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During the top-down design of distributed systems, abstract designs have to be replaced by more 
concrete designs, which add details that define how these systems can be implemented using 
available building blocks. Behaviour refinement is a design operation in which abstract behaviours 
are replaced by more concrete behaviours. Methods that guide and enforce the correctness of these 
replacements are necessary. This paper presents a set of methods to perform behaviour refinement, 
based on a careful consideration of the architectural concepts of action and causality relation. 
Correctness is enforced by validation of the conformance relation between an abstract and a 
concrete behaviour. Rules are provided to determine whether a concrete behaviour conforms to an 
abstract behaviour.  

1. Introduction 
Systematic design methodologies for distributed systems have to be based on precise design 

concepts and guidelines on how to combine and manipulate these concepts (Quartel, et al., 1997, 
Rechtin, 1992, van Sinderen, et al., 1995). The formal support to these design methodologies must be 
developed based on these combinations and manipulations. 

Experience with formal methods shows that their inability to support the manipulation of design 
concepts in a satisfactory way obstructs the acceptance of these methods. In particular the FDT 
LOTOS (Bolognesi, et al., 1995), despite its sound mathematical basis and its (limited) support for 
behaviour refinement, has failed so far to be introduced in large scale distributed software design for 
similar reasons (Vissers, et al., 1993). 

During the design process of distributed systems, we may replace abstract designs by more concrete 
designs. We consider the relation between an abstract design and a more concrete design based on the 
assumption that an abstract design is a prescription for implementation. An abstract design prescribes 
what should be implemented, while a more concrete design prescribes how this abstract design should 
be implemented. The notions of abstract design and concrete design are relative, since a more concrete 
design may be considered as an abstract design in a next design step. 

Behaviour refinement is a design operation in which an abstract behaviour is replaced by a more 
concrete behaviour. A conformance relation defines which concrete behaviours are valid refinements 
(implementations) of the abstract behaviour. This conformance relation should guarantee that what is 
prescribed in the original abstract behaviour is indeed preserved by the more concrete behaviour. 
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This paper presents design methods for behaviour refinement, which are based on precise 
manipulations of design concepts for behaviour definition. These design methods can be used in the 
design process of distributed systems, in particular distributed software applications, to enforce 
correctness and precision. The approach taken in this paper is precise, although the formal semantics of 
the design concepts and design methods are not explicitly indicated in the paper. The work presented in 
this paper can be seen as pre-formal, i.e., as an establishment of a sound architectural (conceptual) 
basis for the formal support that has been presented in (Quartel, 1998). 

This paper is further structured as follows: section 2 gives an overview of the design process for 
distributed (software) systems, section 3 presents the design concepts used in this paper, section 4 
discusses behaviour refinement in detail, section 5 defines a method to abstract from actions that are 
inserted during behaviour refinement, section 6 defines a method for handling actions that are refined 
by activities that can successfully terminate in many (possibly alternative) ways, and section 7 
illustrates some of the methods presented in this paper with an example design. Section 8 draws some 
conclusions. 

2. Distributed systems development process 
This section gives an overview of a systematic development process for distributed systems. This 

overview aims at stressing the role and importance of design operations for behaviour refinement in the 
design trajectory of such systems. 

2.1. Entity and behaviour domains 
In most design methodologies for distributed systems design one can recognize the following 

concepts: 
• (functional) entities: logical or physical parts of a system; 
• actions: units of activity performed by an entity; 
• interactions: units of activity performed by multiple entities in cooperation; 
• (inter)action points: locations where (inter)actions occur. 
It follows from the identification of entities on one hand, and actions and interactions on the other 

hand, that the design of a distributed system can be represented from two distinct but related domains: 
• entity domain, where the entities and their interconnection structure are defined; 
• behaviour domain, where the actions and interactions performed by entities are properly 

defined, in terms of the behaviour of these entities. 
A design at an abstraction level consists of a collection of interconnected entities and their 

corresponding behaviours. 

2.2. Design trajectory 
In a top-down design trajectory, the design of the distributed system is manipulated in successive 

design steps, which make it possible for designers to move from an abstraction level to a more concrete 
one. Each design step brings the resulting design closer to the implementation, in terms of designs that 
can be more easily mapped onto concrete components. 

An entity may represent, at a certain abstraction level, a complex structure of more concrete entities. 
An (inter)action may also represent, at a certain abstraction level, a complex structure of more concrete 
(inter)actions. Therefore, during the design trajectory of distributed systems one can identify the 
following design steps (see, e.g., (Sinderen, et al., 1992)): 

• entity decomposition: applied to a set of entities in a design, it replaces some or each of these 
entities by multiple entities; 
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• interface refinement: applied to a set of (inter)actions in a design, it replaces some or each of 
these (inter)actions by multiple (inter)actions. 

Since the entity and behaviour domains are related, i.e., an entity should have a behaviour assigned 
to it, entity decomposition also affects the behaviour domain. This means that the original behaviour of 
an entity that is decomposed should also be decomposed so that each resulting entity has a 
corresponding behaviour assigned to it. Methods are necessary to guarantee the correctness of design 
operations in which behaviours are decomposed. 

Fig. 1 shows a simple example, consisting of an entity E that is decomposed in two entities E1 and 
E2, which are connected via an interaction point. The notation used for behaviour representation in this 
example is explained in section 3. We rely on the intuitive understanding of the reader for the time 
being. 

B 

a c cb a b 

B1 B2

E E1 E2 
design step

entity domain
behaviour domain 

 

Fig. 1 Simple example of entity decomposition. 

In this example, both actions a and b are executed by entity E, such that a is followed by b. In the 
decomposed design, action a is assigned to E1 and action b is assigned to E2. Intuitively one can deduce 
that an interaction between E1 and E2, which we call c, is necessary in order to keep the original 
relationship between actions a and b. Unfortunately, not all instances of behaviour refinement are so 
simple as this one in which correctness can be easily and intuitively assessed by hand. 

An example of interface refinement is the decomposition of interaction c of Fig. 1 in two successive 
interactions c1 and c2, representing an indication that B1 is ready to pass some control information to B2 
and a notification that B2 has accepted this information from B1. Fig. 2 depicts this example, abstracting 
from the actual information exchanged. 

When applying entity decomposition or interface refinement, one should have methods to guarantee 
the correctness of the insertion of additional (inter)actions and the replacement of an (inter)action by 
multiple (inter)actions. The methods presented in this paper support entity decomposition and interface 
refinement. In order to simplify the presentation of the methods, we only consider refinements of 
behaviours that contain actions. This does not pose any problem, since an interaction can be seen as an 
action in case we consider the interaction from the point of view of the common behaviour of the 
entities participating in the interaction, i.e., abstracting from the individual responsibilities of the 
involved entities. For example, in Fig. 1 interaction c would be considered as an action of the common 
behaviour of E1 and E2. Extending the methods given in this paper to cover also interactions is 
therefore straightforward. 
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Fig. 2 Simple example of interface refinement. 

3. Architectural model 
This section briefly presents the basic architectural concepts of action and causality relation used to 

model monolithic behaviours. Repetitive or interacting behaviours are not considered in this paper. For 
the complete set of basic concepts for behaviour modelling we refer to (Quartel, et al., 1997, van 
Sinderen, et al., 1995, Quartel, 1998, Ferreira Pires, 1994). 

3.1. Action 
An action models the relevant characteristics of some activity in the real world, abstracting from 

characteristics that are considered irrelevant at the point in the design process where the action is 
defined. These relevant characteristics are represented by the following action attributes: 

• information: the information values that are established in the action, which model the result 
produced by the activity being modelled; 

• time: the moment of time when the action occurs, which models the time moment when the 
result has been produced and is made available to other activities; 

• location: the location of an action, which models the place where the result of the activity is 
made available. 

Each action is considered to happen only once or not at all. We assume that we can unambiguously 
refer to an action by using an action identifier. The information, time and location attribute values of an 
action a are denoted by the symbols ιa, τa and λa, respectively. 

3.2. Causality relation 
Relations between actions are modelled as a composition of causality relations. A causality relation 

defines for an individual action, called the result action, the condition for the occurrence of this action. 
This condition consists of: 

• a causality condition, which defines how the occurrence of the result action depends on the 
occurrences or non-occurrences of other actions; 

• action attribute constraints, which define how the occurrence of the result action and, possibly, 
the information, time and location attribute values of the result action, depend on the 
information, time and location attribute values established by actions in the causality condition; 

• a probability attribute, which defines the probability of the occurrence of the result action when 
the causality condition and action attribute constraints are satisfied. 

