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ABSTRACT 
A self-organising software architecture is one in which 
components automatically configure their interaction in a way that 
is compatible with an overall architectural specification. The 
objective is to minimise the degree of explicit management 
necessary for construction and subsequent evolution whilst 
preserving the architectural properties implied by its specification. 
This paper examines the feasibility of using architectural 
constraints as the basis for the specification, design and 
implementation of self-organising architectures for distributed 
systems. Although we focus on organising the structure of 
systems, we show how component state can influence re-
configuration via interface attributes.  
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1 INTRODUCTION 
Software Architecture [21; 23] describes the high-level structure 
of a system in terms of components and component interactions. 
In design, architecture is widely recognized as providing a 
beneficial separation of concerns between the gross system 
behaviour of interacting components and that of its constituent 
components. Similarly this separation is also beneficial when 
considering deployed systems and evolution as it allows us to 
focus on change at the component level rather than on some finer 
grain.  

For instance, previous work described some of the issues involved 
in specifying a limited form of dynamic software structure for 
distributed systems in which the set of components and their 
interaction change as execution progresses and the system evolves 
[16]. A change to the software architecture could occur either as 
the result of some computation performed by the system or as a 
result of some external management action such as to insert a new 
component and to change those connections within the system to 
accommodate the new component. Management actions are 
performed by a configuration manager[4] which maintains an 
overall view of the structure of a system in terms of components 

and their interconnections and performs changes in the context of 
that view. In essence, the configuration manager is responsible for 
ensuring that an executing system conforms precisely to its 
architectural specification. This approach can however be too 
restrictive for current dynamic, open systems. 

In this paper we consider systems in which it is neither necessary 
nor desirable to explicitly manage structure. For example, in large 
open distributed systems components may appear dynamically as 
the result of individual user action and disappear as the result of 
user action or failure. There is no overall management control of 
the system, which may span many organisational boundaries. 
Components must bind to the services they require as a result of 
their own actions without the help of explicit configuration 
(structure) management. They are expected to be self-organizing.  

Why an architectural approach? In addition to the autonomy 
inherent in self-organizing systems, we wish to retain the benefits 
of an overall software architecture specification so that, despite 
the introduction and removal of components, the system will 
remain well-formed with respect to its specification. In this way 
the system can be made to preserve the architectural properties 
implied by its specification. The architectural specification of a 
self-organising system is not a precise description of component 
instances and their interconnection but rather a set of constraints 
on the way components may be composed. In this sense, 
constraints can be considered akin to an architectural style [5], 
and can be used to generate and/or check a specific architectural 
instance for conformance. Furthermore, if a disturbance occurs, 
correcting changes could be generated. 

This paper discusses the feasibility of using architectural 
constraints as the basis for the specification, design and 
implementation of self-organising architectures for distributed 
systems. In section 2, we address the problem of ensuring that the 
architecture specification constrains the system to have the 
required set of structures. Although we focus on organising the 
structure of systems, we indicate how component state can 
influence re-configuration via interface attributes. In section 3, we 
present a runtime architecture that ensures that after component 
introduction or failure, the system stabilises with a structure that 
satisfies the specified constraints. We also present some results 
from our initial Java implementation of this architecture. In 
section 4, we discuss related work and in section 5, conclude with 
an evaluation of the current work and present a research agenda of 
unresolved issues. 
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2  ARCHITECTURE SPECIFICATION 
In specifying the architecture of self-organising systems, we retain 
the structural view embodied in the Darwin ADL [15]. System 
architecture is a directed graph in which the nodes are component 
instances and the arcs specify bindings between a service required 
by one component and the service provided by another. However, 
to enable analysis of architectural specifications, we have chosen 
not to use Darwin directly but to model Darwin components in 
Jackson’s Alloy language [9] and express structural constraints 
directly in Alloy. This has the advantage that the Alcoa tool [10] 
can then be used to generate, explore and analyse the 
specifications. It has the further advantage of allowing us to 
explore the semantics and features required of an ADL for self-
organising systems without the burden of syntax design. At the 
current stage of our research, we feel language design would be 
premature although this is clearly a future direction. Alloy has 
successfully been used in analysing the properties of COM [11] 
systems. 

