
Self-Organising Software Architectures for
Distributed Systems

Ioannis Georgiadis, Jeff Magee and Jeff Kramer
Department of Computing

Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ, UK

{jnm,i.georgiadis,jk}@doc.ic.ac.uk

ABSTRACT
A self-organising software architecture is one in which
components automatically configure their interaction in a way that
is compatible with an overall architectural specification. The
objective is to minimise the degree of explicit management
necessary for construction and subsequent evolution whilst
preserving the architectural properties implied by its specification.
This paper examines the feasibility of using architectural
constraints as the basis for the specification, design and
implementation of self-organising architectures for distributed
systems. Although we focus on organising the structure of
systems, we show how component state can influence re-
configuration via interface attributes.

Keywords
Software Architecture, self-configuring, constraints.

1 INTRODUCTION
Software Architecture [21; 23] describes the high-level structure
of a system in terms of components and component interactions.
In design, architecture is widely recognized as providing a
beneficial separation of concerns between the gross system
behaviour of interacting components and that of its constituent
components. Similarly this separation is also beneficial when
considering deployed systems and evolution as it allows us to
focus on change at the component level rather than on some finer
grain.

For instance, previous work described some of the issues involved
in specifying a limited form of dynamic software structure for
distributed systems in which the set of components and their
interaction change as execution progresses and the system evolves
[16]. A change to the software architecture could occur either as
the result of some computation performed by the system or as a
result of some external management action such as to insert a new
component and to change those connections within the system to
accommodate the new component. Management actions are
performed by a configuration manager[4] which maintains an
overall view of the structure of a system in terms of components

and their interconnections and performs changes in the context of
that view. In essence, the configuration manager is responsible for
ensuring that an executing system conforms precisely to its
architectural specification. This approach can however be too
restrictive for current dynamic, open systems.

In this paper we consider systems in which it is neither necessary
nor desirable to explicitly manage structure. For example, in large
open distributed systems components may appear dynamically as
the result of individual user action and disappear as the result of
user action or failure. There is no overall management control of
the system, which may span many organisational boundaries.
Components must bind to the services they require as a result of
their own actions without the help of explicit configuration
(structure) management. They are expected to be self-organizing.

Why an architectural approach? In addition to the autonomy
inherent in self-organizing systems, we wish to retain the benefits
of an overall software architecture specification so that, despite
the introduction and removal of components, the system will
remain well-formed with respect to its specification. In this way
the system can be made to preserve the architectural properties
implied by its specification. The architectural specification of a
self-organising system is not a precise description of component
instances and their interconnection but rather a set of constraints
on the way components may be composed. In this sense,
constraints can be considered akin to an architectural style [5],
and can be used to generate and/or check a specific architectural
instance for conformance. Furthermore, if a disturbance occurs,
correcting changes could be generated.

This paper discusses the feasibility of using architectural
constraints as the basis for the specification, design and
implementation of self-organising architectures for distributed
systems. In section 2, we address the problem of ensuring that the
architecture specification constrains the system to have the
required set of structures. Although we focus on organising the
structure of systems, we indicate how component state can
influence re-configuration via interface attributes. In section 3, we
present a runtime architecture that ensures that after component
introduction or failure, the system stabilises with a structure that
satisfies the specified constraints. We also present some results
from our initial Java implementation of this architecture. In
section 4, we discuss related work and in section 5, conclude with
an evaluation of the current work and present a research agenda of
unresolved issues.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
WOSS '02, Nov 18-19, 2002, Charleston, SC, USA.

© 2002 ACM 1-58113-609-9/02/0011...$5.00

2 ARCHITECTURE SPECIFICATION
In specifying the architecture of self-organising systems, we retain
the structural view embodied in the Darwin ADL [15]. System
architecture is a directed graph in which the nodes are component
instances and the arcs specify bindings between a service required
by one component and the service provided by another. However,
to enable analysis of architectural specifications, we have chosen
not to use Darwin directly but to model Darwin components in
Jackson’s Alloy language [9] and express structural constraints
directly in Alloy. This has the advantage that the Alcoa tool [10]
can then be used to generate, explore and analyse the
specifications. It has the further advantage of allowing us to
explore the semantics and features required of an ADL for self-
organising systems without the burden of syntax design. At the
current stage of our research, we feel language design would be
premature although this is clearly a future direction. Alloy has
successfully been used in analysing the properties of COM [11]
systems.