An action can only occur at the time moments in which its causality condition and attribute 
constraints are satisfied. Once the action occurs, its attribute values can be referred to by other action 
occurrences that are enabled by the occurrence of this action. 

Action attribute constraints are not elaborated in this paper, but introduced by means of an example 
in section 3.4. 
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3.3. Causality conditions 
Two basic causality conditions have been identified: 
• enabling: b → a, the occurrence of b is a condition for the occurrence of a; only after b has 

occurred, a is allowed to occur and can refer to the attribute values of b. Action b is called an 
enabling action of action a; 

• disabling: ¬b → a, the non-occurrence of b is a condition for the occurrence of a; only when b 
does not occur before nor simultaneously with a, a is allowed to occur. Action b is called a 
disabling action of action a, since the occurrence of b disables the occurrence of a in case a has 
not occurred already before b. 

Combinations of enabling and disabling conditions can be defined to model more complex 
conditions using the operators and (∧) and or (∨). Some examples are:  

• b ∧ ¬c → a, the occurrence of b and the non-occurrence of c are both conditions for the 
occurrence of a. Action a can only refer to the attribute values of b; 

• b ∨ c → a, either the occurrence of b or the occurrence of c is a condition for the occurrence of 
a. In case both b and c have occurred before a occurs, only one of these actions enables a, such 
that a is causally related to this action and occurs independently of the other action. In a 
behaviour execution, action a can only refer to the action that enables it, either b or c, but not 
both. The choice of which action enables a is undefined, since it is sorted out non-
deterministically during the execution of the behaviour. In case one wants to allow a to refer to 
both b and c, the alternative condition b ∧ c should be added to the causality condition of a, i.e., 
the causality condition would become b ∨ c ∨ (b  ∧ c) → a. 

The and and or operators obey the properties of commutativity and associativity. Furthermore, the 
and operator distributes over the or operator, i.e., γ1 ∧ (γ2 ∨ γ3) ≈ (γ1 ∧ γ2) ∨ (γ1 ∧ γ3), where γ 
represents a causality condition. The inverse property does not hold, i.e., the or operator does not 
distribute over the and operator. For example, considering causality relations b ∨ (c ∧ d) → a1 and 
(b ∨ c) ∧ (b ∨ d) → a2, action a1 may refer in an execution either to action b or to actions c and d, 
while action a2 may refer also to actions b and c or to actions b and d. 

Using the above properties, a condition γ of action a can be defined in disjunctive normal form, i.e., 
γ = γ1 ∨ γ2 ∨ ... ∨ γn, such that each γi (1≤i≤n) consists of a conjunction (and) of enabling or disabling 
conditions. Conditions γi (1≤i≤n) are called alternative causality conditions since they represent necessary 
and sufficient conditions to allow the occurrence of a. 

In general, multiple alternative causality conditions can be satisfied simultaneously. We define that 
the occurrence of a result action is caused by only one of its alternative causality conditions, and, 
therefore, only depends on the actions that determine the satisfaction of this alternative causality 
condition. In case multiple alternative conditions are satisfied during a system execution, a decision has 
to be made at execution time on which alternative condition effectively causes the occurrence of the 
result action, assuming that the result action occurs. This decision may be (partly) specified, or not. In 
the latter case, the actual decision is left to the implementer or to mechanisms of the implementation 
itself. 

3.4. Behaviour definitions 
A behaviour is defined by a set of causality relations, one relation per action of the behaviour. 

Initial actions are enabled from the beginning of the behaviour, which is represented by the start 
condition √. Fig. 3 depicts an example behaviour B3, which consists of five actions a, b, c, d and e, 
represented using our graphical and textual notations. Actions a, d and b are defined to occur 
sequentially, although action e may disable the occurrence of d in case d has not occurred before e 
occurs. Action d should occur within 5 time units after action a has occurred, while action e is allowed 
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to occur 3 time units after a has occurred. In addition, the occurrence of c is either enabled by the 
occurrence of d or is enabled by the occurrence of e. Therefore, ιc either refers to ιd or to ιe, as 
represented by the clauses “d → c : ιc = ιd” and “d → c : ιc = ιe” in the constraint of e, respectively. 

 B3 

B3 := {  √ → a (ιa : N) [2 < ιa < 9], 
 a ∧ ¬e → d (ιd : N, τd : T) [ ιd = ιa + 1, 
    τd < τa + 1],
 a → e (ιe : N, τe : T) [ ιe = ιa + 2, 
    τe > τa + 3],
 d → b (ιb : N) [ιb = ιd],  
 d ∨ e → c (ιc : N) [ d → c : ιc = ιd  
   e → c : ιc = ιe] } 

ιd : N | ιd = ιa + 1  
τd : N | τd < τa + 5 

ιe : N | ιe = ιa + 2  
τe : N | τe > τa + 3 

ιa : N | 2 < ιa < 9  

ιb : N | ιb = ιd

ιc : N | d → c : ιc = ιd
e → c : ιc = ιe

b

a 

d 

e c

 

Fig. 3 Example behaviour B3. 

Constraints on attribute values are represented between the symbols ‘[‘ and ‘]’ in the textual 
notation, and to the right of the ‘|’ symbol in the graphical notation. The attribute type is represented 
between the symbols ‘(‘ and ‘)’ in the textual notation and to the left of the ‘|’ symbol in the graphical 
notation. Enabling and disabling conditions are represented by the arrows  and , 
respectively, while their combination using the and and or operators are graphically represented by the 
symbols ‘ ’ and ‘ ’, respectively. 

Reciprocal aspect of the disabling condition 
The disabling condition ¬e in the causality condition of action d defines that action d is neither 

allowed to occur after the occurrence of e nor allowed to occur simultaneously with e. The non-
simultaneous occurrence of actions e and d is a reciprocal condition, which can be defined implicitly 
(as in Fig. 3) or explicitly, by adding condition d ∨ ¬d to the causality condition of e, i.e., (a ∧ d) ∨ 
(a ∧ ¬d) → e. By making this condition explicit, one can define references to the attribute values of 
action d in the causality relation of e. Fig. 4(i) depicts the graphical representation of the disabling  

(i) basic representation (ii) shorthand ‘and’ (iii) shorthand disabling relation 

a 

e 

d 

a

e 

d 

a

e

d

 

Fig. 4 Graphical representation of disabling relation. 
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relation between d and e in which the reciprocal condition is made explicit. Fig. 4(ii) depicts the 
disabling relation, assuming the default and interpretation of causality conditions that are represented 
by distinct arrows pointing to the same action. Fig. 4(iii) depicts the shorthand notation we introduced 
for a disabling relation between two actions. 

3.5. Probability attribute 
A probability attribute can be associated with each alternative causality condition of some action a, 

defining the (conditional) probability that a occurs when this condition is satisfied. Two variants of the 
probability attribute are distinguished: 

• the simple probability attribute: πa(γ) defines the probability that result action a occurs when 
assuming that alternative causality condition γ is satisfied; 

• the extended probability attribute: π*
a(γ) defines the probability that result action a occurs due 

to (is caused by) alternative causality condition γ when assuming that γ is satisfied. 
Fig. 5 shows examples that are used in the sequel to discuss the two variants of the probability 

attribute. Behaviours BS1 and BE1 represent a choice relation between actions b and c, which both 
depend on the occurrence of action a. A shorthand notation is used to represent the choice relation, 
which is composed of the (mutual) disabling conditions ¬b and ¬c. Behaviours BS2 and BE2 represent a 
behaviour in which the occurrence of action f is enabled either by the occurrence of action d or the 
occurrence of action e. 

 

BS1 

πb(a ∧ ¬c) = 0.8 

πc(a ∧ ¬b) = 0.5 

πf(d) = 0.6,
πf(e) = 1.0

BS2 

(i) simple probability attribute 

BE1

π∗
b(a ∧ ¬c) = 0.3

π∗
c(a ∧ ¬b) = 0.5

π∗
f(d) = 0.6,

π∗
f(e) = 0.4 

BE2 

(i) extended probability attribute

a 

b 

c 

d 

f

e 

a

b

c

d 

f

e 

 

Fig. 5 Examples of probability attributes. 

