu-
nity. Although comparable projects [8, 19] recommend not to be too optimistic we think this
vision is too attractive to give it up.

References
[1] Araya, A.A.; Stefik, M.J., “Generic Knowledge in Office Activities”, in: Lochovsky, F.

(Ed.), Proceedings of the IFIP WG 8.4 Workshop on Office Knowledge: Representa-
tion, Management and Utilization. Toronto 1987, pp. 54-59

[2] Booch, G., Object-oriented design with applications. Benjamin/Cummings 1990

[3] Brodie, M.L., “On the Development of Data Models”, in: Brodie, M.L.; Mylopoulos,
J.; Schmidt, J. (Ed.), On Conceptual Modelling. Perspectives from Artificial
Intelligence, Databases and Programming. Springer 1984, pp. 19-47

[4] Bruni, G.; Cardigo, C.; Damiani, M.; Seminati, G., Final Report on Insurance Domain
Requirements Analysis. ITHACA.Datamont.89.D.7, 1990

[5] Coad, P.; Yourdon, E., Object Oriented Design. Prentice Hall 1991

[6] Croft, W.B., “Representing Office Work with Goals and Constraints”, in: Lochovsky,
F. (Ed.), Proceedings of the IFIP WG 8.4 Workshop on Office Knowledge:
Representation, Management and Utilization. Toronto 1987, pp. 13-18

[7] Dur, R.C.J., “Dynamic Modelling for Analysis and Design of Office Systems”, in: Sol,
H.G.; Van Hee, K.M. (Ed.), Dynamic Modelling of Information Systems. North-
Holland 1991, pp. 303-321

[8] ESPRIT Consortium AMICE, CIM-OSA AD 1.0 Architecture Description. Brussels
1991

[9] Ellis, C.A.; Bernal, M., “OFFICETALK-D: An experimental office information
system”, in: SIGOA Newsletter 3, No. 1, 1982, pp. 131-140

[10] Ellis, C.A., “NICK: Intelligent Computer Supported Cooperative Work”, in: Locho-
vsky, F. (Ed.), Proceedings of the IFIP WG 8.4 Workshop on Office Knowledge: Rep-
resentation, Management and Utilization. Toronto 1987, pp. 95-102

22

[11] Fischer, D.H.; Rostek, L., SFK: A Smalltalk Frame Kit. Concepts and Use. Darmstadt
1992 (in print)

[12] Frank, U.; Klein, S., Unternehmensmodelle als Basis und Bestandteil integrierter
betrieblicher Informationssysteme. GMD research paper, No. 629, Sankt Augustin
1992

[13] Graham, I., Object oriented methods. Addison-Wesley 1991

[14] Hogg, J.: OTM, “A Language for Representing Concurrent Office Tasks”, in: Locho-
vsky, F. (Ed.), Proceedings of the IFIP WG 8.4 Workshop on Office Knowledge: Rep-
resentation, Management and Utilization. Toronto 1987, pp. 10-12

[15] Hogg, J.; Nierstrasz,O.M.; Tsichritzis,D., “Office Procedures”, in: Tsichritzis, D. (Ed.),
Office Automation. Springer 1985, pp. 137-165

[16] Kreifelts, T.; Woetzel, G., “Distribution and Error Handling in an Office Procedure
System”, in: Bracchi, G.; Tsichritzis, D. (Ed.), Office Systems: Methods and Tools.
Proceedings of the IFIP WG 8.4 1986. North-Holland 1987, pp. 197-208

[17] Lochovsky, F.H.; Hogg, J.S.; Weiser, S.P.; Mendelzon, A.O., “OTM: Specifying office
tasks”, in: Allen, R.B. (Ed.): Conference on Office Information Systems. ACM Press
1988, pp. 46-54

[18] Meyer, B., Object-Oriented Software Construction. Prentice Hall 1989

[19] Pröfrock, A.-K.; Tsichritzis, D.; Müller, G.; Ader, M., “ITHACA: An Integrated
Toolkit for Highly Advanced Computer Applications”, in: Tsichritzis, D. (Ed.), Object
Oriented Development. Genf 1989, pp. 321-344

[20] Rothenberg, J., “Prototyping as Modelling: What is Being Modeled?”, in: Sol, H.G.;
Van Hee, K.M. (Ed.), Dynamic Modelling of Information Systems. North-Holland
1991, pp. 335-357

[21] Rumbaugh et.al., Object-oriented modelling and design. Prentice Hall 1991

[22] Schank, R.C., The Cognitive Computer. On Language, Learning and Artificial
Intelligence. Addison-Wesley 1985

[23] Tsichritzis, D., “Form Management”, in: Communications of the ACM, Vol.25, No.7,
July, 1982

[24] Zachman, J.A., “A framework for information systems architecture”, in: IBM Systems
Journal, Vol. 26, No. 3, 1987, pp. 277-293

23

Acknowledgements
I wish to thank all the colleagues who have been participating in the project “Computer Inte-
grated Enterprise”, specially Matthias von Bechtolsheim and Stefan Klein.