In the following, we present the Alloy specification for Darwin 
components and bindings and use in determining the structural 
constraints for a simple pipeline architecture. We use this simple 
example to explain the approach, however we have both specified 
and implemented a much more complex replicated file system 
architecture [6]. 

2.1  Darwin Component Model 
A component in Darwin, is a container of provided and required 
services. Services are provided and required via ports. Ports are 
typed with the interface used to access the service. In Figure 1 
below, the component C has two provided ports {P0, P1}, the 
filled in circles and three required ports {P2, P3, P4}, the empty 
circles. Each port has an interface type e.g. P0 has type T0. 
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Figure 1 – Component 

Model Elements 
The basic elements of the Alloy model of Darwin are the 
components (Comp), service ports (Port) and interface types 
(Type): 

domain {Port, Comp, Type} 

Components and ports denote instances, not types. Components 
are implicitly associated with a type through set membership.  A 
port (i.e. port instance) is associated directly with a port type 
(interface) and indirectly with all its supertypes. 

Ports 
Every port instance is associated with exactly one port type – the 
port’s interface. Port types may inherit from other port types. A 
port type may have multiple immediate base types, i.e. multiple 
inheritance is supported. 

type (~inst): Port -> static Type! 
baseType: static Type -> static Type 

Ports come in two flavours - provided and required: 

partition Prov, Req: static Port 

Components 
A component is always associated with the same fixed number of 
ports during its lifetime. Conversely, ports should always be 
contained by the same simple component during their lifetime. 
The set of ports of a component is the union of its provisions and 
requirements. Thus port derives from the prov and req 
relations. 

prov: static Comp! -> static Prov 
req: static Comp! -> static Req 
port: static Comp! -> static Port 

Bindings 
By definition a requirement can be bound to at most one 
provision. Required ports may be bound to different provided 
ports at different times. The model supports rebinding semantics 
by making all binding relations non-static. 

reqBind (~provBind): Req -> Prov? 

A provision can be bound to a requirement of the same type or a 
super type.  

all p:Prov | p.provBind.type in p.type.*baseType 

Although, we have a complete model for Darwin that includes 
hierarchical component composition, the above definitions are 
sufficient for the following constraint based which we have 
implemented as a self organising system.   

2.2 A Pipeline Architecture 
In the following, we outline the Alloy constraints for a pipeline 
architecture.  Each component in a pipeline has exactly one 
provision and one requirement and the components are bound 
together to form a single chain. A binding constraint on the left 
end of the pipeline prevents it from becoming a ring. This 
restriction extends implicitly to the right side of the pipeline due 
to the cardinality constraint on ports and bindings. 

?? Every component has one provision and one requirement: 

all c:Comp | (one c.prov) && (one c.req) 

?? Cardinality constraint: a provided port has at most one 
required port bound to it and vice-versa: 

all c:Comp | sole c.prov.provBind 

?? The pipeline forms a single chain: 

some c:Comp | c.*connected = Comp 

?? The pipeline does not form a ring, i.e. the provided port of the 
left end of the pipeline should not be connected to any 
component of the pipeline chain. The left end can be 
unbound. 

some leftEnd:Comp  
        | no (leftEnd.prov.bind.~port & Comp) 

The last two constraints require global knowledge of the system. 
We will see that these global constraints are more difficult to 
enforce in a self-organising system than local constraints that can 
be enforced by a component with no knowledge of the rest of the 
system.  For example, the cardinality constraint is local. 



 

In addition to checking that invariants hold for the specification, 
we can use the Alcoa analyser tool to produce an example or 
witness of the pipeline architectural style as shown in Figure 2. 
This Alcoa feature has proved invaluable in developing 
specifications as the examples usually indicate immediately that a 
specification is too weak. The condition somePipeline gives a 
hint to Alcoa on generating a sample architectural instance over a 
scope of three distinct components: 

cond somePipeline { 
 some com1, com2, com3:Comp | (com1 != com2) &&  

(com1 != com3) && (com2 != com3) } 
 

 C2 

P3:: T0 
P2:: T0 C1 

P4:: T0 
P2:: T1 C0 

P5:: T0 
P2:: T0 

 
 

Figure 2 - Pipeline instance 
 

Note that in Figure 2,  T0 is a subtype of T1; therefore the binding 
between C1.P2 & C0.P5 is valid.  