3.5.1. Simple probability attribute 
Consider behaviour BS1 in Fig. 5(i). Probability association πb(a ∧ ¬c) defines the conditional 

probability that action b occurs in an execution, assuming action a has occurred and action c does not 
occur before nor simultaneously with b. An analogous interpretation applies to πc(a ∧ ¬b). The 
probability of the occurrence of each of the actions b an c can not be derived from both probability 
associations, even in case the probability of the occurrence of a is known. This is because the 
probabilities of the satisfaction of conditions ¬c and ¬b are undefined. One can derive, however, the 
conditional probability that one of the actions b and c occurs (assuming a has occurred), which is equal 
to πb(a ∧ ¬c) + πc(a ∧ ¬b) - (πb(a ∧ ¬c) × πc(a ∧ ¬b)) = 0.9. For the reasoning that leads to this formula 
we refer to (Quartel, 1998). 
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Consider behaviour BS2 in Fig. 5(i). Probability associations πf(d) and πf(e) define the conditional 
probability that action f occurs, assuming actions d and e have occurred, respectively. The conditional 
probability that f occurs in an execution (assuming d or e, or both occur) is equal to πf(d) + πf(e) - 
(πf(d) × πf(e)) = 1.0. However, no distinction can be made between the probability that f occurs due to d 
or due to e, since this probability is undefined. 

3.5.2. Extended probability attribute 
Consider behaviour BE1 in Fig. 5(ii). Probability association π*

b(a ∧ ¬c) defines the conditional 
probability that action b occurs and is related to actions a and c, such that b occurs after a has occurred 
and c does not occur before nor simultaneously with b, when assuming that a occurs. An analogous 
interpretation applies to π*

c(a ∧ ¬b). Both probability associations define together the probability of the 
choice between actions b and c, such that b and c occur in 30 and 50 percent of the executions in which 
a occurs, respectively. The values of both probability associations must obey the consistency rule 
π*

b(a ∧ ¬c) + π*
c(a ∧ ¬b) ≤ 1, which reflects that only one of the two actions in a choice relation can 

occur. However, one can not define, using the extended attribute, the probability that one of the actions 
b or c must occur after the occurrence of a, while leaving the distribution between the probabilities of 
both actions undefined. The latter can be defined using the simple attribute. 

Consider behaviour BE2 in Fig. 5(ii). Probability associations π*
f(d) and π*

f(e) define the conditional 
probability that action f occurs due to (and is related to) the occurrences of actions d and e, 
respectively. This allows one to define a distribution between the probabilities that f is related to d and 
that f is related to e, in the executions in which both d and e occur. However, since no assumptions 
should be made on the probability of the occurrences of d and e, the following consistency rule must be 
obeyed: π*

f(d) + π*
f(e) ≤ 1. Consequently, it is impossible to define, using the extended attribute, that 

action f must occur (i.e., with probability 1) after d or c occurs, in case the probability of the occurrence 
of b or c is smaller than 1. The latter can be defined using the simple attribute. 

3.5.3. Combined use 
The simple and the extended probability attributes are just alternative and complementary ways to 

define probability, since some behaviour properties can be defined using the simple attribute and others 
can be defined using the extended attribute. The combined use of both types of probability attributes in 
a single behaviour definition may therefore be desirable, and is indeed possible in case certain rules 
defined in (Quartel, 1998) are obeyed. 

3.6. Execution relations 
The causality conditions of two actions a and b may define none, one or more alternative execution 

relations between these actions. An execution relation defines how two actions depend on each other 
during a particular behaviour execution. As opposed to execution relations, causality relations define 
for all possible behaviour executions how the actions depend on each other. The notion of execution 
relation is introduced to facilitate the definition of the method for behaviour refinement presented in 
section 5.2. 

Two execution relations between actions a and b are distinguished: 
• an enabling relation, which is graphically represented as ba . This relation defines an 

ordering between the occurrences of actions a and b, such that the occurrence of b depends on 
the preceding occurrence of a. Two variants are distinguished and represented using our textual 
notation: 
− {√ → a, a → b}, which defines that a occurs independently of b; 
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− {¬b → a, a → b}, which defines that a depends on the non-occurrence of b. This variant has 
to be used in case the causality condition of b allows b to occur before a, i.e., one 
alternative causality condition of b contains the disabling condition ¬a; 

• an exclusion relation, which is graphically and textually represented as b a  and {¬b → a, 
¬a → b}, respectively. This relation defines a conflict (choice) between the occurrences of 
actions a and b, such that the non-occurrence of b depends on the non-occurrence of a, and vice 
versa.  

For example, considering the behaviour of Fig. 3, the disabling condition ¬e of action d and the 
implicit condition d ∨ ¬d of action e define two alternative execution relations: (i) the enabling relation 
{¬e → d, d → e} in which d occurs before e, or (ii) the exclusion relation {¬e → d, ¬d → e} in which 
either e occurs or d occurs. 

An execution relation between actions a and b can be defined indirectly via a third action c through 
the conjunction of an execution relation between a and c and an execution relation between c and b. 
This is called an indirect execution relation. For example, considering the behaviour of Fig. 3, the 
conjunction of the execution relations da  and bd  may hold during an execution, which 
implies that the occurrence of b depends on the preceding occurrence of a. 

4. Behaviour refinement 
The objective of behaviour refinement is to replace an abstract behaviour by a more concrete 

behaviour that conforms to this abstract behaviour. Behaviour refinement allows a designer to add 
more detail to the abstract behaviour, such that the concrete behaviour is closer to the real system 
behaviour (Quartel, et al., 1999, 1997, 1995). 

Actions of abstract behaviours are called abstract actions and actions of concrete behaviours are 
called concrete actions. We assume that the occurrence of each abstract action corresponds to the 
occurrence(s) of one or more concrete actions. This assumption makes it possible to compare the 
abstract behaviour with the concrete behaviour, by comparing the abstract actions with their 
corresponding concrete actions. This comparison is needed in order to assess whether the concrete 
behaviour conforms to the abstract behaviour.  

The following conformance requirements are identified: 
1. preservation of relations: the structure of relations between abstract actions should be preserved 

by the structure of relations between their corresponding concrete actions; 
2. preservation of attribute values: attribute values of abstract actions should be preserved by the 

attributes of their corresponding concrete actions. 
Concrete actions that correspond to abstract actions are also called reference actions, since they are 

considered as reference points in the concrete behaviour for assessing conformance. In this paper, 
abstract actions are denoted by the action identifiers of their corresponding reference actions appended 
with a prime. Concrete actions that are not reference actions are called inserted actions, since they are 
inserted during behaviour refinement. 

4.1. Basic types of refinement 
Two basic types of behaviour refinement are identified: 
• causality refinement, which consists of replacing causality relations between abstract actions by 

causality relations involving their corresponding concrete actions and some inserted actions; 
• action refinement, which consists of replacing an abstract action by multiple concrete actions 

and their causality relations. 
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Instances of behaviour refinement may consist of one of these basic types of refinement or a 
combination of both. The essential difference between causality refinement and action refinement is in 
the way attributes of abstract actions are distributed over the attributes of concrete actions. 

4.1.1. Causality refinement 
Causality refinement allows one to model the relations between abstract actions in more detail 

through the introduction of inserted actions. Inserted actions model additional activities in the concrete 
behaviour, which were not considered (relevant) in the abstract behaviour. 

When causality refinement is performed, activities that are originally modelled by the abstract 
actions are not further detailed in the concrete behaviour. Each abstract action corresponds, therefore, 
to a single reference action. This also implies that the attribute values established by an abstract action 
should be preserved by its corresponding reference action. 

4.1.2. Action refinement 
Action refinement allows one to model in more detail an activity that is represented by a single 

abstract action. The activity is decomposed into multiple related sub-activities. This decomposition is 
represented by a concrete action structure, which consists of multiple concrete actions, one per sub-
activity, and their causality relations. An essential characteristic of action refinement is that at least one 
of the attributes of an abstract action is distributed over the attributes of multiple concrete actions. 

