
                                                                

       
Three Design Patterns for  
Secure Distributed Systems 
 
Alan H. Karp, Kevin Smathers 
Intelligent Enterprise Technologies Laboratory  
HP Laboratories Palo Alto 
HPL-2003-40 
February 25th , 2003* 
 
 
distributed 
computing, 
security 
 

The computers we use are not secure, and they are even less so 
when connected to the Internet. A lot of blame has been put on lazy 
sysadmins for not applying patches promptly, but the fault is not 
entirely theirs. We believe that distributed systems should be 
designed to make attacks harder and to limit the damage done when 
attacks succeed. We propose three components of the system 
architecture that address these goals and make distributed systems 
easier to monitor and manage, while simplifying the task of writing 
secure applications. Following these guidelines won't make the 
system secure, but doing so will make it easier to build systems that 
are. 
 

 

* Internal Accession Date Only                              Approved for External Publication 
 Copyright Hewlett-Packard Company 2003 



 1 

Three Design Patterns for 
Secure Distributed Systems 

Alan H. Karp, Kevin Smathers 
Hewlett-Packard Laboratories  

Palo Alto, CA 
 

Abstract 
The computers we use are not secure, and they are even less so when connected to the 
Internet.  A lot of blame has been put on lazy sysadmins for not applying patches 
promptly, but the fault is not entirely theirs.  We believe that distributed systems should 
be designed to make attacks harder and to limit the damage done when attacks succeed.  
We propose three components of the system architecture that address these goals and 
make distributed systems easier to monitor and manage, while simplifying the task of 
writing secure applications.  Following these guidelines won't make the system secure, 
but doing so will make it easier to build systems that are. 

Introduction 
Much of our thinking on the subject of computer security originated in the 1960s and 
1970s [1, 2], a time when computers were rarely networked, those that were connected 
largely trusted each other, and those connections rarely changed.  That is not the situation 
today.  Virtually all computers and an increasing number of other devices are connected 
to the Internet.  Many of the machines out there are running software that attempts to 
harm others, either because their owners are malicious or because their owners are 
careless and have allowed malicious people take control of their machines.  To make 
matters worse, the environment is constantly changing, with machines joining and 
leaving the system and even changing owners.   

In this paper we’ll examine three ways to structure distributed systems to make them less 
susceptible to attack.  The patterns we describe address certain aspects of anonymity, 
auditing, and access control. They can limit the damage done by some denial of service 
attacks and can make some attacks against applications more difficult. 

There are many aspects of security that we don’t address in this paper.  We exclude from 
the discussion physical security, including tamper-proof devices, methods for 
authentication, specification of authorization policy, most aspects of privacy, and 
protocols for non-repudiation. Nothing we propose can mitigate attacks against the 
underlying operating system, including the network stack. Also, problems of misplaced 
trust, social engineering, and careless users are beyond the scope of this work.    

Assumptions and Implications 
The changes in the environment brought about by widespread connectivity mean that 
builders of distributed systems need to re-examine their assumptions when designing 



 2 

infrastructures for the Internet.  The work presented here is based on the following 
assumptions and implications. 

Large number of machines and users: Because of the large number of machines, we 
can’t rely on a centralized repository for identity management.  Because of the time it 
takes changes to propagate through such a large system, we can’t rely on global data 
consistency to manage privileges, particularly revocation of privileges.  The problems of 
identity management are exacerbated because there are so many users. 
Dynamic: Applications are very difficult to write if the underlying system is always 
changing.  Protocols change faster than applications are upgraded, and mismatches can be 
exploited to attack machines. Connections to services are frequently lost.  Relying on 
application code to reconnect to a service, or find an equivalent service is dangerous.  
Applications can be run by users with limited privileges, but security decisions often need 
to be made in a context with more rights.  Careless users can expose the entire machine, 
and even other machines, to attack.  To the greatest possible extent we need to shield the 
applications from changes in its environment. 
Heterogeneous: The environment is heterogeneous in device capabilities as well as in 
machine type and operating system. Some devices may have limited computation ability, 
communications bandwidth, or storage, which means we need to choose our security 
mechanisms carefully.  An Internet wrist watch may not have sufficient storage to 
maintain an extensive set of certificates; an Internet microwave oven may not have the 
bandwidth to complete a key exchange in a timely manner.  Also, different applications 
will be based on different interpretations of the protocols.  A security upgrade should not 
be delayed pending a comparable upgrade in all the clients.    
Hostile: We know that malicious people are trying to circumvent security, and we know 
that our mechanisms are not perfect.  That means some attacks will succeed, and we need 
to design systems that will limit the damage that can be done when they do.  Relying on 
applications to protect themselves from hackers multiplies the work and the opportunities 
for error.  The system needs to shield applications from hackers as much as possible. 