In the following, we present the Alloy specification for Darwin
components and bindings and use in determining the structural
constraints for a simple pipeline architecture. We use this simple
example to explain the approach, however we have both specified
and implemented a much more complex replicated file system
architecture [6].

2.1 Darwin Component Model
A component in Darwin, is a container of provided and required
services. Services are provided and required via ports. Ports are
typed with the interface used to access the service. In Figure 1
below, the component C has two provided ports {P0, P1}, the
filled in circles and three required ports {P2, P3, P4}, the empty
circles. Each port has an interface type e.g. P0 has type T0.

C
P0:: T0

P1:: T1

P2:: T0

P3:: T1

P4:: T2

C
P0:: T0

P1:: T1

P2:: T0

P3:: T1

P4:: T2

Figure 1 – Component

Model Elements
The basic elements of the Alloy model of Darwin are the
components (Comp), service ports (Port) and interface types
(Type):

domain {Port, Comp, Type}

Components and ports denote instances, not types. Components
are implicitly associated with a type through set membership. A
port (i.e. port instance) is associated directly with a port type
(interface) and indirectly with all its supertypes.

Ports
Every port instance is associated with exactly one port type – the
port’s interface. Port types may inherit from other port types. A
port type may have multiple immediate base types, i.e. multiple
inheritance is supported.

type (~inst): Port -> static Type!
baseType: static Type -> static Type

Ports come in two flavours - provided and required:

partition Prov, Req: static Port

Components
A component is always associated with the same fixed number of
ports during its lifetime. Conversely, ports should always be
contained by the same simple component during their lifetime.
The set of ports of a component is the union of its provisions and
requirements. Thus port derives from the prov and req
relations.

prov: static Comp! -> static Prov
req: static Comp! -> static Req
port: static Comp! -> static Port

Bindings
By definition a requirement can be bound to at most one
provision. Required ports may be bound to different provided
ports at different times. The model supports rebinding semantics
by making all binding relations non-static.

reqBind (~provBind): Req -> Prov?

A provision can be bound to a requirement of the same type or a
super type.

all p:Prov | p.provBind.type in p.type.*baseType

Although, we have a complete model for Darwin that includes
hierarchical component composition, the above definitions are
sufficient for the following constraint based which we have
implemented as a self organising system.

2.2 A Pipeline Architecture
In the following, we outline the Alloy constraints for a pipeline
architecture. Each component in a pipeline has exactly one
provision and one requirement and the components are bound
together to form a single chain. A binding constraint on the left
end of the pipeline prevents it from becoming a ring. This
restriction extends implicitly to the right side of the pipeline due
to the cardinality constraint on ports and bindings.

?? Every component has one provision and one requirement:

all c:Comp | (one c.prov) && (one c.req)

?? Cardinality constraint: a provided port has at most one
required port bound to it and vice-versa:

all c:Comp | sole c.prov.provBind

?? The pipeline forms a single chain:

some c:Comp | c.*connected = Comp

?? The pipeline does not form a ring, i.e. the provided port of the
left end of the pipeline should not be connected to any
component of the pipeline chain. The left end can be
unbound.

some leftEnd:Comp
 | no (leftEnd.prov.bind.~port & Comp)

The last two constraints require global knowledge of the system.
We will see that these global constraints are more difficult to
enforce in a self-organising system than local constraints that can
be enforced by a component with no knowledge of the rest of the
system. For example, the cardinality constraint is local.

In addition to checking that invariants hold for the specification,
we can use the Alcoa analyser tool to produce an example or
witness of the pipeline architectural style as shown in Figure 2.
This Alcoa feature has proved invaluable in developing
specifications as the examples usually indicate immediately that a
specification is too weak. The condition somePipeline gives a
hint to Alcoa on generating a sample architectural instance over a
scope of three distinct components:

cond somePipeline {
 some com1, com2, com3:Comp | (com1 != com2) &&

(com1 != com3) && (com2 != com3) }

 C2

P3:: T0
P2:: T0 C1

P4:: T0
P2:: T1 C0

P5:: T0
P2:: T0

Figure 2 - Pipeline instance

Note that in Figure 2, T0 is a subtype of T1; therefore the binding
between C1.P2 & C0.P5 is valid.