A concrete action structure that replaces an abstract action makes its attribute values available 
through the occurrence of one or more of its final actions. These final actions are the reference actions 
that ultimately correspond to the abstract action. The following generic cases are distinguished: 

• single final action: a concrete action structure has a single final action, such that this concrete 
action structure makes all its attribute values available when this final action occurs; 

• conjunction of final actions: a concrete action structure has multiple independent final actions, 
such that this concrete action structure makes all its attribute values available when all these 
final actions occur; 

• disjunction of final actions: a concrete action structure has multiple alternative final actions, 
such that this concrete action structure makes all its attribute values available when one of these 
final actions occurs; 

• any combination of conjunctions and disjunctions of final actions. 
Considering the cases of a single final action, a conjunction of final actions and a disjunction of 

final actions, which are indicated by the abbreviations (sf), (cf) and (df), respectively, the preservation 
of attribute values conformance requirement is interpreted as follows: 

• the information values of an abstract action should be preserved in:  
− (sf) the information attribute of the final action, (cf) the union of the information attributes 

of the final actions, or (df) the information attribute of the actual final action that occurs; 
and 

− the information attributes of inserted actions that can be referred to via the final action(s). 
Information values of the abstract action are established in the final action(s) or are established 
in the inserted actions that can be referred to via the final action(s); 

• the time moment of an abstract action should be preserved by: (sf) the time moment of the final 
action, (cf) the time moment of the latest final action, or (df) the time moment of the actual final 
action that occurs. The abstract action occurs when all (information) values of the concrete 
action structure are available; 

• the location of an abstract action should be preserved by: (sf) the location of the final action, 
(cf) the collection of the locations of the final actions, or (df) the location of the actual final 
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action that occurs. The location of an abstract action represents the location(s) of the final 
action(s); 

• the probability of an abstract action should be preserved by: (sf) the probability that the final 
action occurs, (cf) the probability that all final actions occur, (df) the probability that one of the 
final actions occur. The probability that the abstract action occurs is the probability that the 
concrete action structure terminates successfully. 

4.1.3. Example 
The difference between causality refinement, in which a causality relation is replaced by actions 

and causality relations, and action refinement, in which an action is replaced by a concrete action 
structure with a single final action, is rather subtle. Fig. 6 illustrates this difference. In this figure, we 
consider an abstract behaviour that consists of abstract actions a' and b', where action b' establishes two 
information values vb1 and vb2. Abstract action a' corresponds to reference action a and abstract action 
b' corresponds to reference actions b and b2. 

causality refinement action refinement concrete action
structure B 

a b c 

vb1, vb2

a' b'

vb1, vb2 

a b1 b2 

vb1 vb2 

 

Fig. 6 Difference between causality refinement and action refinement. 

Performing causality refinement we can replace the enabling relation between abstract actions a' 
and b' by two enabling relations through inserting action c, which allows b to indirectly refer to the 
attribute values of a. Furthermore, reference action b should establish the same attribute values as 
abstract action b'. 

Performing action refinement we can replace abstract action b' by concrete action structure B, 
consisting of inserted action b1 and reference action b2. The attribute values vb1 and vb2 are established 
by actions b1 and b2, respectively. Reference action b2 preserves the attribute values of abstract action 
b', since action b2 can refer to value vb1 of action b1. 

Examples of action refinement with multiple final actions are presented in section 6. 

4.2. Use of abstraction 
An abstract behaviour can be replaced by different alternative concrete behaviours. Depending on 

the choice of a concrete behaviour, different concrete actions and their causality relations are added to 
the abstract behaviour. Since this choice is determined by specific design objectives, behaviour 
refinement can not be automated in its totality. 

In contrast, the abstraction of a concrete behaviour is unique given what we should abstract from. 
When abstracting from certain concrete actions and their causality relations, the abstraction of this 
concrete behaviour is completely determined by the remaining concrete actions and their causality 
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relations. Rules can be provided to calculate this abstraction. These rules can, in principle, be 
automated. 

The uniqueness of an abstraction allows one to assess the conformance between an abstract 
behaviour and a concrete behaviour, by comparing the abstraction of the concrete behaviour with the 
original abstract behaviour. Therefore, we distinguish the following successive design activities in an 
instance of behaviour refinement: 

1. delimitation of the abstract behaviour: we only consider the refinement of behaviours that are 
influenced by a finite number of abstract actions. For example, in case of recursive behaviours 
one should identify the finite behaviour parts that are (infinitely) repeated; 

2. refinement of the abstract behaviour into a concrete behaviour: in this activity we determine 
how the abstract behaviour is implemented by the concrete behaviour; 

3. determination of the abstraction of the concrete behaviour: a method to perform this activity is 
presented below; 

4. comparison of the abstraction of the concrete behaviour with the original abstract behaviour: 
both behaviours should comply to a certain correctness relation. If this is not the case, the 
concrete behaviour is not considered as a correct implementation of the abstract behaviour, such 
that one must return to design activity 2. 

Determining an abstraction of a behaviour 
The following steps define a method to determine the abstraction of a concrete behaviour: 
1. identify reference actions and inserted actions in the concrete behaviour. This means that the 

identified reference actions have to be considered as: 
− (single) reference actions that are obtained by causality refinement; or 
− groups of reference actions that are formed by grouping the final actions of each concrete 

action structure obtained by action refinement; 
2. abstract from inserted actions. We can do this by using the abstraction method presented in 

section 5; 
3. replace each group of reference actions by an abstract action. We can do this by using the 

abstraction method presented in section 6. 

4.3. Correctness relations 
The conformance between an abstract behaviour and the corresponding concrete behaviour is 

assessed in terms of a correctness relation between this abstract behaviour and the abstraction of the 
corresponding concrete behaviour. Depending on the specific conformance requirements, this 
correctness relation can be: 

• an equivalence relation, which defines that the concrete behaviour should preserve all 
behaviour properties of the abstract behaviour; or 

• a partial ordering relation, which defines that the concrete behaviour should preserve a subset 
of the behaviour properties of the abstract behaviour. 

For example, two alternatives of the preservation of attribute values conformance requirement are 
considered: 

• strong preservation: all attribute values that are possible for an abstract action are also possible 
for the corresponding concrete actions; and 

• weak preservation: some attribute values that are possible for an abstract action are not possible 
for the corresponding concrete actions. 

Strong preservation can be assessed in terms of an equivalence relation “≈” on the attribute values 
of two abstract actions, while weak preservation can be assessed in terms of a partial ordering relation 
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“∠” on the attribute values of two abstract actions. Fig. 7 depicts an example of strong and weak 
preservation of attribute values. Behaviours B1' and B2' represent the abstractions of two alternative 
refinements B1 and B2 of abstract behaviour B'. Since abstract actions b' and b1' can occur at the same 
time moments, behaviours B' and B1 obey the strong preservation of attribute values. In contrast, 
abstract action b2' can only occur at a subset of the time moments at which abstract action b' can occur. 
Consequently, behaviours B' and B2 obey the weak preservation of attribute values. 

B1 

abstraction abstraction refinement refinement

B2

B'B1' B2'

“≈” “∠”a1' 

τb1' < τa1' + 5 

b1' 

a1 c1 b1

τc1 < τa1 + 2 τb1 < τc1 + 3

a' b'

τb' < τa' + 5

a2 c2

τc2 = τa2 + 2

a2' b2'

τa2' + 2 < τb2' < τa2' + 5

b2

τb2 < τc2 + 3

 

Fig. 7 Strong and weak preservation of attribute values. 

5. Abstraction from inserted actions 
This section presents a method to deduce the abstract behaviour of a given concrete behaviour, by 

abstracting from the inserted actions and their influence on the concrete behaviour. This method 
contains steps and rules that have to be followed in order to abstract from a single inserted action 
(called z). The abstraction of multiple inserted actions can be performed by consecutively abstracting 
from each single inserted action in any order. 

5.1. Causality context of an inserted action 
When abstracting from a single inserted action z in a concrete behaviour B, the remaining actions in 

B are considered as reference actions. The influence of an inserted action z on these reference actions 
can be delimited to the causality context of z. The causality context of z only considers the actions in B 
that are directly related to z, i.e., (i) the actions that have a causality condition which contains action z, 
and (ii) the actions that are defined in the causality condition of z. The causality context of z is denoted 
by Con(z) and the actions in Con(z) are called the context actions of z. In Fig. 8, the example behaviour 
B4 has Con(e) = {a, d, c} and Con(a) = {d, e}. 