Different Environments: We need to recognize that there are different ways to achieve 
an end.  Security mechanisms that work in the enterprise may be inappropriate in a small 
business or in a home.  Our system architecture must be flexible enough to support a 
wide variety of requirements.  It must also allow collaboration when the security policies 
and mechanisms of the parties differ.      
 

In what follows we’ll present three patterns for connecting the components of distributed 
systems and explain how they can be used to enhance security.  We’ll next describe how 
these ideas were used in a commercial system.   

Separate Granting of Rights from Access Control 
Most systems today use coordinated mechanisms for granting rights to processes and 
deciding which requests to honor.  For example, most services accessed via web pages 
authenticate by user name and password.  The service then uses an access control list 
(ACL) to decide which user requests to honor.  As we all know, the problem for the user 



 3 

is the handling of all the user names and passwords.  There is a corresponding problem 
on the server side dealing with updates to the ACLs as well as forgotten passwords and 
user IDs. 

 
There is no reason why the mechanism used to grant privileges to a person or a process 
should be related to the mechanism used to decide whether a particular request should be 
honored.  In our first pattern, illustrated in Figure 1, we assume there is an “Authorizer” 
component.  The authorizer can be an external service, as shown, or another application 
running with the service.   

The service registers a set of rules with the authorizer, each associated with some 
credential denoting the allowed permissions.  For example, a rule might be “Anyone 
submitting an employee certificate signed by HP may read this file.”  The credential 
could be as simple as the string “Read”, digitally signed by the service to prevent forgery.  
Another, independently developed service could have the same rule, but could use a 
SPKI capability certificate as a credential.   A third could use an identity representing the 
role “HP employee.” 
Someone wishing to use these services would first authenticate with the authorizer and 
receive a set of credentials.  In our example, a user presenting a properly signed 
certificate would receive a signed document containing the string “Read.”  The service 
now only needs to whether the credential submitted corresponds to the request.  It doesn’t 
need to know who the user is or how the user got the credential.  For example, HP could 
change its policy to grant employee status to contractors without requiring any changes to 

Service 

Authorizer 

 Service 
Access Rule 

User 

Figure 1. Separating authorization from access control. 



 4 

the services.  In addition, the authorizer has no need to interpret the permission, allowing 
it to handle any kind of service, even one invented after the authorizer started running.  
Note that the user’s identity need not be revealed to the service, providing a measure of 
anonymity. 

Using this pattern simplifies the code needed to grant the rights, because it doesn’t need 
to deal with the interface of the service.  The code that decides whether to honor the 
request is also simpler, because it can be independent of any authentication or 
authorization decision.  This approach also addresses the issue of a single sign on for a 
family of services, but it does not solve the problem of dealing with several authorization 
services.  

This approach is not entirely new.  When a Kerberos [3] ticket is issued to a user who has 
presented certain credentials, that ticket can be used to access some resource.  The access 
control decision is based on the ticket, not the authentication used to get the ticket.  
However, in Kerberos and similar systems the form of the ticket is part of the 
architecture.  We propose that the ticket be specific to the service.  After all, the access 
decision may depend on some context not considered when the ticket granting 
mechanism was designed.  Kerberos ties the permission to an authentication; we propose 
making this feature a matter of policy, not architecture. 