In practise, pipelines are most commonly used as an adaptor 
between other structures and the edges of the pipeline are 
connected to components that don’t belong to the pipeline chain. 
Additionally, components will have additional ports not 
concerned with pipeline communication, We can add constraints 
on the types of ports to reflect these situations. In addition, we can 
add constraints based on component application attributes to 
enforce ordering – a requirement for protocol stacks. The above 
constraints are the most general properties of a pipeline. We use  
application specific constraints in the file system example 
developed in [6]. 

In this section, we have used Alloy/Alcoa to show the feasibility 
of using an ADL with constraints as the basis of specifying, 
generating and analysing the architecture descriptions necessary 
for self-organising systems. In the next section, we explore the 
feasibility of an execution environment that supports self-
organisation by satisfying architectural constraints. 

3 RUNTIME ARCHITECTURE 
Our work in self-organising architectures is firmly targeted at a 
distributed execution environment. The most difficult 
characteristic of this environment is arbitrary failure where 
components may fail suddenly without the opportunity to interact 
with the rest of the system. Previous work on change management 
[13] assumed firstly that the change manager did not fail and 
secondly that components had the opportunity to complete 
communication transactions before being removed. In this work, 
we do not make these assumptions and investigate the feasibility 
of a runtime architecture that has no centralised configuration 
management service. Our only assumption about the distributed 
execution environment is that network partitions do not occur. 
This assumption is necessary since as outlined in the following we 
use atomic broadcast to maintain a consistent view of architecture 
configuration. In the following, we first describe the elements of a 
prototype runtime component, next the supporting execution 
environment for components and finally illustrate how these 
combine to support self-organisation. 

3.1  Runtime Components 
The implementation of a component is packaged with a 
component manager and the configuration view to form a runtime 
component as shown in Figure 5. 
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Figure 5 – Runtime Component 

Component Implementation 
In the current prototype implementation, components are 
implemented in Java and use Java RMI to access remote 
interfaces. Component implementations may be multi-threaded. 
Both the service interfaces implemented by a component 
(provided services), and those that are accessed remotely (required 
services) are managed by Port objects. Ports provide the 
management interface between the component application and the 
component manager. They control the binding of required 
interfaces and support event listener interfaces to allow the 
component implementation to react to changes in binding state. 
Events are generated by the component manager when a required 
port becomes bound to/ unbound from a remote interface. 
Similarly, events are generated when a remote interface is bound 
to/ unbound from a provided interface.  

Although we have chosen not to focus on individual component 
participation in this paper, we make provision for a component to 
signal to the configuration manager to indicate a significant 
change of its internal state via Attribute objects. For example, 
the replicated file server uses an attribute object to signal changes 
in mastership to the configuration manager. 

Configuration View 
Included in each runtime component is a view of the system 
configuration state maintained by the component manager. The 
view consists of a descriptor for each component type currently 
included in the system and a directed graph of the configuration in 
which the nodes are component instances and the arcs are 
bindings from required to provided ports. The view is updated by 
the component manager in response to the binding and unbinding 
actions it performs and in response to external events indicating 
the arrival of new components, component removal/failure and 
binding/unbinding actions taken by other configuration managers. 
Maintaining a consistent view of the current configuration state is 
a critical property for the correctness of self-organisation. 

Component Manager 
Management of overall system configuration is achieved by the 
set of component managers. As described in the above, the 
component manager is responsible for maintaining the 
configuration view and for managing the component 



 

implementation. Each component manager in a system is 
parameterised with the set of architectural constraints that 
describe the required architectural style as specified in section 2. 
When a component introduction/removal or attribute change event 
occurs it evaluates these constraints against the current 
configuration view to compute the required binding and unbinding 
actions needed to satisfy the constraints. 

3.2  Runtime Support Environment 
Component managers need to be apprised of the introduction of 
new components and removal/failure of existing components. In 
addition, each component manager must maintain a consistent 
view of the current configuration state. To maintain a consistent 
view, each manager must see the same set of events that change 
the configuration state. As depicted in Figure 6, we use a group 
membership service to detect component joining and leaving 
events and reliable broadcast to disseminate events between 
managers. 