 B4 B4 := {  √ → a, 
  d → b, 
  e → c, 
 a ∧ ¬e → d, 
 a ∧ ¬d → e } 

a 

d

e c

b

 

Fig. 8 Example behaviour B4. 
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An inserted action indirectly relates the occurrences of its context actions. Furthermore, an inserted 
action may allow a context action to indirectly refer to the attributes of another context action. For 
example in Fig. 8, action e defines an indirect execution relation between actions a and c, such that the 
occurrence of c indirectly depends on the occurrence of a. Furthermore, action c may refer indirectly to 
the attributes of action a. 

In order to abstract from the influence of an inserted action z on the concrete behaviour, one should 
be able to abstract from indirect execution relations, indirect attribute references and probability 
associations involving z, i.e.: 

• alternative causality conditions of context actions that define indirect execution relations 
between these actions via z, should be replaced by equivalent conditions that define these 
execution relations directly; 

• information, time and location attribute constraints of context actions that define indirect 
references between the attributes of these actions via the attributes of z, should be replaced by 
equivalent constraints that define these references directly; 

• probability attribute constraints of context actions that define probability associations involving 
z, should be replaced by equivalent constraints that are defined in terms of probability 
associations only involving these context actions. 

5.2. Abstraction of indirect execution relations 
Table 1 shows for each possible indirect execution relation between concrete actions x and y, the 

equivalent execution relation between the corresponding abstract actions x' and y', respectively, when 
abstracting from inserted action z. 

Table 1. Indirect execution relations. 

 

Legend: 

 represents the enabling relation: {√ → x, x → z} or {¬z → x, x → z}; 

 represents the exclusion relation: {¬z → x, ¬x → z}; 

 represents independence: {√ → x, √ → z}; 

z x 

z x 

y x 

y z yz yz

y' x' y'x' y'x'

y' x' 

y'x' 

y'x' y'x'

y'x'y' x' 

z x 

z x 

z x 

 

Table 1 is based upon the following abstraction rules: 
• transitivity of enabling: considering that a concrete action x is an enabling condition of inserted 

action z, and z is an enabling condition of concrete action y, then x' is an enabling condition of 
y' and the condition of y' is either equal to √ in case the condition of x is √, or is equal to ¬x' in 
case the condition of x is ¬z; 
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• inheritance of exclusion: considering that an inserted action z is an enabling condition of a 
context action x, the exclusion between z and another context action y is inherited by actions x' 
and y', i.e., the conditions of x' and y' are the disabling conditions ¬y' and ¬x', respectively. 

In the case of indirect execution relations that do not meet the constraints of the above rules, context 
actions x and y occur independently. Consequently, abstract actions x' and y' occur independently in 
these cases. 

5.2.1. Execution structures 
An inserted action may relate different pairs of context actions during the same execution. This is 

represented by a conjunction of multiple indirect execution relations, one for each pair of related 
context actions. A conjunction of multiple indirect execution relations is also called an execution 
structure. For example, Fig. 9 represents a possible conjunction of three indirect execution relations 
defined by behaviour B4 of Fig. 8, when assuming that action e is an inserted action. 

a' d'

step 1 step 2 step 3, 4

√ → a' 

a' ∧ ¬d' → c' 

¬c' → d'

a 

d 

e c 

a e d

a e c

d e c

a' c'

d' c'

a' 

d'

c'  

Fig. 9 Execution structure. 

A method to determine the abstraction of an execution structure consists of the following steps: 
1. identify all indirect execution relations; 
2. determine the abstraction of each indirect execution relation using the rules of Table 1; 
3. compose the condition of each abstract action as the conjunction of its conditions in the 

abstractions of step 2; 
4. simplify the condition of each abstract action using the following rules: C ∧ C = C, C ∨ C = C 

and √ ∧ C = C, where C represents an arbitrary causality condition. 
Fig. 9 illustrates the application of this method. The condition of c' is composed as the conjunction 

of the conditions in the abstractions {√ → a', a' → c'} and {¬d' → c', ¬c' → d'} of step 2, which gives: 
a' ∧ ¬d' → c'. 

5.2.2. Alternative execution structures 
Alternative execution structures are defined when the causality conditions of the inserted action or 

its context actions define alternative causality conditions using the disjunction operator. Alternative 
execution structures represent alternative conjunctions of indirect execution relations that may hold 
during an execution. In principle, each alternative condition doubles the number of alternative 
execution structures, although identical execution structures may be obtained. 

In the example behaviour B5 of Fig. 10 we assume that action d is an inserted action. Since the 
disabling relation between actions d and b is composed of the disjunction of the exclusion relation 
{¬d → b, ¬b → d} and the enabling relation {¬d → b, b → d}, two alternative execution structures are 
defined by the causality context of d. 
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Based upon the notion of alternative execution structures, the method to derive the abstract 
behaviour B' of a concrete behaviour B by abstracting from inserted action z can be defined as follows: 

1. identify the causality context of inserted action z, i.e., the concrete actions in Con(z); 
2. identify the alternative execution structures between z and its context actions; 
3. determine the abstraction of each execution structure using the method of section 5.2.1; 
4. compose the condition of each abstract action from the condition of its corresponding concrete 

action by replacing the sub-conditions that are conditions of this concrete action in one (or 
more) alternative execution structure(s) by (the disjunction of) the corresponding condition(s) in 
the abstraction(s) of these execution structure(s) as obtained in step 3; 

5. simplify the condition of each abstract action, if possible. 

step 1, 2 step 3 step 4, 5

B5 := { √ → a, 
  a ∧ ¬d → b, 
  b → c, 
  (a ∧ b) ∨ (a ∧ ¬b) → d, 
  d → e } 

B5' := { √ → a',
  a' ∧ ¬e' → b',
  b' → c',
 (a' ∧ b') ∨ (a' ∧ ¬b') → e' }

b 

d 

c a 

e 

b

d 

a 

e

b

d 

a 

e

b

e

a

b

e

a

b' c'a' 

e'

 

Fig. 10 Example behaviour B5. 

Fig. 10 illustrates the application of these steps. The condition of b' is composed from condition 
a ∧ ¬d by replacing sub-condition ¬d by the disjunction of the corresponding conditions ¬e' and ¬e' in 
the abstractions of both execution structures, i.e., ¬e' ∨ ¬e', since ¬d is the condition of action b in both 
execution structures. Furthermore, action name a is substituted by a', and sub-condition ¬c' ∨ ¬c' is 
simplified to ¬c'. 

The abstraction of behaviour B2 is based upon a combination of the transitivity of enabling and 
inheritance of exclusion abstraction rules. Table 2 depicts this composite abstraction rule, which is 
called inversion of causality, because it replaces the disabling of x by z with the disabling of x' by y', 
giving the intuitive impression that the causality between z and y was turned around. 

Table 2 Inversion of causality. 

y z 

y' x' z x 
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The rule represented in Table 2 is obtained from Table 1 by taking the disjunction of the execution 
relations in the intersection of the second column and the second and fourth rows. In general, the 
abstraction of the conjunction of any two composite execution relations can be obtained in this way. 

5.3. References to action attributes 
An action can only refer to the attribute values of action occurrences. In case an action does not 

occur, no attribute values are established. Therefore, indirect attribute references between context 
actions are only possible in the case of indirect execution relations to which the transitivity of enabling 
abstraction rule applies. The following rules to abstract from references to information, time and 
location attributes of inserted actions should be applied in combination with this abstraction rule: 

• references to information and location attributes of inserted actions should be replaced by their 
possible values or constraints; 

• references to the time attributes of inserted actions should be replaced by their possible values 
or constraints, taking into account implicit time constraints. 

Fig. 11 illustrates the application of both rules. The reference to the information attribute of inserted 
action c is abstracted from by simply substituting the constraint of c in the constraint of action b. 
However, a similar substitution in case of the reference to the time attribute of inserted action c renders 
the constraint [τb' < τa' + 5], which is an incorrect abstraction since b' happens after a'. In general, 
implicit time constraints imposed by enabling conditions also have to be considered when abstracting 
from references to the time attribute of inserted actions. In this case, the constraint [τc = τa + 2] should 
also be substituted in the implicit time constraint τc < τb, which renders the additional constraint [τa' + 2 
< τb']. 

 
abstracting
 

from c 
τc = τa + 2 

a c b

ιa + 2 < ιc < ιa + 5 ιb = 2 x ιc

τb < τc + 3

a' b'

2 x ιa' + 4 < ιb' < 2 x ιa' + 10

τa' + 2 < τb' < τa' + 5
 

Fig. 11 Abstraction of indirect information, time and location attribute references. 