In practise, pipelines are most commonly used as an adaptor
between other structures and the edges of the pipeline are
connected to components that don’t belong to the pipeline chain.
Additionally, components will have additional ports not
concerned with pipeline communication, We can add constraints
on the types of ports to reflect these situations. In addition, we can
add constraints based on component application attributes to
enforce ordering – a requirement for protocol stacks. The above
constraints are the most general properties of a pipeline. We use
application specific constraints in the file system example
developed in [6].

In this section, we have used Alloy/Alcoa to show the feasibility
of using an ADL with constraints as the basis of specifying,
generating and analysing the architecture descriptions necessary
for self-organising systems. In the next section, we explore the
feasibility of an execution environment that supports self-
organisation by satisfying architectural constraints.

3 RUNTIME ARCHITECTURE
Our work in self-organising architectures is firmly targeted at a
distributed execution environment. The most difficult
characteristic of this environment is arbitrary failure where
components may fail suddenly without the opportunity to interact
with the rest of the system. Previous work on change management
[13] assumed firstly that the change manager did not fail and
secondly that components had the opportunity to complete
communication transactions before being removed. In this work,
we do not make these assumptions and investigate the feasibility
of a runtime architecture that has no centralised configuration
management service. Our only assumption about the distributed
execution environment is that network partitions do not occur.
This assumption is necessary since as outlined in the following we
use atomic broadcast to maintain a consistent view of architecture
configuration. In the following, we first describe the elements of a
prototype runtime component, next the supporting execution
environment for components and finally illustrate how these
combine to support self-organisation.

3.1 Runtime Components
The implementation of a component is packaged with a
component manager and the configuration view to form a runtime
component as shown in Figure 5.

C
P0:: T0

P1:: T1

P2:: T0

P3:: T1

P4:: T2

C
P0:: T0

P1:: T1

P2:: T0

P3:: T1

P4:: T2

Component Manager

Component ImplementationConfiguration View

Architecture
Constraints

C
P0:: T0

P1:: T1

P2:: T0

P3:: T1

P4:: T2

C
P0:: T0

P1:: T1

P2:: T0

P3:: T1

P4:: T2

Component Manager

Component ImplementationConfiguration View

Architecture
Constraints
Architecture
Constraints

Figure 5 – Runtime Component

Component Implementation
In the current prototype implementation, components are
implemented in Java and use Java RMI to access remote
interfaces. Component implementations may be multi-threaded.
Both the service interfaces implemented by a component
(provided services), and those that are accessed remotely (required
services) are managed by Port objects. Ports provide the
management interface between the component application and the
component manager. They control the binding of required
interfaces and support event listener interfaces to allow the
component implementation to react to changes in binding state.
Events are generated by the component manager when a required
port becomes bound to/ unbound from a remote interface.
Similarly, events are generated when a remote interface is bound
to/ unbound from a provided interface.

Although we have chosen not to focus on individual component
participation in this paper, we make provision for a component to
signal to the configuration manager to indicate a significant
change of its internal state via Attribute objects. For example,
the replicated file server uses an attribute object to signal changes
in mastership to the configuration manager.

Configuration View
Included in each runtime component is a view of the system
configuration state maintained by the component manager. The
view consists of a descriptor for each component type currently
included in the system and a directed graph of the configuration in
which the nodes are component instances and the arcs are
bindings from required to provided ports. The view is updated by
the component manager in response to the binding and unbinding
actions it performs and in response to external events indicating
the arrival of new components, component removal/failure and
binding/unbinding actions taken by other configuration managers.
Maintaining a consistent view of the current configuration state is
a critical property for the correctness of self-organisation.

Component Manager
Management of overall system configuration is achieved by the
set of component managers. As described in the above, the
component manager is responsible for maintaining the
configuration view and for managing the component

implementation. Each component manager in a system is
parameterised with the set of architectural constraints that
describe the required architectural style as specified in section 2.
When a component introduction/removal or attribute change event
occurs it evaluates these constraints against the current
configuration view to compute the required binding and unbinding
actions needed to satisfy the constraints.

3.2 Runtime Support Environment
Component managers need to be apprised of the introduction of
new components and removal/failure of existing components. In
addition, each component manager must maintain a consistent
view of the current configuration state. To maintain a consistent
view, each manager must see the same set of events that change
the configuration state. As depicted in Figure 6, we use a group
membership service to detect component joining and leaving
events and reliable broadcast to disseminate events between
managers.