Mediate between Application and User 
Jini [4] is representative of the way most networked services work.  A user performs a 
look up in a JavaSpace and receives a handle to the service.  The user then uses this 
handle to access the service.  Most IETF defined Internet services, such as FTP, NTP, 
and NFS, work the same way.  The problem is where to put authentication, authorization, 
and access control and where to generate the audit trail.  For example, Jini services are 
expected to be devices, such as printers; we certainly don’t want to put that much of a 
burden on them.  Jini uses access control lists in the JavaSpace to control which groups of 
services can be discovered by a user, but there is no way to revoke access without 
involving the service. 



 5 

 
Figure 2 shows our second pattern, adding a level of indirection between the user and the 
application.  (Note that the mediator and locator can be separate processes and need not 
even be on the same machine.)  The analogy is with an operating system.  The user of a 
file doesn’t talk directly to the file system drivers; the requests pass through the operating 
system kernel.  This mediator provides several useful functions.  It can produce audit logs 
or generate usage events needed to manage the system effectively.  The mediator can also 
translate between high-level policies, perhaps expressed in an access control list, into 
low-level mechanisms, such as allowing access to a particular file.  The mediator also 
acts as a trusted third party, supplying a verifiable identity for both parties.  If there is an 
inconsistency in the versions of the protocols, the mediator can translate where possible.  
Sending requests through an intermediary provides a measure of anonymity for both the 
service and the user. 
The alternative of putting these functions into libraries to be linked with the application 
executable doesn’t work as well.  First of all, there is no way to be sure that every 
application will use the libraries properly.  A seemingly trivial error in using a 
cryptographic library can make the system vulnerable.  Also, using libraries adds the 
problem of security upgrades and bug fixes to the list of patches that need to be managed.  
Another problem is that there is no way to prevent the applications from bypassing the 
code that generates the necessary log entries and management events.  The absence of a 
mediator also makes dispute handling and identity management issues that need to be 
addressed in every application. 

There are existing systems that provide intermediaries.  We’ve already mentioned 
operating systems, but application servers act as intermediaries for back-end services.  
They provide a dual role here.  They shield the backend services from the open Internet 
and deal with large numbers of users, something most applications don’t do well.  
However, the application server is not involved when internal users access the services, 

Service User 

Mediator 
Locator 

Register Find 
Use 

Use 

Figure 2. Mediating between client and service. 



 6 

which means separate mechanisms must be used for the two classes of users.  The 
CORBA ORB [5] is logically an intermediary, but implementations usually make the 
ORB a library in the client and service address spaces.  

Use a Proxy for Remote Users 
Most services accessed over the web today talk directly to the user.  That’s not a problem 
as long as the user is well behaved, but there is a problem when the user is malicious.  In 
the worst case, the user can induce the service to run code injected by the user.  
Substantial harm can result since the service almost certainly has more privileges than a 
remote user.  Cutting off attacks and revoking privileges must be handled separately by 
each application, tasks that some of them will get wrong. 

 
When your service needs to talk to a user on another machine, do it through separate 
process that acts as a proxy, as shown in Figure 3.  There are a number of benefits.  First 
of all, the proxy can enforce any policies set up for the machine.  After all, you wouldn’t 
want a careless user to inadvertently send confidential material to an insecure machine.  
In addition, the proxy can mitigate the damage done by some attacks.  If the attacker 
crashes the process in which the proxy is running, the only effect is to cut off the 
attacker’s access to your machine.  If you detect an attack against or through the proxy, 
you only need to kill the process running the proxy to cut off the attacker. 

It may not be practical to have a separate process for each remote user.  However, using a 
single proxy for several users means that one of them can deny service to the others or 
gain their privileges by subverting the proxy.  Whether to share a proxy among users and 
which groups of users should share a single proxy is a question of balancing risk against 
cost.  This design pattern makes such decisions one of policy, not architecture. 

Service User 

Proxy 

User 

Proxy User 

Figure 3. Using proxies for remote users. 



 7 

In some operating systems, the proxy can run with a set of privileges appropriate for the 
remote user instead of the local one.  For example, in Unix we can chroot the proxy to 
a directory with a limited set of files.  In this case, the proxy can be extremely 
accommodating, trying to do everything it is asked to do.  Since its permissions are 
controlled by the machine on which it is running, it won’t be able to do anything that the 
remote user hasn’t been granted permission to do.  Privileges can be revoked by 
removing them from the proxy’s set of permissions.   