5.4. Probability attribute references 
The probability of the occurrence of an action is determined by the probability of the occurrence of 

the enabling actions and the probability of the non-occurrence of the disabling actions in its causality 
condition. In this way, an action refers to the probability attributes of the enabling and disabling actions 
in its causality condition. Therefore, rules are needed to determine the abstraction of probability 
associations involving (i) enabling condition z, and (ii) disabling condition ¬z. These rules are 
presented below and illustrated with examples, both for the simple and for extended probability 
attribute. For the reasoning underlying the rules and their formalisation, we refer to (Quartel, 1998). 

The abstraction rules are defined below for some context action c. The abstraction of the probability 
association πc(γc) is denoted as πc'(γc'), where γc' is obtained from γc using the abstraction method of 
section 5.2. 
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5.4.1. Simple probability attribute 
The abstraction of a simple probability association πc(γc) involving inserted action z is defined by 

the following rules: 
1. γc contains enabling condition z (i.e., γc = z ∧ γ):  

(i) πc'(γc') = πc(γc),  if c also depends indirectly on the occurrence of z 
(ii)  = πz(γz) × πc(z ∧ γ), otherwise 

2. γc contains disabling condition z (i.e., γc = ¬z ∧ γ): 
(i) πc'(γc') = πc(γc),  if - c also depends indirectly on the non-occurrence of z, or 
(ii)    - z depends (in)directly on the occurrence of c, or 
(iii)    - c depends (in)directly on the non-occurrence of a third 
     action b and b must occur after z  
(iv)  < πc(γc),  otherwise 

Abstraction rule 1 is explained by the example behaviours in Fig. 12. Behaviour B6 illustrates the 
application of rule 1(ii). Action c indirectly depends on the occurrence of action a via inserted action z. 
When abstracting from z, the probability that c' occurs when enabling condition a' is satisfied must be 
determined, which is represented by πc'(a'). This probability association represents the uncertainty that 
z occurs after a has occurred, and the uncertainty that c occurs after z has occurred. Consequently, 
πc'(a') is determined by the composition of πz(a) and πc(z), such that πc'(a') = πz(a) × πc(z) = 0.4. 

B6 B7

B6' B7'

a z c

πz(a) = 0.8 πc(z) = 0.5 

a' c'

πc' (a') = 0.4

a c 

b

z

πb(z) = 1.0
πc(z ∧ b) = 0.5

a' c' 

b'
πb'(a') = 0.8

πc'(a' ∧ b') = 0.5

 

Fig. 12 Abstraction from probability associations involving enabling condition z. 

Behaviour B7 illustrates the application of rule 1(i). Action c indirectly depends on the occurrence 
of inserted action z via action b. In this case, the uncertainty introduced by z on the occurrence of c is 
already represented by enabling condition b via which c depends on z. This implies that the value of 
πc'(a' ∧ b') is equal to the value of πc(z ∧ b). 

Abstraction rule 2 is explained by extending the example behaviour of Fig. 10 with probability 
attributes, while leaving out action e. Fig. 13 depicts the steps taken to abstract from inserted actions b 
and d. Furthermore, this example illustrates that we can abstract from these actions in any order. Left to 
the vertical dashed line we depict two sequences of abstraction steps, one for each alternative execution 
structure, which abstract first from b and then from d. The corresponding sequences that abstract from 
b and d in the reverse order is depicted right to the dashed line. Because both b and d are abstracted 
from, and to perform the integration steps 4 and 5 of the method in section 5.2.2 only once, the 
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execution structures are not delimited to the causality contexts of b and d. Some of the abstraction steps 
are explained in the sequel. 

Step I.1 illustrates abstraction rules 2(iii) and 2(iv). We consider the abstraction of probability 
association πd(a ∧ ¬b). The uncertainty of the occurrence of d consists of the uncertainty introduced by 
action d itself, i.e., πd(a ∧ ¬b), and the uncertainty caused by the possible disabling of d by inserted 
action b. The latter uncertainty is (partly) represented by disabling condition ¬c', since b enables c. The 
following two cases are distinguished: 

• action c occurs in every execution in which b occurs, i.e., πc(b) = 1.0. In this case actions c and 
d completely inherit the choice between actions b and d. This implies that the uncertainty of the 
occurrence of d due to its possible disabling by b is completely represented by disabling 
condition ¬c', such that πd'(a' ∧ ¬c') = πd(a ∧ ¬b); 

• action c may occur in some, but not all executions in which b occurs, i.e., πc(b) < 1.0. In this 
case actions c and d partly inherit the choice between actions b and d. This implies that the 
uncertainty of the occurrence of d due to its possible disabling by b is only partly represented by 
disabling condition ¬c', such that πd'(a' ∧ ¬c') < πd(a ∧ ¬b). 

Step IV.1 illustrates abstraction rule 2(ii). We consider the abstraction of probability association 
πb(a ∧ ¬d). Since disabling action d depends on the occurrence of b in this execution structure, the 
uncertainty of the occurrence of b consists solely of the uncertainty introduced by action d itself, such 
that πb'(a') = πb(a ∧ ¬d). 

Step III.1 illustrates abstraction rule 2(i). We consider the abstraction of probability association 
πc(b). Action c indirectly depends on the non-occurrence of inserted action d via enabling condition b, 
i.e., conditions γc = b and γc = b ∧ ¬d are equivalent. In this case, the value of πc'(b') is equal to the 
value of πc(b) (= πc(b ∧ ¬d)), since the uncertainty introduced by d and its causality condition is already 
represented by enabling condition b. 

Step III.1 illustrates also abstraction rule 2(iv). We consider the abstraction of probability 
association πb(a ∧ ¬d). The uncertainty of the occurrence of b consists of the uncertainty introduced by 
action b itself, i.e., πb(a ∧ ¬d), and the uncertainty caused by the possible disabling of b by inserted 
action d. Since the amount of the latter uncertainty is undefined, but assumed to be larger than zero, we 
define that πb'(a') < πb(a ∧ ¬d). 

Step II.2 concerns the abstraction of inserted action d. Since none of the context actions depends on 
d, this action can simply be removed without any changes to the context actions and their attributes 
(except for appending a prime). 

The final step integrates the abstractions of the alternative execution structures. This integration is 
defined as follows: { √ ∨ √ → a'', a'' [πc''(a'') < 0.9] ∨ a'' [πc''(a'') = 0.9] → c'' }. The resulting abstract 
behaviour can be simplified to { √ → a'', a'' [πc''(a'') < 0.9] → c'' }, since the constraints [πc''(a'') < 0.9] 
and [πc''(a'') = 0.9] are originated from alternative execution structures (having non-zero probability).  

Concrete behaviour B8 in Fig. 13 models the cause of the possible non-occurrence of action c 
explicitly, in terms of the possible disabling of inserted action b by inserted action d. Abstract 
behaviour B8'' abstracts from this cause, and models the uncertainty of the occurrence of c'' by means 
of the probability attribute of c''. We denote the type of refinement illustrated in Fig. 13 as, making 
uncertainty explicit. 

5.4.2. Extended probability attribute 
The abstraction of an extended probability association π*

c(γc) involving inserted action z is defined 
by the following rules: 
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B8'' 

execution structure 2 execution structure 1 

B8 

step I.1 step III.1 
step II.1

step IV.1 

step I.2 step II.2 step III.2 step IV.2

integrating 
III and IV 

integrating 
III and IV 

B8''

a b

πb(a ∧ ¬d) = 0.9

d πd(a ∧ ¬d) = 0.9,
πd(a ∧ b) = 1.0 

c

πc(b) = 1.0 

a b 

πb(a ∧ ¬d) = 0.9 

d 

πd(a ∧ ¬d) = 0.9 

c

πc(b) = 1.0 

a b

πb(a ∧ ¬d) = 0.9

d

πd(a ∧ b) = 1.0

c 

πc(b) = 1.0 

a' c' a' c' a' b' c' a' b' c'

d' d' 

πd' (a') = 0.9 πd'(a' ∧ ¬c') = 0.9 

πb'(a') < 0.9 πc'(b') < 1.0πc'(a' ∧ ¬d') = 0.9 πc'(a') = 0.9 πb'(a') = 0.9 πc'(b') = 1.0

a'' c'' 

πc''(a'') < 0.9 

a'' c'' 

πc''(a'') = 0.9 

a'' c''

πc''(a'') < 0.9

a'' c''

πc''(a'') = 0.9

a'' c''

πc''(a'') < 0.9

a'' c'' 

πc''(a'') < 0.9 

 

Fig. 13 Abstraction of probability associations involving enabling and disabling conditions. 