In addition to maintaining a consistent view of configuration state,
a component manager must also be able to perform consistent
modifications. To do this we use a totally ordered broadcast to
implement a distributed locking scheme. To perform a
configuration change, a manager must obtain the change lock
before performing a change and release it afterwards. The
broadcast system delivers join/leave events and broadcast
messages using virtual synchrony [2]. The change lock and virtual
synchrony ensure that a manager always performs a modification
on a view of the system that has not been invalidated by some
previous action.

Manager

Impl.View

Component

Manager

Impl.View

Component

Manager

Impl.View

Component

Group Membership

Total Order

Reliable Broadcast

Network

Host Host Host

Manager

Impl.View

Component

Manager

Impl.View

Component

Manager

Impl.View

Component

Manager

Impl.View

Component

Manager

Impl.View

Component

Manager

Impl.View

Component

Group Membership

Total Order

Reliable Broadcast

Network

Host Host Host

Figure 6 – Runtime Support Environment

We are currently using the OpenSource JavaGroups [1]
implementation for our runtime support environment. It should be
noted that while component managers communicate using
JavaGroups, component application implementations can
communicate via normal Java RMI or indeed use any available
transport mechanism.

3.3 Self Organisation by Constraint Satisfaction
Changes to the configuration view held in a component occur as a
result of component join/leave events signalled by the group
membership service and binding/unbinding actions taken by
component managers.

When a change to the current configuration view occurs, each
configuration manager, for each required port of the component it

manages, computes the binding needed to satisfy the architecture
constraints. It does this by evaluating a set of configuration rules
that conceptually take the form:

<required-port, selector, action-list>

although currently they are implemented as Java classes. The
required-port identifies the port to which the rule applies, the
selector function is evaluated with respect to the configuration
view, to find a provided port and the action-list consists of a bind
action for the required-port and in some cases unbind actions.

A major goal of our work is to derive these rules, which are
loaded into a component manager, automatically from a
declarative expression of constraints of the kind used in section 2.
However, at the current stage of our research, the rule-based part
of a component manager is designed manually, guided by the
Alloy specification.

In summary, the goal of each component manager is to find a
binding, for each of its required ports, that satisfies the
architectural constraints. A configuration manager re-evaluates the
selector function from each configuration rule every time the
configuration view changes. The architecture stabilizes when all
those required ports that can be bound are bound. Stability is
guaranteed in the absence of continuing failure for those systems
in which configuration rules guarantee monotonically increasing
binding. This is true for both versions of the pipeline system since
the rules either replace or add bindings – they do not remove
bindings.

3.4 Implementation results

Figure 8 – C joins and C.out binds to B.in

As noted previously, components are implemented in Java and
their execution is supported by JavaGroups. We have
implemented a monitoring tool to view runtime structure. It joins
the group channel, retrieves the configuration view from one of
the components and then maintains the view when configuration
update events are broadcast. The Diva graph visualization library
from the Univ. of California at Berkeley is used to display the
configuration graph. Figure 8 shows the monitoring tool display
just after a component has been created and before it has been
integrated into a pipeline architecture.

Figure 9 shows the time needed for a single component to
integrate into an existing pipeline. The integration time is the time
from a new component joining the group until the architecture
stabilizes. The components were distributed among ten nodes
(PCs) running on the same subnet. The times plotted in the graph

are the average over 20 integration executions with a fixed
assignment of components to nodes. From the graph, it can be
seen that the time needed for a component to integrate into a
pipeline of length one is 170ms while the same time in a pipeline
of length sixteen is 270ms. The increase of latency with pipeline
length is mainly due to an increasing delay in message
broadcasting with additional components in the group.

Component Integration Intervals

100

120

140

160

180

200

220

240

260

280

300

320

0 2 4 6 8 10 12 14 16 18 20

Pipeline Length

Time (msec)

Figure 9 – Individual component integration time in a pipeline
of 1 to 20 components

4 RELATED WORK
In specifying the architecture of self-organizing systems, we have
used Alloy for the elegance and conciseness of the notation but
more importantly for its associated automated analysis tools. Our
specifications in Alloy are structural styles that architectural
instances must conform to. Metayer [18] and subsequently Hirch
[7] use graph grammars to express architectural styles and reason
about conformance of change or evolution with respect to
structural constraints. The Chemical Abstract Machine (CHAM)
formalism has been used in the context of architecture description
by Inverardi and Wolf [8]. Wermelinger [24] has employed the
CHAM formalism to express architectural styles and has
illustrated how CHAM execution can generate a sequence of
actions to drive reconfiguration. Neither of these approaches has
mechanical analysis support or deals with implementations.