In addition to maintaining a consistent view of configuration state, 
a component manager must also be able to perform consistent 
modifications. To do this we use a totally ordered broadcast to 
implement a distributed locking scheme. To perform a 
configuration change, a manager must obtain the change lock 
before performing a change and release it afterwards. The 
broadcast system delivers join/leave events and broadcast 
messages using virtual synchrony [2]. The change lock and virtual 
synchrony ensure that a manager always performs a modification 
on a view of the system that has not been invalidated by some 
previous action. 
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Figure 6 – Runtime Support Environment 

We are currently using the OpenSource JavaGroups  [1] 
implementation for our runtime support environment. It should be 
noted that while component managers communicate using 
JavaGroups, component application implementations can 
communicate via normal Java RMI or indeed use any available 
transport mechanism. 

3.3  Self Organisation by Constraint Satisfaction 
Changes to the configuration view held in a component occur as a 
result of component join/leave events signalled by the group 
membership service and binding/unbinding actions taken by 
component managers.  

When a change to the current configuration view occurs, each 
configuration manager, for each required port of the component it 

manages, computes the binding needed to satisfy the architecture 
constraints. It does this by evaluating a set of configuration rules 
that conceptually take the form: 

<required-port, selector, action-list> 

although currently they are implemented as Java classes. The 
required-port identifies the port to which the rule applies, the 
selector function is evaluated with respect to the configuration 
view, to find a provided port and the action-list consists of a bind 
action for the required-port and in some cases unbind actions.  

A major goal of our work is to derive these rules, which are 
loaded into a component manager, automatically from a 
declarative expression of constraints of the kind used in section 2. 
However, at the current stage of our research, the rule-based part 
of a component manager is designed manually, guided by the 
Alloy specification. 

In summary, the goal of each component manager is to find a 
binding, for each of its required ports, that satisfies the 
architectural constraints. A configuration manager re-evaluates the 
selector function from each configuration rule every time the 
configuration view changes. The architecture stabilizes when all 
those required ports that can be bound are bound. Stability is 
guaranteed in the absence of continuing failure for those systems 
in which configuration rules guarantee monotonically increasing 
binding.  This is true for both versions of the pipeline system since 
the rules either replace or add bindings – they do not remove 
bindings. 

3.4 Implementation results 

 
Figure 8 – C joins and C.out binds to B.in 

 
As noted previously, components are implemented in Java and 
their execution is supported by JavaGroups. We have 
implemented a monitoring tool to view runtime structure. It joins 
the group channel, retrieves the configuration view from one of 
the components and then maintains the view when configuration 
update events are broadcast. The Diva graph visualization library 
from the Univ. of California at Berkeley is used to display the 
configuration graph. Figure 8 shows the monitoring tool display 
just after a component has been created and before it has been 
integrated into a pipeline architecture. 

Figure 9 shows the time needed for a single component to 
integrate into an existing pipeline. The integration time is the time 
from a new component joining the group until the architecture 
stabilizes. The components were distributed among ten nodes 
(PCs) running on the same subnet. The times plotted in the graph 



 

are the average over 20 integration executions with a fixed 
assignment of components to nodes. From the graph, it can be 
seen that the time needed for a component to integrate into a 
pipeline of length one is 170ms while the same time in a pipeline 
of length sixteen is 270ms. The increase of latency with pipeline 
length is mainly due to an increasing delay in message 
broadcasting with additional components in the group.  
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Figure 9 – Individual component integration time in a pipeline 
of 1 to 20 components 

4 RELATED WORK 
In specifying the architecture of self-organizing systems, we have 
used Alloy for the elegance and conciseness of the notation but 
more importantly for its associated automated analysis tools. Our 
specifications in Alloy are structural styles that architectural 
instances must conform to. Metayer [18] and subsequently Hirch 
[7] use graph grammars to express architectural styles and reason 
about conformance of change or evolution with respect to 
structural constraints. The Chemical Abstract Machine (CHAM) 
formalism has been used in the context of architecture description 
by Inverardi and Wolf [8]. Wermelinger [24] has employed the 
CHAM formalism to express architectural styles and has 
illustrated how CHAM execution can generate a sequence of 
actions to drive reconfiguration. Neither of these approaches has 
mechanical analysis support or deals with implementations.  