1. γc contains enabling condition z (i.e., γc = z ∧ γ): 
(i) π*

c'(γc') = π*
c(γc),  if c also depends indirectly on the occurrence of z 

(ii)  = π*
z(γz) × π*

c(z ∧ γ),  otherwise 
2. γc contains disabling condition z (i.e., γc = ¬z ∧ γ): 
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(i) π*
c'(γc') = π*

c(γc) 
Abstraction rule 2 is simpler than the corresponding rule for the simple probability attribute, 

because the extended attribute defines the probability that action c occurs due to γc, when assuming γc 
is satisfied. Fig. 14 illustrates the application of the abstraction rules on the step-wise abstraction from 
inserted actions c and b in concrete behaviour B9, which renders abstract behaviour B9''. 

6. Abstraction from final actions 
The abstraction method of section 4.2 divides the abstraction of a concrete action structure in a 

concrete behaviour into (i) the abstraction of its inserted actions as explained in section 5, and (ii) the 
replacement of its final actions by an abstract action that models the completion of the concrete action 
structure. 

The following steps are distinguished when replacing the final actions of a concrete action structure 
A by an abstract action a': 

1. determine the causality relation of abstract action a': 
a. determine the causality condition of a' by integrating the causality conditions of the 

corresponding final actions; 
b. determine the abstraction of the attribute values of the final actions in terms of the possible 

values or constraints of the attributes of a'; 
2. determine the causality relations of the abstract actions outside A, denoted by b', which depend 

on a': 
a. determine the completion condition of A, in terms of the occurrences of its final actions that 

correspond to the occurrence of a'. Replace this completion condition by a corresponding 
condition in terms of a' in the causality relations of abstract actions b'; 

b. replace references to the information, time and location attributes of the final actions of A in 
b' by references to the corresponding attributes of a' as defined in step 1b. 

These steps are illustrated below by means of two examples. 

6.1. Example: receipt of segmented data packet 
Fig. 15 depicts an example of the abstraction of a conjunction of final actions. Concrete action s 

models the sending of a data unit, which is segmented into three data segments. Concrete actions r1, r2 
and r3 model the receipt of these three data segments, and concrete action a models the reassembly of 
the original data unit. 

Concrete actions r1, r2 and r3 are the final actions of concrete action structure r, which models the 
receipt of the entire data unit. This concrete action structure is replaced by abstract action r' in the 
abstract behaviour. 

The completion condition of concrete action structure r corresponds to the occurrences of all final 
actions, i.e., r1 ∧ r2 ∧ r3. Since this condition is equal to the causality condition of concrete action a, 
i.e., r1 ∧ r2 ∧ r3 → a, this condition is replaced by enabling action r' in the causality relation of the 
corresponding abstract action a', i.e., r' → a'. 

The causality condition of abstract action r' corresponds to the conjunction of the conditions of the 
final actions, i.e., s ∧ s ∧ s, which can be simplified to s. The time moment of r' corresponds to the time 
moment at which the last data segment is received. The information value established in r' consists of 
all segments of the original data unit, since concrete action structure r can only terminate when all 
segments have been received. Consequently, the conditional probability that r' occurs is equal to the 
conditional probability that all actions r1, r2 and r3 occur, i.e., in case of the simple probability attribute 
πr'(s') = πr1(s) × πr2(s) × πr3(s), and in case of the extended attribute π*

r'(s') = π*
r1(s) × π*

r2(s) × π*
r3(s). 
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Fig. 14 Abstraction of extended probability associations. 
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Fig. 15 Receipt of segmented data packet. 
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6.2. Example: receipt of acknowledgement 
Fig. 16 illustrates an example of the abstraction of the disjunction of final actions. Concrete action s 

models the sending of a positive or negative acknowledgement, concrete actions a+ and a– model the 
receipt of a positive or negative acknowledgement, respectively, and concrete actions s and n model the 
sending of the next data unit or the retransmission of the last data unit, respectively. 

 concrete action 
structure a 

s 

a+ 

a- 

n

r

ιa' = ‘+’ or ‘-’

s' a'

n' 

r' 
τa' = τa+ or τa-

ιa' = ‘+’ 

ιa' = ‘-’ 
 

Fig. 16 Receipt of acknowledgement. 

Concrete action structure a represents the receipt of either a positive or a negative 
acknowledgement. This concrete action structure is replaced by abstract action a' in the abstract 
behaviour. 

The causality condition of a' corresponds to the disjunction of the conditions of the final actions, 
i.e., s ∨ s, which can be simplified to s. Two distinct information values are established implicitly in 
concrete action structure a, i.e., a positive or a negative acknowledgement, which are represented 
explicitly by the information attribute values ‘+’ and ‘–’ of a', respectively. The time moment of a' 
corresponds to the time moment at which either a+ or a- occurs, i.e., τa' = τa+ or τa' = τa–. The 
conditional probability of the occurrence of a' corresponds to the conditional probability that a+ or a– 
occurs, i.e., in case of the simple probability attribute πa'(s') = π a+(s) + πa–(s) - (πa+(s) × πa–(s)), and in 
case of the extended probability attribute π*

a'(s') = π*
a+(s) + π*

a–(s). 
The completion condition of concrete action structure a corresponds to the occurrence of one of the 

final actions, i.e., a+ ∨ a–. This condition, however, does not appear in the causality relations of actions 
n and r. The conditions of actions s and r correspond to a specific occurrence of concrete action 
structure a in which either a positive or negative acknowledgement is established, respectively. These 
conditions can be replaced by the combination of enabling condition a' and a constraint on the 
information value that is established in a', i.e., a' [ιa' = ’+’] → n' and a' [ιa' = ’-’] → r'. 

6.3. (Im)possibility of abstraction 
From our experience applying the method presented in this paper we observed that it is not always 

possible to apply our abstraction rules on a concrete action structure. For example, when we assume 
that in the example of Fig. 15 a concrete action that depends on the receipt of a single data segment 
exists, the condition of this action cannot be replaced by a condition in terms of the (non-)occurrence 
of abstract action r'. In this case, no abstraction of concrete action structure r as a single abstract action 
r' would be possible. However, this does not invalidate the method. The impossibility to apply the 
abstraction rules on a concrete action structure is either caused by an incorrect refinement of an 
abstract action, or by an incorrect identification of the reference actions in a concrete behaviour. 
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7. Example: client-server interactions 
We consider the design of client-server interaction support to illustrate some of the refinement rules 

discussed in the previous sections. We have adopted the following conventions in graphical behaviour 
representations: an action identifier starts with the name of the (inter)action point at which the action 
happens (e.g., Areq is an action that happens at action point A), and information attributes are 
represented by their sorts (e.g., server_type represents an information value v of sort server_type). 
Furthermore, we place action identifiers next to their corresponding actions, instead of placing them 
inside text-boxes as required in our notation. 

7.1. Initial design 
The initial design focuses on the interaction between a client application and a data server, 

abstracting from the identification of the data server and from the remote communication with the data 
server. During the design process, this abstraction should be preserved for the client application, i.e., 
the design of the internal operation of the client application can be based on the interaction (pattern) as 
is established in this initial design. 

Fig. 17 depicts the composition of entities distinguished in this design. The client_application entity 
interacts with the data_server entity at an interaction point A. 

 
client_application data_server A

 

Fig. 17 Entity domain representation of the initial design. 