In relation to runtime support required for reconfiguration Oreizy
et al. [20] discuss an architectural approach to self-adaptive
systems. They argue that architectural evolution needs support
from a number of adaptation and evolution coordinators and
monitoring tools. They have examples applied to the C2
architectural style. Our work has similar goals but has focused on
structural re-organization and analysis.

Evaluation of constraints at runtime to control reconfiguration has
been suggested by a number of other researchers. For example,
the Raven configuration management system [3], uses constraints
to recognize valid structures and to perform repairs. Minsky [19]
suggests the use of “laws” to govern and constrain system re-
configuration. However, rather than trying to deal with
behavioural aspects and providing actions to maintain application
state consistency as these system do, we have deliberately
concentrated on structural organization. The issue of application
response to re-organization is discussed below.

A recent paper [22] concerned with using architectural knowledge
in self-repairing systems is closest in intent to what we are trying
to achieve. The paper couples imperative directions for repairing a
system with architectural constraints described in Armani.

5 RESEARCH ISSUES & AGENDA
The idea of basing self-organising software architectures on
satisfying the constraints of a structural style was first proposed in
a software architecture workshop position paper [17]. The
research reported in this paper has gone some way towards
making this idea concrete and testable. Firstly, we have shown
that the required architectural styles can be expressed and
subsequently analysed in a simple set based logical formalism.
This provides a sound basis for specification and design although
a special purpose constraint based ADL would undoubtedly be
more accessible for practising architects. The replicated file
system example[6] is a system of non-trivial complexity and
shows how application state change can be incorporated in the
architecture style. Although not discussed in this paper,
components can conform to multiple styles. Secondly, we have
designed and implemented a fully decentralised runtime system to
support structural self-organisation. The decentralisation means
that a system can re-organise in response to failure – a key goal of
the approach. Finally, although our approach as presented expects
that new components are always introduced or removed as a result
of an action external to the system (i.e. by a user or by failure), in
fact, there is no reason why the application cannot create new
components or cause components to terminate. The way the
system reorganizes to accommodate component addition/ removal
remains the same.

Our investigation of self-organisation has raised a number of
interesting issues that clearly require further research.

Selector function generation
Selector functions, as described in section 3, are evaluated when
the configuration changes to find new bindings for required ports.
Deriving these selector functions from the Alloy specification of
constraints is currently a manual design step. The problem of
mechanically deriving efficient selectors from constraints is
something that we are actively investigating.

Application interaction with re-organisation
We have focused in this paper on structural re-organisation and
explained that attributes allow component application state to
influence component interconnection. We have mentioned that the
application part of a component can be aware of re-configuration
by listening on ports for binding/rebinding events. However, the
paper has not addressed the question of how applications should
be designed to take account of the possibility of dynamic
rebinding. An approach to checking that a system preserves
correctness properties with respect to application state in the
presence of dynamic configuration change is described in [14].

Scalability & Efficiency
The use of reliable broadcast channels to co-ordinate component
managers and maintain the replicated configuration view
constrains the maximum size of systems. This is confirmed by the
initial results reported in section 3. The time to re-organise a
system increases with the number of components and this is likely
to constrain maximum size to <100 components even with an
efficient implementation of runtime support (which the current
system is not). How do we build self-organising systems with

thousands of components? Can we relax the requirement for
reliable broadcast? We are exploring two answers to these
questions. Firstly, not all components need to have a complete and
consistent configuration view. For example, the architecture for
replicated servers described in [12] does not require clients to
have any knowledge of the server structure. Secondly, we can use
multiple broadcast groups and hierarchical structuring.

Architecture Evolution
How do we evolve the architecture itself to meet changing
requirements? In the context of self-organising systems, this
corresponds to changing the architectural constraints. Our current
implementation supports the ability to dynamically load selector
functions through Java’s dynamic class loading capabilities.
However, the interesting question is how to update selectors in a
way that causes minimal disruption to the application and that
results in a new stable system that conforms to the updated
constraints.

References
[1] B. Ban, JavaGroups User's Guide, Cornell University,

August 1999.

[2] K. Birman, A. Schiper and P. Stephenson, Lightweight
Causal and Atomic Group Multicast, ACM Transactions on
Computer Systems, Vol. 9, No. 3, pp. 271-314, 1991.