In relation to runtime support required for reconfiguration Oreizy 
et al. [20] discuss an architectural approach to self-adaptive 
systems. They argue that architectural evolution needs support 
from a number of adaptation and evolution coordinators and 
monitoring tools. They have examples applied to the C2 
architectural style. Our work has similar goals but has focused on 
structural re-organization and analysis. 

Evaluation of constraints at runtime to control reconfiguration has 
been suggested by a number of other researchers. For example, 
the Raven configuration management system [3], uses constraints 
to recognize valid structures and to perform repairs. Minsky  [19] 
suggests the use of “laws” to govern and constrain system re-
configuration. However, rather than trying to deal with 
behavioural aspects and providing actions to maintain application 
state consistency as these system do, we have deliberately 
concentrated on structural organization. The issue of application 
response to re-organization is discussed below. 

A recent paper [22] concerned with using architectural knowledge 
in self-repairing systems is closest in intent to what we are trying 
to achieve. The paper couples imperative directions for repairing a 
system with architectural constraints described  in Armani. 

5 RESEARCH ISSUES & AGENDA 
The idea of basing self-organising software architectures on 
satisfying the constraints of a structural style was first proposed in 
a software architecture workshop position paper [17]. The 
research reported in this paper has gone some way towards 
making this idea concrete and testable. Firstly, we have shown 
that the required architectural styles can be expressed and 
subsequently analysed in a simple set based logical formalism.  
This provides a sound basis for specification and design although 
a special purpose constraint based ADL would undoubtedly be 
more accessible for practising architects. The replicated file 
system example[6] is a system of non-trivial complexity and 
shows how application state change can be incorporated in the 
architecture style. Although not discussed in this paper, 
components can conform to multiple styles. Secondly, we have 
designed and implemented a fully decentralised runtime system to 
support structural self-organisation. The decentralisation means 
that a system can re-organise in response to failure – a key goal of 
the approach. Finally, although our approach as presented expects 
that new components are always introduced or removed as a result 
of an action external to the system (i.e. by a user or by failure), in 
fact, there is no reason why the application cannot create new 
components or cause components to terminate. The way the 
system reorganizes to accommodate component addition/ removal 
remains the same.  

Our investigation of self-organisation has raised a number of 
interesting issues that clearly require further research. 

Selector function generation 
Selector functions, as described in section 3, are evaluated when 
the configuration changes to find new bindings for required ports. 
Deriving these selector functions from the Alloy specification of 
constraints is currently a manual design step. The problem of 
mechanically deriving efficient selectors from constraints is 
something that we are actively investigating.  

Application interaction with re-organisation 
We have focused in this paper on structural re-organisation and 
explained that attributes allow component application state to 
influence component interconnection. We have mentioned that the 
application part of a component can be aware of re-configuration 
by listening on ports for binding/rebinding events. However, the 
paper has not addressed the question of how applications should 
be designed to take account of the possibility of dynamic 
rebinding. An approach to checking that a system preserves 
correctness properties with respect to application state in the 
presence of dynamic configuration change is described in [14]. 

Scalability & Efficiency 
The use of reliable broadcast channels to co-ordinate component 
managers and maintain the replicated configuration view 
constrains the maximum size of systems. This is confirmed by the 
initial results reported in section 3. The time to re-organise a 
system increases with the number of components and this is likely 
to constrain maximum size to <100 components even with an 
efficient implementation of runtime support (which the current 
system is not).  How do we build self-organising systems with 



thousands of components? Can we relax the requirement for 
reliable broadcast? We are exploring two answers to these 
questions. Firstly, not all components need to have a complete and 
consistent configuration view. For example, the architecture for 
replicated servers described in [12] does not require clients to 
have any knowledge of the server structure. Secondly, we can use 
multiple broadcast groups and hierarchical structuring. 

Architecture Evolution 
How do we evolve the architecture itself to meet changing 
requirements?  In the context of self-organising systems, this 
corresponds to changing the architectural constraints. Our current 
implementation supports the ability to dynamically load selector 
functions through Java’s dynamic class loading capabilities. 
However, the interesting question is how to update selectors in a 
way that causes minimal disruption to the application and that 
results in a new stable system that conforms to the updated 
constraints. 
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