Fig. 18 depicts the behaviour at interaction point A. The client application requests certain data from 
the data server through the Areq action. This action has an information attribute with two elements: the 
server_type element is used to specify the type of data server that is required, and the question element 
is used to specify the properties of the data requested. The Areq action is followed by either an Arsp 
action, in case the requested data was found, or an Arej action, in case the data server failed to find the 
requested data. The information value attribute answer of the Arsp action contains the requested data. 
Although this is not indicated by attributes of the Arej action, there may be two main causes for failure: 
the data server does not have the requested data, or a time-out occurs before the data server is able to 
respond. The specific rejection reason is not explicitly indicated in the sequel. This also applies to other 
‘reject’ actions that are identified later on. 

 

 

 

 

Areq (server_type, 
question) 

Arsp (answer)

Arej  

Fig. 18 Behaviour domain representation of the initial design. 
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7.2. Introduction of a trader component 
The first design step focuses on the mechanism to locate a suitable data server. We assume that 

there are potentially many data servers that can provide the requested data. Hence, we introduce a 
trader component, which is able to provide the name of a specific data server, given the type of the data 
server and the name of the client application. Since we want to hide the existence of a trader from the 
client application, we introduce a fourth component, called the interface handler, which provides the 
original interface to the client application. 

Fig. 19 shows the interconnection of the entities identified above. At this abstraction level, the 
client_application entity interacts with the interface_handler entity, instead of with the data_server 
entity, at interaction point A. The interface_handler entity interacts with the trader entity and with the 
data_server entity at interaction point B and C, respectively. 

 
client_application interface_handler A

trader 

data_server C

B

 

Fig. 19 Entity domain representation after the introduction of a trader. 

Fig. 20 depicts the refined behaviour. After the Areq action, the interface handler asks the trader for 
a suitable data server through a Breq action. The Breq action has an information attribute with two 
elements, viz. server_type and client_name. These are used by the trader to determine a suitable data 
server. If the search for a suitable server is successful, the Breq action is followed by a Brsp action, 
with information attribute server_name. Otherwise, a Brej action is performed. The Brsp action is 
followed by a Creq action, in which data is requested from the data server. The properties of the 
requested data are given by the information attribute question and the data server is identified by means 
of the information attribute server_name. The Creq action is followed by either a Crsp action, in case 
the requested data was found, or a Crej action, in case the data server failed to find the requested data. 
The information attribute answer of the Crsp action contains the requested data. The Crsp action 
enables the Arsp action, which has answer as information attribute. An Arej action happens after a Brej 
or a Crej. 

Conformance assessment 
The concrete behaviour of Fig. 20 conforms to the abstract behaviour of Fig. 18. This can be 

assessed by applying the method of section 4.2 as follows:  
1. identify concrete actions Areq, Arsp and Arej of Fig. 20 as single reference actions and identify 

the remaining actions as inserted actions; 
2. abstract from the inserted actions (in any arbitrary order) using the method of section 5.2; 
3. compare the abstract behaviour obtained in step 2 with the behaviour of Fig. 18. These two 

behaviours are equivalent. 
Alternative applications of the method of section 4.2 that render the same result are possible. For 

example, one may consider concrete actions Creq, Crsp and Crej as a concrete action structure with 
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two final actions, obtained through action refinement of an abstract action C. In this case, one replaces 
the concrete action structure by the abstract action C first, and subsequently abstracts from C by 
considering this action as an inserted action. 

 

 

 

 

 
Areq (server_type, 
question) Arej 

 

 

 

 

 

Breq ( 
server_type, 
client_name) 

Brsp ( 
server_name) 

Creq ( 
server_name, 
question) 

Crsp (
answer) 

Arsp ( 
answer) 

Crej 

 
Brej  

Fig. 20 Behaviour domain representation after the introduction of a trader. 

7.3. Federation of traders 
This design step focuses on the (possibly concurrent) use of different connected traders. This step 

assumes that there is not a single trader that knows all possible data servers, but actually multiple 
traders and multiple trading domains. A trader in the domain associated with the client application 
(local domain) passes a request to a trader in a remote domain, in case it can not find a data server. This 
process is based on agreed procedures known as trader federation. In order to speed up the search 
process, the local trader may also contact multiple traders at the same time. In the following, we 
consider the situation where a local trader concurrently contacts two remote traders. 

Fig. 21 depicts the entities involved in the trader federation considered in this example. 

 

remote_trader2 local_trader remote_trader1 

B

D E

 

Fig. 21 Entity domain representation after the introduction of trader federation. 

Fig. 22 shows the behaviour of the three federated traders. 

Conformance assessment 
The concrete behaviour of Fig. 22 conforms to the abstract sub-behaviour of Fig. 20 consisting of 

actions Breq, Brsp and Brej, and their relations. This can be assessed by applying the method of section 
4.2 analogously to the previous section. Fig. 23 depicts the abstraction of the concrete behaviour of 
Fig. 22. 
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7.4. Remote communication 
The final design step focuses on the remote communication between components. We assume that 

the components identified so far reside on different computing nodes of a distributed system. Hence, 
the communication between components is accomplished via an intermediate component that may not 
be reliable (i.e., messages may get lost). 

Fig. 24 depicts the entities involved in communication between the interface handler and the data 
server. 
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Fig. 22 Behaviour domain representation after the introduction of trader federation. 
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Fig. 23 Abstraction of the concrete behaviour in Fig. 22. 
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Fig. 24 Entity domain representation after the consideration of remote communication. 
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Fig. 25 depicts the behaviour of an instance of communication between the interface handler and 
the data server. 

Conformance assessment 
The concrete behaviour of Fig. 25 conforms to the abstract sub-behaviour of Fig. 20 consisting of 

actions Creq, Crsp and Crej, and their relations. This can be assessed by applying the method of 
section 4.2 as follows:  

1. identify concrete actions Freq and Fcnf as single reference actions and identify concrete actions 
Frej1 and Frej2 as a group of reference actions; 

2. abstract from inserted actions Gind and Grsp using the method of section 5.2; 
3. replace final actions Frej1 and Frej2 by abstract action Frej', which represents two alternative 

causes for rejection; 
4. compare the abstract behaviour obtained in step 3 with the behaviour of Fig. 20 consisting of 

actions Creq, Crsp and Crej. These two behaviours are equivalent. 
Fig. 26(i) and (ii) depict the abstract behaviours obtained in step 2 and 3, respectively. 
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Fig. 25 Behaviour domain representation after the consideration of remote communication. 
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Fig. 26 Abstraction of the concrete behaviour in Fig. 25. 

8. Conclusions and further work 
In order to effectively support the design process of distributed systems, a design model has to be 

developed bearing in mind design operations such as behaviour refinement. Design operations are 
necessary to transform an abstract design into a more concrete design such that the concrete design 
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conforms to the abstract design. Furthermore, these design operations should be generic and applicable 
throughout the design process. 

This paper presents a method to perform behaviour refinement, which consists of replacing an 
abstract behaviour by a concrete behaviour. This method is based on the precise definition of the 
architectural concepts of action and causality relation, and precise rules for the manipulation of these 
concepts. Abstraction rules are defined to assess whether a concrete behaviour conforms to the original 
abstract behaviour. 

We are confident that the work presented in this paper is more generally applicable than what can 
currently be found in the literature in the area of behaviour refinement. Our work is based on the 
manipulation of carefully developed architectural (design) concepts while to the best of our knowledge 
most other work on this subject has been performed based on the manipulation of properties of formal 
(mathematical) models with limited expressive power (Aceto, 1991, Vogler, 1993). Our design model 
allows clear analysis and design of distributed system behaviours, also supporting the modelling of 
(real) time and probability. Our method for behaviour refinement does not pose restrictions on the 
behaviours that can be considered, and can in principle be applied to arbitrary complex behaviours. 

Extensions and improvements of this work aim at: 
• the further development of our design language, called Interaction System Design Language 

(ISDL), which enables a designer to apply and express our design concepts in an intuitive and 
easy way. The name of this language reflects the concepts underlying our design model: 
interaction and interaction system, stressing the collaboration of functional entities; 

• the development of complete formal support for ISDL in general, and for behaviour refinement 
in particular. Much work on this has already been done in (Quartel, 1998); 

• the development of an integrated tool environment for ISDL, to support analysis techniques 
such as simulation, model checking and conformance assessment. The latter technique can be 
used to partly automate the behaviour refinement design operation. 
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