[3] T. Coatta and G. Neufeld, Distributed Configuration
Management using Composite Objects and Constraints,,
Distributed Systems Engineering Journal, Vol. 1, No. 5, pp.
294-303, 1994.

[4] S. Crane, N. Dulay, H. Fosså, J. Kramer, J. Magee,
M.Sloman and K. Twidle, Configuration Management
forDistributed Systems, Proc. of the IFIP/IEEE International
Symposium on Integrated Network Management (ISINM
95), Santa Barbara.

[5] D. Garlan, R. Allen and J. Ockerbloom, Exploiting Style in
Architectural Design Environments, Second ACM SIGSOFT
Symposium on Foundations of Software Engineering, New
Orleans, Louisiana, USA, pp. 175-188, December 1994.

[6] I. Georgiadis, Self-organising Distributed Component
Software Architectures, Department of Computing, Imperial
College, 2002.

[7] D. Hirch, P. Inverardi and U. Montanari, Graph grammars
and constraint solving for software architecture styles, 3rd
International Workshop on Software Architecture, pp. 69-72,
1998.

[8] P. Inverardi and A. L. Wolf, Formal Specification and
Analysis of Software Architectures Using the Chemical
Abstract Machine Model, IEEE Transactions on Software
Engineering, Vol. 21, No. 4, pp. 373-386, 95.

[9] D. Jackson, Alloy: A Lightweight Object Modelling Notation,
MIT Lab for Computer Science, July 1999.

[10] D. Jackson, I. Schechter and I. Shlyakhter, Alcoa: The Alloy
Constraint Analyzer, International Conference on Software
Engineering, Limerick, Ireland, June 2000.

[11] D. Jackson and K. Sullivan, COM Revisited: Tool-Assisted
Modelling of an Architectural Framework, ACM SIGSOFT
8th International Symposium on the Foundations of Software
Engineering, San Diego, California, pp. 149-158.

[12] C. Karamanolis and J. Magee, Client-Access Protocols for
Replicated Services, IEEE Transactions on Software
Engineering, Vol. 25, No. 1, pp. , 1999.

[13] J. Kramer and J. Magee, The Evolving Philosophers
Problem: Dynamic Change Management, IEEE Trans. on
Software Engineering, Vol. 16, No. 11, pp. 1293-1306, 1990.

[14] J. Kramer and J. Magee, Analysing Dynamic Change in
Distributed Software Architectures, IEE Proceedings -
Software, Vol. 145, No. 5, pp. 146-154, 1998.

[15] J. Magee, N. Dulay, S. Eisenbach and J. Kramer, Specifying
Distributed Software Architectures, 5th European Software
Engineering Conference (ESEC'95), Sitges, Spain, 989, pp.
137-153, September 1995.

[16] J. Magee and J. Kramer, Dynamic Structure in Software
Architectures, 4th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE 4), San
Francisco, California, USA, 21, pp. 3-14, October 1996.

[17] J. Magee and J. Kramer, Self-Organising Software
Architectures, 2nd International Software Architecture
Workshop.

[18] D. L. Metayer, Software Architecture Styles as Graph
Grammars, 4th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pp. 15-23, November
1996.

[19] N. Minsky, Building Reconfiguration Primitives into the Law
of a System, 3rd International Conference on Configurable
Distributed Systems, Annapolis, pp. 89-97.

[20] P. Oreizy, M. M. Gorlick, R. N. Taylor, G. Johnson, N.
Medvidovic, A. Quilici, D. S. Rosenblum and A. L. Wolf, An
Architecture-Based Approach to Self-Adaptive Software,
IEEE Intelligent Systems, Vol. 14, No. 3, pp. 54-62, 1999.

[21] D. E. Perry and A. L. Wolf, Foundations for the Study of
Software Architectures, ACM SIGSOFT Software
Engineering Notes, Vol. 17, No. 4, pp. 40-52, 1992.

[22] B. Schmerl and D. Garlan, Exploiting Architectural Design
Knowledge to Support Self-repairing Systems, 14th
International Conf. on Software Engineering and Knowledge
Engineering, Ischia, Italy, 2002.

[23] M. Shaw and D. Garlan, Software Architecture: Perspectives
on an Emerging Discipline, Prentice Hall, 96.

[24] M. Wermelinger, Towards a Chemical Model for Software
Architecture Reconfiguration, IEE Proceedings - Software,
Vol. 145, No. 5, pp. 130-136, 1998.