In other situations, the proxy can be made smarter, filtering requests that might cause 
problems if forwarded to the application.  The advantage of putting these controls in the 
proxy is that they can protect applications written with no consideration for remote users, 
and updates to the proxy add protections to all applications on the machine. 

Other systems have such proxies.  For example, SMTP [6] specifies an intermediary.  
Unfortunately, the SMTP service typically runs as root, which loses much of the security 
benefit of a proxy that runs with the remote user’s privileges.  A web server acting as a 
front-end for an application, such as a corporate database, can also be thought of as a 
proxy.  However, this proxy acts on behalf of all remote users as a matter of architecture, 
not policy.  Not only can a single malicious user deny service to all others by crashing the 
server, but the server necessarily has at least the union of the privileges of all the users 
and  has even more.   

There is one place where proxies are used for their security properties, proxy servers 
frequently used on corporate networks.  The intent here is to shield the client from the 
service.  We believe that proxies should be used on both ends. 

Example of Use 
These three patterns were used in e-speak [7,8], an open source product offered by 
Hewlett-Packard from 1999 until 2002.  An e-speak environment consists of a set of 
logical machines.  Each logical machine has an active component, called the core, and a 
passive component called the repository.  Users and providers of e-speak services are 
called clients of the core. 



 8 

 
Clients interact by sending messages naming resources to the core.  The core uses 
information in the sending client’s protection domain to resolve the name, determine the 
handler for the named resource, extract the permissions corresponding to the request, and 
forwards the request to the resource handler.  The core also generates the appropriate 
usage events. 

 Figure 5 shows the interaction between two logical machines.  When two machines want 
to communicate, they each start a proxy to act on behalf of users on the other machine.  
The proxies handle all issues of mutual authentication, protocol negotiation, and link 

Monitor 

Naming Permission 

Router 

Repository 

 
Service 
User 

Protection 
Domain 

Service 
Provider 

Protection 
Domain 

Event Distributor 

= Core 

Core 

 
 

 

  

 

 

 

  

 

  

  

  

 

 

Figure 4. E-speak Logical Machine with clients. 

Figure 5. Using a remote service in e-speak. 



 9 

encryption.  A local policy is used to determine which resources are to be made available 
to users on the other machine, and these resources are registered on the other machine 
listing the proxy as the handler. 
When a client names a remote resource in a request, the core forwards the request and 
permissions to the handler, the proxy in this case.  The proxy sends the request to its 
counterpart on the machine that exported the resource, which repeats the request.  This 
request is then forwarded to the handler.  Note that both cores, the requester, and the 
handler do exactly what they do for local requests.  Only the proxies know anything 
about another machine. 
Although no one is aware of a serious assault on the security of the system, it is also true 
that no one has reported a security breach in any of the existing applications.  Since these 
include applications involving pride (HiTel), money, (mTicka), and proprietary 
information (SpinCircuit), situations where there is an incentive to find a flaw, there is a 
chance that the patterns described here helped make the system more secure. 

References 
1. J. H. Saltzer, “Protection and the Control of Information Sharing in Multics”, Proc. 

IEEE 63, #9, September 1974 
2. J. B. Dennis and E. C. Van Horn, “Programming Semantics for Multiprogrammed 

Computations”, Comm. ACM 9, #3, March 1966 
3. B. C. Neuman, and T. Ts’o, “Kerberos: An Authentication Service for Computer 

Networks”, IEEE Communications, 32, #9, September 1994 
4. K. Arnold, B. O’Sullivan, R. W. Sheifler, J. Waldo, and A. Wollrath, The Jini 

Specfication, Addison-Wesley, 1999 
5. R. Hoque,  CORBA 3, IDG Books, 1998 

6. J. Postel, “Simple Mail Transfer Protocol”, IETF RFC 0821, 1982 
7. N. Apte and T. Mehta, Web Services: A Java Develoer’s Guide Using E-speak, 

Prentice-Hall PTR 2002 
8. A. Karp, G. Rozas, A. Banerji, R. Gupta, "The Client Utility Architecture: The 

Precursor to E-speak", HP Labs Technical Report HPL-2001-136, June 2001   


